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Examples for Souslin forcing
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and Saharon S h e l a h (Jerusalem and New Brunswick, N.J.)

Abstract. We give several examples of Souslin forcing notions. For instance, we show
that there exists a proper analytical forcing notion without ccc and with no perfect set
of incompatible elements, we give an example of a Souslin ccc partial order without the
Knaster property, and an example of a totally nonhomogeneous Souslin forcing notion.

1. Introduction. In this paper we continue with our study of forcing
notions having a simple definition. We began this study in [JS1] and [JS2].
In [BJ] we gave more results about Souslin forcing notions and in this paper
we will give some examples of Souslin forcing notions answering a question
of [JS1] and a question of H. Woodin.

A forcing notion P is Souslin if P ⊆ R is a Σ1
1 -set, {(p, q) : p ≤P q} is a

Σ1
1 -set and {(p, q) : p is incompatible with q} is a Σ1

1 -set.
More information on Souslin forcing notions can be found in [JS1]. A

related work is [BJ]. In [JS1] we prove that if P is Souslin ccc and Q is any
forcing notion then VQ ² “P satisfies ccc”. A natural question was: does
“P is Souslin ccc” imply “P has the Knaster property”? Recall that P has
the Knaster property if and only if

(∀A ∈ [P]ω1)(∃B ∈ [A]ω1)(∀p, q ∈ B)(p is compatible with q) .

In the second section we will give a model where there is a ccc Souslin
forcing which does not satisfy the Knaster condition. Recall that under the
assumption of MA every ccc notion of forcing has the Knaster property.

Many simple forcing notions P satisfy the following condition:

°P “P̂ is σ-centered”.
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This property is connected with the homogeneity of the forcing notion. The
example of a totally nonhomogeneous Souslin forcing will be constructed in
the third section.

In the next section we present a model where there is a σ-linked not
σ-centered Souslin forcing such that all its small subsets are σ-centered but
the Martin Axiom fails for this order.

In Section 5 we will give an example of a σ-centered Souslin forcing
notion and a model of the negation of CH in which the union of less than
continuum meager subsets of R is meager but the Martin Axiom fails for
this notion of forcing.

In the last session of the MSRI Workshop on the continuum (October
1989) H. Woodin asked if “P has a simple definition and does not satisfy ccc”
implies that there exists a perfect set of mutually incompatible conditions.
Clearly the Mathias forcing satisfies such a requirement. In Section 6 we will
find a Souslin forcing which is proper but not ccc and does not contain a
perfect set of mutually incompatible conditions.

The last section will show that ccc Σ1
2 -notions of forcing may not be

indestructible ccc.
Our notation is standard and derived from [Je]. There is one exception,

however. We write p ≤ q to say that q is a stronger condition than p.

2. On the Knaster condition. In this section we will build a Souslin
forcing satisfying the countable chain condition but which fails the Knaster
condition.

Fix a sequence 〈σi : i ∈ ω〉 of functions from ω into ω such that

(∗) if N < ω, φi : N → ω (for i < N) then there are distinct n0, . . . , nN−1

such that

(∀i, j0, j1 < N)(φi(j0) = j1 ⇒ σi(nj0) = nj1) .

Note that there exists a sequence 〈σi : i ∈ ω〉 satisfying (∗).
Indeed, suppose we have defined σi|m0 : m0 → m0 for i < m0. We want

to ensure (∗) for n0 + 1 and φi (i ≤ n0). Define σi(m0 + j0) = m0 + φi(j0)
for i, j0 ≤ n0. Take large m1 and extend all σi (i ≤ n0) on m1 in such a way
that rng(σi) ⊆ m1.

Next we define functions fi : ωω → ωω for i ∈ ω by

fi(x)(k) =
{
x(k) if k < i,
σi(x(k)) otherwise.

Clearly all functions fi are continuous. Put F (x) = {fi(x) : i ∈ ω} for
x ∈ ωω.
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Lemma 2.1. Suppose that xα, yα ∈ ωω are such that there is no repetition
in {xα, yα : α ∈ ω1}. Then there exists A ∈ [ω1]ω1 such that

(∀α, β ∈ A)(α < β ⇒ xα 6∈ F (yβ)) .

P r o o f. For α < ω1 let nα = min{n : xα(n) 6= yα(n)}. We find n ∈ ω
and s, t ∈ ωn such that the set A0 = {α < ω1 : n = nα + 1 & xα|n =
s & yα|n = t} is stationary in ω1. Clearly s 6= t and s|(n − 1) = t|(n − 1).
Thus α, β ∈ A0 and xα ∈ F (yβ) imply xα ∈ {fi(yβ) : i ≤ n}. Consequently,
the set {α ∈ A0 ∩ β : xα ∈ F (yβ)} is finite for each β ∈ A0.

We define the regressive function ψ : A0 → ω1 by ψ(β) = max{α ∈
A0 ∩ β : xα ∈ F (yβ)} (with the convention that max ∅ = 0). By Fodor’s
lemma there are γ < ω1 and a stationary set A1 ⊆ A0 such that ψ(β) = γ
for all β ∈ A1. Put A = A1 \ (γ + 1). Now, if α, β ∈ A and α < β then
ψ(β) < α and hence xα 6∈ F (yβ).

Lemma 2.2. Suppose that {Wα : α < ω1} is a family of disjoint finite
subsets of ωω. Then there exist β < ω1 and an infinite set A ⊆ β such that

(∀α ∈ A)(∀x ∈Wα)(∀y ∈Wβ)(x 6∈ F (y)) .

P r o o f. We may assume that all sets Wα are of the same cardinality, say
|W | = n for α < ω1. For α = λ + k, where λ < ω1 is a limit ordinal and
k ∈ ω, we define Xα = Wλ+2k and Yα = Wλ+2k+1. Let Xα = {xαi : i < n},
Yα = {yαi : i < n}. By induction on l = l1n + l2 < n2, l1, l2 < n, choose
uncountable sets Al ⊆ ω1 satisfying

• Al+1 ⊆ Al and
• if l = l1n+ l2, l1, l2 < n, α, β ∈ Al and α < β then xαl1 6∈ F (yβl2).

Since there is no repetition in {xαl1 , yαl2 : α ∈ Al−1} we may apply Lemma 2.1
to get Al from Al−1.

