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Goldstern–Judah–Shelah preservation theorem
for countable support iterations

by

Miroslav R e p i c k ý (Košice)

Abstract. In [4] a preservation theorem for countable support iterated forcing is
proved with restriction to forcing notions which are not ω-distributive. We give the proof
of the theorem without this restriction.

1. The preservation theorem. In [4] a preservation theorem for count-
able support iteration of proper forcing notions was proved with the addi-
tional assumption that all forcing notions which are iterated add a new
sequence of ordinals. In this section we will prove the same theorem (The-
orem 1.7) without this additional assumption. We use the terminology in-
troduced in [4]; definitions and lemmata 1.1–1.8 correspond to 5.4, 5.5, 5.6,
5.8, 5.11, 5.12, 5.14, 5.13 of [4]. Lemma 1.9 is a version of 5.15 without the
additional assumption and essentially it marks the difference between these
two proofs of the preservation theorem.

Let 〈vn: n ∈ ω〉 be an increasing sequence of two-place relations on ωω.
We let v =

⋃
n vn. We assume the following:

(i) {f ∈ ωω : f vn g} is a closed set for any n ∈ ω and g ∈ ωω;
(ii) the set C = dom(v) is a closed subset of ωω;

(iii) for every countable set A ⊆ C there is g ∈ ωω such that ∀f ∈ A,
f v g;

(iv) the closed sets mentioned in conditions (i) and (ii) have an absolute
definition (i.e. as Borel sets they have the same Borel codes in all transitive
models we will consider).
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In all our applications the relations vn will be even given by arithmetical
definitions, and so they will be absolute between any two ∈-models.

For rng(v) we do not need any assumption analogous to condition (ii) for
dom(v). Even, rng(v) can be an arbitrary set (not necessarily a set of reals)
which is assumed not to change during the iteration. So the preservation
theorem says that although in dom(v) new reals appear, some relations
between (new) domain and (old) range of v are preserved.

The letter C will always denote dom(v). We will use the symbol v also
for the sequence 〈vn: n ∈ ω〉.

Definition 1.1. Let N be a countable elementary substructure of some
H(χ) such that v ∈ N . We say that g covers N if for all f ∈ C ∩N we have
f v g.

Definition 1.2. We say that a forcing notion P almost preserves v
if whenever N ≺ H(χ) is a countable substructure containing P,v and
whenever p ∈ P ∩ N and g covers N then there is an N