Consider An2−1. Choose β0 ∈ An2−1 such that the set

A = {λ+ 2k < β0 : λ+ k ∈ An2−1 & k ∈ ω & λ is a limit ordinal}
is infinite. Let β0 = λ0+k0 where k0 ∈ ω and λ0 is limit. Put β = λ0+2k0+1.
Since β0 < β we have A ⊆ β. Suppose α = λ + 2k ∈ A. Let x ∈ Wα and
y ∈Wβ . Then λ+ k ∈ An2

1
, Wα = Xλ+k and Wβ = Yλ0+k0 = Yβ0 . Thus for

some l1, l2 < n we have x = xλ+k
l1

and y = yβ0
l2

. Since λ + k, β0 ∈ Al1n+l2
and λ+ k < β0 we get x 6∈ F (y). The lemma is proved.

Let relations Ri on ω<ω be defined by

sRit if and only if

i < |s| = |t|, s|i = t|i and (∀l ∈ [i, |s|))(s(l) = σi(t(l))) .

Note that if x, y ∈ ωω are such that (∀n > i)(x|nRiy|n) then x = fi(y).
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We define the following forcing notion Q. A member q of Q is a finite
function such that:

• dom(q) ∈ [ω1]<ω, rng(q) ⊆ ω<ω,
• (∀α, β ∈ dom(q))(α 6= β ⇒ q(α) 6= q(β)),
• there is n(q) ∈ ω such that q(α) ∈ ωn(q) for all α ∈ dom(q).

The order is defined as follows: q ≤ p if and only if

• dom(q) ⊆ dom(p),
• (∀α ∈ dom(q))(q(α) ⊆ p(α)),
• if α, β ∈ dom(q), α < β, i < n(q) and q(α)Riq(β) then p(α)Rip(β).

Lemma 2.3. Q satisfies ccc.

P r o o f. Suppose {qα : α < ω1} ⊆ Q. We find γ < ω1 and A ∈ [ω1]ω1

such that for each α, β ∈ A, α < β, we have

• n(qα) = n(qβ),
• dom(qα) ∩ γ = dom(qβ) ∩ γ, (dom(qα)\γ) ∩ (dom(qβ)\γ) = ∅,
• qα|(dom(qα) ∩ γ) = qβ |(dom(qβ) ∩ γ).

Suppose α, β ∈ A. Clearly q = qα∪qβ is a function. The only problem is that
there may exist γ0 ∈ dom(qα) and γ1 ∈ dom(qβ) such that qα(γ0) = qβ(γ1).
Therefore to get a condition above both qα and qβ we have to extend all q(γ).
Let dom(q) = {γj : j < N} be an increasing enumeration. For i < n(qα)
choose φi : N → ω such that

if j1 < j0 < N and q(γj1)Riq(γj0)

and either γj0 , γj1 ∈ dom(qα) or γj0 , γj1 ∈ dom(qβ)

then φi(j0) = j1 .

Note that q(γj1)Riq(γj0) and q(γj2)Riq(γj0) imply q(γj1) = q(γj2). Hence
if j2 < j1 < j0 are as above then γj2 ≥ γ and consequently only one pair
(j1, j0) or (j2, j0) will be considered in the definition of φi. Apply condition
(∗) to find distinct n0, . . . , nN−1 such that

(∀i < n(qα))(∀j0, j1 < N)(φi(j0) = j1 ⇒ σi(nj0) = nj1) .

Put q(γj) = q(γj)∧nj for j < N . Clearly q ∈ Q. Suppose γj1 , γj0 ∈ dom(qα),
j1 < j0 and qα(γj1)Riqα(γj0) for some i < n(qα). Then φi(j0) = j1 and
hence σi(nj0) = nj1 . Thus q(γj1)Riq(γj0). This shows that qα ≤ q. Similarly
qβ ≤ q. Thus we have proved that Q satisfies the Knaster condition.

Let G ⊆ Q be generic over V. In V[G] we define xGα =
⋃{q(α) : q ∈

G & α ∈ dom(q)} for α < ω1. Obviously each xGα is a sequence of integers.
As in the proof of Lemma 2.3 we can show that for each q ∈ Q there is
p ≥ q such that n(p) = n(q) + 1. Consequently, xGα ∈ ωω for every α < ω1.
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Moreover, xGα 6= xGβ for α < β < ω1 (recall that q(α) 6= q(β) for distinct
α, β ∈ dom(q)).

Note that if α < β, α, β ∈ dom(q), q ∈ Q and i < n(q) then

q(α)Riq(β) implies q ° ẋα = fi(ẋβ) and

¬q(α)Riq(β) implies q ° ẋα 6= fi(ẋβ) .

Lemma 2.4. Suppose G ⊆ Q is generic over V. Then

V[G] ² (∀A ∈ [ω1]ω1)(∃α, β ∈ A)(α < β & xGα ∈ F (xGβ )) .

P r o o f. Let Ȧ be a Q-name for an uncountable subset of ω1. Given
p ∈ Q, find A0 ∈ [ω1]ω1 and qα ≥ p for α ∈ A0 such that α ∈ dom(qα) and
qα ° α ∈ Ȧ. We may assume that for each α, β ∈ A0 we have n = n(qα) =
n(qβ) and qα(α) = qβ(β). Now we repeat the procedure of Lemma 2.3 with
one small change. We choose suitable A1 ∈ [A0]ω1 and γ < ω1, and we
take α, β ∈ A1, α < β. Defining integers n0, . . . , nN−1 we consider functions
φi : N → ω (for i < n) as in 2.3 and a function φn : N → ω such that
φn(k) = l, where α = γl, β = γk. Then we get a condition q ∈ Q above both
qα and qβ and such that σn(q(β)(n)) = q(α)(n). Since q(β)|n = q(α)|n and
n(q) = n+ 1 we have q(α)Rnq(β) and consequently q ° ẋα = fn(ẋβ). Since
q ≥ qα, qβ we get q ° “α, β ∈ Ȧ & ẋα ∈ F (ẋβ)”.

Fix a Borel isomorphism (π0, π1, π2) : ωω → (ωω)ω × 2ω×ω × ωω. Thus
if x ∈ ωω then π1(x) is a relation on ω and π0(x) is a sequence of reals. Let
Γ consist of all reals x ∈ ωω such that

1. (∀n 6= m)(π0(x)(n) 6= π0(x)(m)),
2. π1(x) is a linear order on ω,
3. π2(x) ∈ Ax = {π0(n) : n ∈ ω} and it is the π1(x)-last element of Ax.

Note that in 3 we think of π1(x) as an order on Ax. We define relations <Γ
and ≡Γ on Γ by

x <Γ y if and only if
Ax is a proper π1(y)-initial segment of Ay and π1(y)|Ax = π1(x),

x ≡Γ y if and only if Ax = Ay and π1(y) = π1(x)

(we treat π1(x), π1(y) as orders on Ax, Ay, respectively).
Clearly Γ is a Borel subset of ωω, <Γ is a Borel transitive relation on Γ

and ≡Γ is a Borel equivalence relation on Γ .
Now we define a forcing notion P1. Conditions in P1 are finite subsets

p of Γ such that

if x, y ∈ p and x <Γ y then π2(x) 6∈ F (π2(y)) .

P1 is ordered by inclusion.

Lemma 2.5. P1 is a ccc Souslin forcing.
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P r o o f. P1 is Souslin since it can be easily coded as a Borel subset of
ωω in such a way that the order is also Borel. We have to show that P1

satisfies the countable chain condition. First let us note some properties of
the incompatibility in P1. Suppose p, q ∈ P1 are incompatible. Clearly p\q
and q\p are incompatible. If x ∈ p and x ≡Γ x′ then (p\{x}) ∪ {x′} and q
are incompatible.

Suppose now that {pα : α < ω1} is an antichain in P1. By the ∆-lemma
and by the above remarks we may assume that

pα ∩ pβ = ∅ for α < β < ω1 ,(1)

if x, x′ ∈
⋃
α<ω1

pα and x 6= x′ then x 6≡Γ x′ .(2)

Note that if p ∈ P1 then the set {[y]≡Γ : y ∈ Γ & (∃x ∈ p)(y <Γ x)} is
countable. Hence, due to (2), we may assume that

(3) (∀α < β < ω1)(∀x ∈ pα)(∀y ∈ pβ)(¬y <Γ x) .

Claim. Let d ∈ [ωω]<ω. Then d = {π2(x) : x ∈ pα} for at most countably
many α < ω1.

Indeed, assume not. Then we find β < ω1 such that {π2(x) : x ∈ pβ} = d
and the set B = {α < β : {π2(x) : x ∈ pα} = d} is infinite. Note that if
x′, x′′ <Γ x and π2(x′) = π2(x′′) then x′ ≡Γ x′′. Hence if x ∈ pβ then for at
most |d| elements x′ of

⋃
α∈A pα we have x′ <Γ x. Thus we find α ∈ A such

that (∀x′∈pα)(∀x ∈ pβ)(¬x′ <Γ x). It follows from (3) that

(∀x ∈ pβ)(∀x′ ∈ pα)(¬x <Γ x′)
and hence the conditions pα and pβ are compatible—a contradiction.

Let dα = {π2(x) : x ∈ pα}. By the above claim we may assume that
dα 6= dβ for all α < β < ω1. Applying the ∆-lemma we may assume that

(4) {dα : α < ω1} forms a ∆-system with the root d .

Since the set
⋃
w∈d F (w) is countable, without loss of generality

(5) (∀α<ω1)(∀v ∈ dα\d)
(
v 6∈

⋃

w∈d
F (w)

)
.

Apply Lemma 2.2 to the family {dα \d : α < ω1} to get β < ω1 and an
infinite set A ⊆ β such that

(6) (∀α ∈ A)(∀v ∈ dα\d)(∀w ∈ dβ\d)(v 6∈ F (w)) .

Let y ∈ pβ . As in the claim the set
{
x ∈

⋃

α∈A
pα : π2(x) ∈ d & x <Γ y

}
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is finite. Consequently, we find α ∈ A such that

(7) (∀x ∈ pα)(∀y ∈ pβ)(π2(x) ∈ d⇒ ¬x <Γ y) .

We claim that pα and pβ are compatible. Let x ∈ pα and y ∈ pβ . By (7),
if π2(x) ∈ d then ¬x <Γ y. If π2(x) 6∈ d and π2(y) 6∈ d then (6) applies and
we get π2(x) 6∈ F (π2(y)). Finally, if π2(x) 6∈ d and π2(y) ∈ d then we use (5)
to conclude that π2(x) 6∈ F (π2(y)). Hence x ∈ pα, y ∈ pβ and x <Γ y imply
π2(x) 6∈ F (π2(y)). Consequently, pα ∪ pβ ∈ P1.

Lemma 2.6. Assume that there exists a sequence {xα : α < ω1} of ele-
ments of ωω such that

(∀A ∈ [ω1]ω1)(∃α, β ∈ A)(α < β & xα ∈ F (xβ)) .

Then the forcing notion P1 does not satisfy the Knaster condition.

P r o o f. For α < ω1 choose yα ∈ Γ such that

• Ayα = {π0(yα)(n) : n ∈ ω} = {xγ : γ ≤ α},
• π1(yα) is the natural order on Ayα , xγ <π1(yα) xβ iff γ < β,
• π2(yα) = xα.

Let pα = {yα} for α < ω1. Then {pα : α < ω1} does not have an uncountable
subset of pairwise compatible elements.

Putting together Lemmas 2.4–2.6 we get

Theorem 2.7. It is consistent that there exists a ccc Souslin forcing
notion which does not satisfy the Knaster condition.

It is not difficult to see that this example does not satisfy the following
requirement:

“The generic object is encoded by a real”.

The next theorem says that we can also require such a condition. This
answers a question of J. Bagaria.

Theorem 2.8. It is consistent that there exists a ccc Souslin forcing
notion Q such that °Q V[G] = V[ṙ] for some Q-name ṙ for a real and Q
does not satisfy the Knaster condition.

P r o o f. We follow the notation of the previous results. We work in the
model of 2.7. Let Q = {(p, w) : p ∈ P & w ∈ [ω<ω]<ω} be ordered by

(p, w) ≤ (q, v) if and only if

p ≤ q, w ⊆ v and x|n 6∈ v\w for every x ∈ p and n ∈ ω .
Q may be easily represented as a Souslin forcing notion (remember that “for
each x in p” is a quantification on natural numbers). Note that if p ≤ q,
p, q ∈ P and w ∈ [ω<ω]<ω then (p, w) ≤ (q, w). Hence Q satisfies the
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countable chain condition. If Q satisfied the Knaster condition then P would
have satisfied it.

We show that the Q-generic object is encoded by a real. Let ṙ be a
Q-name for a subset of ω<ω (a real) such that for any Q-generic G we have
ṙG =

⋃{w : (∃p)((p, w) ∈ G)}. Now in V[ṙG] define

H = {(p, w) ∈ Q : w ⊆ ṙG & (∀x ∈ p)(∀n ∈ ω)(x|n ∈ ṙG ⇔ x|n ∈ w)} .
Note that H includes G since x ∈ p and x|n 6∈ w imply (p, w) ° x|n 6∈ ṙ.

We show that H is a filter. Suppose (p0, w0), (p1, w1) ∈ H. For each
x ∈ p0 ∪ p1 we find (px, wx) ∈ G such that (px, wx) ° (∀n ≥ N)(x|n 6∈ ṙ)
for some N . If x 6∈ px we could take large n and add x|n to wx. Then we
would have (px, wx) ≤ (px, wx∪{x|n}) and (px, wx∪{x|n}) ° x|n ∈ ṙ. Thus
x ∈ px for all x ∈ p0 ∪ p1. Let p =

⋃
x∈p0∪p1

px, w =
⋃
x∈p0∪p1

wx. Then
(p, w) ∈ G ⊆ H and (p0, w0), (p1, w1) ≤ (p, w). Consequently, H = G and
the theorem is proved.

At the same time when the forcing notion P1 was constructed S. Todor-
čević found another example of this kind.

Let F be the family of all converging sequences s of real numbers such
that lim s 6∈ s. Todorčević’s forcing notion P∗1 consists of finite subsets p of
F with the property that

(∀s, t ∈ p)(s 6= t⇒ lim s 6∈ t) .
Todorčević proved that P∗1 satisfies ccc and that if b = ω1 then P∗1 does not
have the Knaster property (see [To]).

3. A nonhomogeneous example. In this section we give an example
of a ccc Souslin forcing notion which is very nonhomogeneous. Our forcing
P2 will satisfy the following condition:

there is no p ∈ P2 such that p ° “P̂2|p is σ-centered”.

Recall that if Q is the Amoeba Algebra for Measure or the Measure Algebra
then °Q “Q̂ is σ-centered” (see [BJ]). The Todorčević example P∗1 also has
this property.

Proposition 3.1. °P∗1 “P̂∗1 is σ-centered”.

P r o o f. For a rational number d ∈ Q let φd : P∗1 → P∗1 be the translation
by d. Thus φd(p) = {s+ d : s ∈ p}. Note that φd is an automorphism of P∗1.
Moreover, if p1, p2 ∈ P∗1 then

⋃{s − r : s ∈ p1, r ∈ p2} is a nowhere dense
set. Hence we find a rational d such that

−d 6∈ {a− b : a ∈ s ∪ {lim s}, b ∈ r ∪ {lim r}, s ∈ p1, r ∈ p2} .
Then the conditions φd(p1) and p2 are compatible. Thus we have proved
that for each p ∈ P∗1 the set {φd(p) : d ∈ Q} is predense in P∗1. This implies
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that

°P∗1 “P̂∗1 =
⋃

d∈Q
φd[Γ̇ ] and each φd[Γ̇ ] is centered”,

where Γ̇ is the canonical name for a generic filter.

We do not know if

°P1 “P̂1 is σ-centered”.

One can easily construct a ccc Souslin forcing P which does not force that
P̂ is σ-centered. An example of such a forcing notion is the disjoint union of
the Cohen forcing and the measure algebra, P = ({0} ×C) ∪ ({1} ×B). In
this order we have (0, ∅) ° “{1}× B̂ is not σ-centered”. But in this example
we can find a dense set of conditions p ∈ P such that

p °P “P̂|p = {q ∈ P̂ : q ≥ p} is σ-centered” .

Define T ∗ ⊆ ω<ω and f, g : T ∗ → ω in such a way that:

(α) T ∗ is a tree,
(β) if η ∈ T ∗ then succT∗(η) = f(η),
(γ) if lh η < lh ν or lh ν = lh η but (∃k < lh η)(η|k = ν|k & η(k) < ν(k))

then f(η) < f(ν),
(δ) g(η) > |T ∗ ∩ ωlh η| ·∏{f(ν) : f(ν) < f(η)} · (100 + lh η),
(ε) f(η) > g(η) ·∏{2f(ν) : f(ν) < f(η)}.
For η ∈ T ∗ and a set A ⊆ succT∗(η) = f(η) we define a norm of A:

norη(A) =
g(η)

|f(η)\A| .

Lemma 3.2. Suppose that η ∈ T ∗ and Al ⊆ f(η) for l < m. Let ζ =
min{norη(Al) : l < m}. Then

(i) norη(
⋂
l<mAl) ≥ ζ/m,

(ii) if ζ ≥ 1 and m ≤∏{2f(ν) : f(ν) < f(η)} then
⋂
l<mAl 6= ∅.

P r o o f. (i) Note that∣∣∣f(η)\
⋂

l<m

Al

∣∣∣ =
∣∣∣
⋃

l<m

f(η)\Al
∣∣∣ ≤

∑

l<m

|f(η)\Al| ≤ m · g(η)/ζ .

Hence

norη
( ⋂

l<m

Al

)
=

g(η)
|f(η)\⋂l<mAl|

≥ ζ/m .

(ii) Applying (i) we get norη(
⋂
l<mAl) ≥ 1/m. Hence

∣∣∣f(η)\
⋂

l<m

Al

∣∣∣ ≤ g(η) ·m ≤ g(η) ·
∏
{2f(ν) : f(ν) < f(η)} < f(η)



32 H. Judah et al.

(the last inequality is guaranteed by condition (ε)). Consequently, the set⋂
l<mAl is nonempty.

Let P2 consist of all trees T ⊆ T ∗ such that

lim
n→∞

min{norη(succT (η)) : η ∈ T ∩ ωn} =∞ .

The order is by inclusion.
Recall that a forcing notion Q is σ-k-linked if there exist sets Rn ⊆ Q

(for n ∈ ω) such that
⋃
n∈ω Rn = Q and each Rn is k-linked (i.e. any k

members of Rn have a common upper bound in Q).

Proposition 3.3. For every k < ω the forcing notion P2 is σ-k-linked.

P r o o f. Let n ∈ ω be such that for each η ∈ T ∗ ∩ ωn,

k <
∏
{2f(ν) : f(ν) < f(η)} .

Note that the set

{T ∈ P2 : lh(rootT ) ≥ n & (∀η ∈ T )(rootT ⊆ η ⇒ norη(succT (η)) ≥ 1)}
is dense in P2. For η ∈ T ∗ with lh η ≥ n, define

Dη = {T ∈ P2 : root T = η & (∀ν ∈ T )(η ⊆ ν ⇒ norν(succT (ν)) ≥ 1)} .
Since

⋃{Dη : lh η ≥ n} is dense in P2 it is enough to show that each Dη is
k-linked. Suppose T0, . . . , Tk−1 ∈ Dη. Since k <

∏{2f(ν) : f(ν) < f(η)} we
may apply Lemma 3.2(ii) to conclude that if ν ∈ T = T0 ∩ . . . ∩ Tk−1 and
ν ⊇ η then succT (ν) 6= ∅. By 3.2 (i) we get T ∈ P2.

For η ∈ T ∗ we define a forcing notion Qη by

Qη = {t ⊆ T ∗ : t is a finite tree of height n ∈ ω,
root t = η and

(∀ν ∈ t ∩ ω<n)(η ⊆ ν ⇒ norν(succt(ν)) ≥ lh ν)} .
Since Qη is countable and atomless it is isomorphic to the Cohen forcing C.
Let P =

∏{Qi,η : i < ω1, η ∈ T ∗} be the finite support product such that
each Qi,η is a copy of Qη.

Theorem 3.4. Let G ⊆ P be a generic filter over V. Then, in V[G],
there is no S ∈ P2 such that

S °P2 “P̂2|S is σ-centered” .

P r o o f. We work in V[G]. Assume S ° “P̂2|S is σ-centered”. Let Ṙn
(n ∈ ω) be P2-names for subsets of P2 such that

S °P2 “P̂2|S ⊆
⋃
n∈ω

Ṙn & each Ṙn is directed” .
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Take n ∈ ω such that

(∀η ∈ S)(n ≤ lh η ⇒ norη(succS(η)) ≥ 1) .

Fix any η ∈ S ∩ ωn and choose l,m ∈ succS(η), l < m. For i < ω1 put

Ti =
⋃
{t : {((i, η∧m), t)} ∈ G} .

Each Ti is the tree added by G∩Qi,η∧m and it is an element of P2. Moreover,
root Ti = η∧m and for each ν ∈ Ti if η∧m ⊆ ν then norν(succTi(ν)) ≥ lh ν.
Hence, by Lemma 3.2, Ti ∩ S ∈ P2 for each i ∈ ω1.

Now we work in V. We find pi, Ṡi, ηi, ni such that for each i ∈ ω1:

• pi ∈ P, ni ∈ ω, ηi ∈ T ∗ and Ṡi is a P-name for a member of P2,
• °P (∀ν ∈ Ṡi)(root Ṡi ⊆ ν ⇒ norν(succṠi(ν)) ≥ 1),

• pi °P “η∧l ⊆ ηi = root Ṡi & Ṡi °P2 Ṫi ∈ Ṙni”,
• (i, η∧m) ∈ dom(pi).

Next we find a set I ∈ [ω1]ω1 such that {dom(pi) : i ∈ I} forms a ∆-system
with the root d, and for each i ∈ I:

• ηi = η∗ and ni = n∗,
• pi|d = p∗,
• pi(i, η∧m) = t, (i, η∧m) 6∈ d.

Let n# be the height of the tree t. Clearly we may assume that n# > lh η∗.
Fix an enumeration {%k : k < k#} of t ∩ ωn#

. Put

H = {(ak : k < k#) : ak ⊆ f(%k) & nor%k(ak) ≥ n#} .
Choose distinct iā ∈ I for a ∈ H. We define a condition q ∈ P extending all
piā (a ∈ H) by

dom(q) =
⋃
{dom(piā) : a ∈ H} ;

if (i, ν) ∈ dom(piā) and (i, ν) 6= (iā, η∧m) then q(i, ν) = piā(i, ν) ;

q(iā, η∧m) = t ∪ {%k∧c : k < k#, c ∈ a(k)} .
Now we take r ≥ q such that r decides all Ṡiā |(n# + 1). Thus we have finite
trees sā (for a ∈ H) such that r °P Ṡiā |(n# + 1) = sā.

Claim. There exists H ′ ⊆ H such that

(i)
⋂

ā∈H′(sā ∩ ωn
#+1) 6= ∅ and

(ii) for each k < k# the set
⋂{a(k) : a ∈ H ′} is empty.

Indeed, let H% = {a ∈ H : % ∈ sā} for % ∈ T ∗ ∩ ωn#+1 with η∧l ⊆ %.
Clearly % ∈ ⋂ā∈H% sā, so it is enough to show that for some % the family

H% satisfies (ii). Suppose that for each % ∈ T ∗ ∩ωn#+1 with % ⊇ η∧l we can
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find k% < k# and c% such that c% ∈
⋂{a(k%) : a ∈ H%}. Put

a∗(k) = f(%k)\{c% : % ∈ T ∗ ∩ ωn#+1 & η∧l ⊆ %} .
Let %+ ∈ T ∗ ∩ ωn#

be such that

f(%+) = max{f(%) : % ∈ T ∗ ∩ ωn#
, η∧l ⊆ %} .

By condition (γ) we get

|{% ∈ T ∗ ∩ ωn#+1 : η∧l ⊆ %}| ≤
∏
{f(ν) : f(ν) ≤ f(%+)} .

Now, for each k < k# we have f(%+) < f(%k) (recall that η∧l ⊆ %+, η∧m ⊆
%k and l < m so condition (γ) works). Hence

nor%k(a∗(k)) ≥ g(%k)∏{f(ν) : f(ν) ≤ f(%+)}
≥ g(%k)∏{f(ν) : f(ν) < f(%k)} > n# .

Thus a∗ ∈ H. Since c% 6∈ a∗(k%) we have a∗ 6∈ H% for every % ∈ T ∗ ∩ ωn#+1

with η∧l ⊆ %. Since
⋃{H% : % ∈ T ∗ ∩ ωn#+1, η∧l ⊆ %} = H we get a

contradiction. The claim is proved.

Now let H ′ ⊆ H be a family given by the claim. Condition (ii) implies
that

r °P “the family {Tiā : a ∈ H ′} has no upper bound in P2”.

Since |H| ≤∏{2f(%k) : k < k#} we see that for each % ∈ T ∗ ∩ ωn#+1,

|H ′| ≤
∏
{2f(ν) : f(ν) < f(%)} .

Hence we may apply 3.2(ii) to conclude that for every % ⊇ η∧l with lh % ≥
n# + 1,

r °P “if % ∈
⋂

ā∈H′
Ṡiā then

⋂

ā∈H′
succṠiā (%) 6= ∅”.

Thus
r °P “the family {Ṡiā : a ∈ H ′} has an upper bound”.

Since r °P “Ṡiā °P2 Ṫiā ∈ Ṙn∗” we get a contradiction.

R e m a r k. 1) In the above theorem we worked in the model V[G] for
technical reasons only. The assertion of the theorem can be proved in ZFC.

2) The forcing notion P2 is a special case of the forcing studied in [Sh1].

Problem 3.5. Does there exist a ccc Souslin forcing P such that

(i) P is homogeneous (i.e. for each p ∈ P, °P“there exists a generic
filter G over V such that p ∈ G”), and

(ii) 6°P “P̂ is σ-centered”?
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4. On “small subsets of P are σ-centered”. Our next example is
connected with the following, still open, question:

Problem 4.1. Assume that for each ccc Souslin forcing P every set
Q ∈ [P]ω1 is σ-centered (in P). Does MAω1(Souslin) hold true?

As an illustration of this subject let us recall a property of the Random
(Solovay) Algebra B (see [BaJ]):

if every B ∈ [B]ω1 is σ-centered

then the real line cannot be covered by ω1 null sets

and consequently MAω1(B) holds true.

Our example shows that the above property of the algebra B does not extend
to other forcing notions. Let

P3 = {(n, T ) : n ∈ ω & T ⊆ 2<ω is a tree & (∀t ∈ T ∩ 2n)(µ([Tt]) > 0)} .
The order is defined by

(n1, T1) ≤ (n2, T2) if and only if n1 ≤ n2, T2 ⊆ T1 and T1|n1 = T2|n1 .

Lemma 4.2. P3 is a σ-linked Souslin forcing which is not σ-centered.

P r o o f. Note that °P3“there exists a perfect set of random reals over
V”. Hence P3 is not σ-centered. To show that it is σ-linked define sets
U(W,n,m) for n < m < ω and finite trees W ⊆ 2≤m:

U(W,n,m)

= {(n, T ) ∈ P3 : T |m = W & (∀t ∈ T ∩ 2n)(µ([Tt]) > W (t)/2m+1)}
where W (t) = |{s ∈ W ∩ 2m : t ⊆ s}| (for t ∈ W ∩ 2n). Clearly each set
U(W,n,m) is linked (i.e. any two members of it are compatible in P3) and
P3 =

⋃{U(W,n,m) : n < m < ω & W ⊆ 2≤m}. Since obviously P3 is
Souslin we are done.

Let B(κ) stand for the Random Algebra for adding κ many random
reals. This is the measure algebra of the space 2κ.

Theorem 4.3. Assume V ² CH. Let G ⊆ B(ω2) be a generic set over
V. Then, in V[G],

(i) the Martin axiom fails for P3 but
(ii) each Q ∈ [P3]ω1 is σ-centered (in P3).

P r o o f. Cichoń proved that one random real does not produce a perfect
set of random reals (see [BaJ]). Hence in V[G] there is no perfect set of
random reals over V. Consequently, the first assertion is satisfied in V[G].
Since V[G] ² “each B ∈ [B]ω1 is σ-centered in B” (compare Section 3) it is
enough to show the following:
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Claim. Suppose that each B ∈ [B]ω1 is σ-centered. Then every set Q ∈
[P3]ω1 is σ-centered.

Indeed, let Q ∈ [P3]ω1 . For n ∈ ω and t ∈ 2n put

B(t, n) = {[Tt] : (n, T ) ∈ Q & t ∈ T} .
By our assumption we find sets B(t, n, k) for k, n ∈ ω and t ∈ 2n such that
B(t, n) =

⋃
k∈ω B(t, n, k) and for all A1, A2 ∈ B(t, n, k) the set A1 ∩ A2

is of positive measure. Now define sets Q(n,W, σ) for n ∈ ω, a finite tree
W ⊆ 2≤n and a function σ : W ∩ 2n → ω by

Q(n,W, σ)

= {(n, T ) ∈ Q : T |n = W & (∀t ∈ T ∩ 2n)([Tt] ∈ B(t, n, σ(t)))} .
Note that if (n, T1), (n, T2) ∈ Q(n,W, σ) then for each t ∈ W ∩ 2n the set
[(T1)t]∩[(T2)t] is of positive measure. Consequently, each Q(n,W, σ) is linked
and we are done.

5. A σ-centered example. In this section we define a very simple
σ-centered Souslin forcing notion. Next we show that in any generic exten-
sion of some model of CH via finite support iteration of the Dominating
(Hechler) Algebra, the Martin Axiom fails for this forcing notion. Conse-
quently, we get the consistency of the following sentence:

any union of less than continuum meager sets is meager + ¬CH

+ MA fails for some σ-centered Souslin forcing.

Our example P4 consists of all pairs (n, F ) such that n ∈ ω, F ∈ [2ω]<ω

and all elements of the list {x|n : x ∈ F} are distinct. P4 is ordered by

(n, F ) ≤ (n′, F ′) if and only if

n ≤ n′, F ⊆ F ′ and {x|n : x ∈ F} = {x|n : x ∈ F ′} .
Lemma 5.1. P4 is a σ-centered Souslin forcing.

P r o o f. Clearly P4 is Souslin (even Borel). To show that P4 is σ-centered
note that if {x|n : x ∈ F0} = . . . = {x|n : x ∈ Fk} then the conditions
(n, F0), . . . , (n, Fk) are compatible (ifm is large enough then (m,F0∪. . .∪Fk)
is a witness for this).

Now we want to define the model we will start with. At the beginning
we work in L. Applying the technique of [Sh] we can construct a sequence
(Pξ : ξ ≤ ω1) of forcing notions such that for all α, β < ω1 and ξ ≤ ω1:

(1) if α < β then Pα is a complete suborder of Pβ ,
(2) there is γ > β such that Pγ+1 = Pγ ∗ Ḋα, where Ḋα is the Pγ-name

for finite support, length α iteration of the Hechler forcing,
(3) Pξ satisfies ccc,
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(4) if ξ is limit then Pξ =
−→
limζ<ξPζ ,

(5) Pω1 ° “every projective set of reals has the Baire property”

(for details see also [JR]). Recall that the Hechler forcing D consists of all
pairs (n, f) such that n ∈ ω and f ∈ ωω. These pairs are ordered by

(n, f) ≤ (n′, f ′) if and only if

n ≤ n′, f |n = f ′|n′ and f(k) ≤ f ′(k) for all k ∈ ω .
Suppose G ⊆ Pω1 is a generic set over L. We work in L[G]. For distinct

x, y ∈ 2ω we define h(x, y) = min{n : x(n) 6= y(n)}. Easy calculations show
the following:

Lemma 5.2. Let b ⊆ ω. Then the following conditions are equivalent :

(i) there exists a Borel equivalence relation R on 2ω with countably many
equivalence classes such that {h(x, y) : x, y ∈ 2ω∩L & x 6= y & R(x, y)} ⊆ b,

(ii) there exists an equivalence relation R on 2ω with countably many
equivalence classes such that {h(x, y) : x, y ∈ 2ω∩L & x 6= y & R(x, y)} ⊆ b,

(iii) there exist sets Yn ⊆ 2ω (for n ∈ ω) such that L ∩ 2ω ⊆ ⋃n∈ω Yn
and

⋃
n∈ω{h(x, y) : x 6= y & x, y ∈ Yn} ⊆ b,

(iv) (∃f : 2<ω → 2)(∀x ∈ 2ω ∩ L)(∃m ∈ ω)(∀n > m)(n 6∈ b ⇒
f(x|n) = x(n)).

The Raisonnier filter F consists of all sets b ⊆ ω satisfying one of the
conditions of 5.2 (cf. [Ra]). F is a proper filter on ω. Directly from (iv)
of 5.2 one can see that F is a Σ1

3 -subset of 2ω. Consequently, it has the
Baire property (recall that we are in L[G]).

Theorem 5.3 (Talagrand, [Ta]). For any proper filter F on ω the fol-
lowing conditions are equivalent :

(i) F does not have the Baire property ,
(ii) for every increasing sequence (nk : k ∈ ω) of integers there exists

b ∈ F such that (∃∞k )(b ∩ [nk, nk+1) = ∅).

Applying the above theorem we can find an increasing function r ∈
ωω ∩ L[G] such that (in L[G])

(∀b ∈ F)(∀∞k )(b ∩ [r(k), r(k + 1)) 6= ∅) .
Let ṙ be the Pω1-name for r and let α0 < ω1 be such that ṙ is a Pα0 -name.

Our basic model will be L[r].

Theorem 5.4. Let κ be a regular cardinal. Let Dκ be the finite support
iteration of the Hechler forcing of length κ. Suppose H ⊆ Dκ is a generic
set over L[r]. Then

L[r][H] ² “there is no P4-generic object over L[r]”.
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P r o o f. Assume not. Let H∗ ∈ L[r][H] be a P4-generic object over L[r].
Put T =

⋃{F : (∃n ∈ ω)((n, F ) ∈ H∗)}. Then in L[r][H∗] we have:

(6) T is a closed subset of 2ω ,

(7) (∃∞k )(∀x, y ∈ T )(x 6= y ⇒ h(x, y) 6∈ [r(k), r(k + 1))) and

(8) (∀x ∈ 2ω ∩ L)(∃q ∈ Q)(q + x ∈ T )

(Q stands for the set of all sequences which are eventually 0, and + denotes
the addition modulo 2). Since both (7) and (8) are absolute (Π1

2 ) sentences
they are also satisfied in L[r][H]. Let Ṫ ∈ L[r] be a Pκ-name for T . Since
T is a closed subset of 2ω we can think of Ṫ as a name for a real.

Now we work in L[r]. Let p ∈ Dκ ∩ L[r] be such that

p ° “Ṫ satisfies (6)–(8)”.

By the properties of the Souslin forcing (see §1 of [JS1]) we find a (closed)
countable set S ⊆ κ such that:

(9)

(10)

Ṫ is a Dκ|S-name, p ∈ Dκ|S and

Dκ|S is a complete suborder of Dκ .

Since (6)–(8) are absolute we get

(11) p °Dκ|S “Ṫ satisfies (6)–(8)” .

But Dκ|S is isomorphic to the finite support iteration of the Hechler forcing
of a countable length α (α < ω1). Thus we can treat Ṫ as a Dα-name and
p as a condition in Dα. Then, in L[r],

(12) p °Dα|S “Ṫ satisfies (6)–(8)”.

By (2) we find γ > α0 such that

(13) Pγ+1 = Pγ ∗ Ḋα and

(14) p ≡ (1, p) interpreted as a member of Pγ+1 belongs to G .

By the properties of the Souslin forcing (12) holds true in L[G ∩ Pγ ] and
hence

(15) L[G ∩Pγ+1] ² “ṪG satisfies (6)–(8)”

(we treat here Ṫ as a Pγ+1-name). Let b = {h(x, y) : x 6= y & x, y ∈ ṪG} ∈
[ω]<ω ∩ L[G]. By (15) and by Shoenfield absoluteness we have

(16) L[G] ² “ṪG satisfies (6)–(8)”.

Since {h(x, y) : x 6= y & x, y ∈ ṪG} = {h(x, y) : x 6= y & x, y ∈ ṪG + q} we
conclude that

(17) L[G] ² “the sets ṪG + q (for q ∈ Q) witness that b ∈ F” and
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(18) L[G] ² (∃∞k )(b ∩ [r(k), r(k + 1)) = ∅) .
The last condition contradicts our choice of r.

Since °Dκ“any union of less than κ meager sets is meager” we get

Corollary 5.5. The following theory is consistent : ZFC + ¬CH +
“Martin Axiom fails for some σ-centered Souslin forcing” + “any union
of less than continuum meager sets is meager”.

6. On “Souslin not ccc”. In this section we will give a negative answer
to the following question of Woodin:

Suppose P is a Souslin forcing notion which is not ccc. Does there exist
a perfect set T ⊆ P such that any distinct t1, t2 ∈ T are incompatible?

Recall that in the case of non-ccc partial orders we do not require Souslin
forcings to satisfy the condition: “the set {(p, q) : p is incompatible with q}
is Σ1

1”.
Thus a forcing notion P is Souslin not ccc if both P and ≤P are analytic

sets. The reason for this is that we want to cover in our definition various
standard forcing notions with simple definitions for which incompatibility is
not analytic (e.g. the Laver forcing).

Let Q be the following partially ordered set: W ∈ Q if W is a finite set
of pairs (α, β) with α ≤ β < ω1 such that if (α1, β1), (α2, β2) are in W , then
β1 < α2 or β2 < α1. Q is ordered by inclusion. It follows from [Je1] that Q
is proper. Clearly |Q| = ω1.

Next we define a forcing notion P5. It consists of all r ∈ ωω such that r
codes a pair (Er, wr) where

• Er is a relation on ω such that (ω,Er) ² ZFC− and Er encodes all
elements of ω ∪ {ω},
• wr ∈ ω and Er ² “wr ∈ Q”.

We say that a one-to-one function f ∈ ωω interprets Er1 in Er2 if there
exists n ∈ ω such that rng(f) = {k ∈ ω : Er2(k, n)} and Er1(l, k) ≡
Er2(f(l), f(k)).

If f interprets Er1 in Er2 then Er2 may “discover” that some of the
ordinals of Er1 are not ordinals (i.e. are not well-founded). Let w(r1, r2, f) =
wr1 ∩ {(α, β) : α ≤ β are ordinals in Er2}. Then, in Er2 , w(r1, r2, f) is an
initial segment of wr1 and it is in QEr2 .

Now we can define an order ≤ on P5:

r1 ≤ r2 if and only if r1 = r2 or there exists f ∈ ωω

which interprets Er1 in Er2 and such that

(ω,Er2) ² w(r1, r2, f) ⊆ wr2 .
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Obviously both P5 and the order ≤ are Σ1
1 -sets.

For r ∈ P5 we define W (r) as wr ∩ {(α, β) : α ≤ β are well-founded}.
Note that W (r1) = W (r2) implies r1 and r2 are equivalent in P5 (i.e. they
have the same compatible elements of P5). Consequently, Q may be densely
embedded in the complete Boolean algebra determined by P5. It follows
from [Je1] that P5 is proper, Souslin and does not satisfy the countable
chain condition. Moreover, if ω1 < 2ω then P5 does not contain a perfect
set of pairwise incompatible elements (recall |Q| = ω1).

An interesting question appears here:

Suppose P is ω-proper and Souslin. Does there exist a perfect set of
pairwise incompatible elements of P?

The negative answer to this question is given by the following result.

Theorem 6.1. Assume ω1 < cf(2ω). There exists an ω-proper Souslin
non-ccc forcing notion P∗5 with no perfect set of pairwise incompatible ele-
ments.

P r o o f. Let δ ≤ ω1 be additively indecomposable. Let Q∗ be the order
defined by W ∈ Q∗ if and only if W is a countable set of pairs (α, β) with
α ≤ β < ω1 such that:

• (α1, β1), (α2, β2) ∈W ⇒ β1 < α2 or β2 < α1,
• {(α, β) ∈W : α 6= β} is finite,
• the order type of the set {α : (∃β)((α, β) ∈W )} is less than δ.

Q∗ is ordered by inclusion.
It follows from Chapter XVII, §3 of [Sh2] that Q∗ is α-proper for each

α < ω1.
Now we can repeat the coding procedure that we applied to define the

forcing notion P5. Thus we get a Souslin forcing notion P∗5 such that Q∗

can be densely embedded in the Boolean algebra determined by P∗5.
For W ∈ Q∗ let heart(W ) = {(α, β) ∈W : α 6= β}.
Assume that {(Erη , wrη ) : η ∈ 2ω} ⊆ P∗5 is a perfect set of pairwise in-

compatible elements. Let Wη be the well-founded part of wrη . Since without
loss of generality we can assume that sup{β : (∃α)((α, β) ∈Wη)} is constant
and heart(Wη) is constant we easily get a contradiction.

7. On ccc Σ1
2 . Souslin ccc notions of forcing are indestructible ccc (see

[JS1]):

Suppose P is a ccc Souslin notion of forcing. Let Q be a ccc forcing
notion. Then °Q “P̂ is ccc”.
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The above property does not hold true for more complicated forcing
notions. In this section we show that there may exist two ccc Σ1

2 -notions of
forcing P6 and P∗6 such that P6 ×P∗6 does not satisfy ccc.

We start with V = L. Let Q be a ccc notion of forcing such that

°Q MA + ¬CH .

Let G ⊆ Q be a generic set over L and let r be a random real over
L[G]. Recall that by a theorem of Roitman (cf. [Ro]) we have L[G][r] ²
MA(σ-centered).

Fix a sequence (fα : α < ω1) ∈ L of one-to-one functions fα : α 1-1→ ω
and define in L[r] sets E1, E2 by

Ei = {{α, β} ∈ [ω1]2 : β < α & r(fα(β)) = i} for i = 0, 1 .

We define forcing notions P6,P∗6:

P6 = {H ∈ [ω1]2 : [H]2 ⊆ E0} , P∗6 = {H ∈ [ω1]2 : [H]2 ⊆ E1} .
Orders are inclusions.

Both P6 and P∗6 are elements of L[r]. Moreover, they can be thought of
as subsets of L[r] ∩ 2ω. Applying MA(σ-centered) we find that (cf. [Je])

L[G][r] ² “any subset of L[r] ∩ 2ω is a relative Σ0
2 -set”.

Consequently,

L[G][r] ² “any subset of L[r] ∩ 2ω is Σ1
2”.

Thus P6 and P∗6 are Σ1
2 -notions of forcing in L[G][r] (i.e. both P6, P∗6, and

the orders and incompatibility relations are Σ1
2 -sets). Roitman proved the

following:

Theorem 7.1 (Roitman, Prop. 4.6 of [Ro]). In L[G][r] both P6 and P∗6
satisfy ccc and P6 ×P∗6 does not satisfy ccc.

Corollary 7.2. The following theory is consistent : ZFC + MA(σ-
centered) +¬CH + “there exist ccc Σ1

2 -notions of forcing P6, P∗6 such that
P∗6 ° «P̂6 is not ccc»”.

Problem 7.3. Is there a ccc Souslin forcing notion P such that MA(P)
always fails after adding a random real?
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[Sh1] —, Vive la Différence I : nonisomorphism of ultrapowers of countable models, in:
Set Theory of the Continuum, H. Judah, W. Just and H. Woodin (eds.), Math.
Sci. Res. Inst. Publ. 26, Springer, 1992, 357–405.

[Sh2] —, Proper and Improper Forcing, in preparation.
[Ta] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Stu-

dia Math. 67 (1980), 13–43.
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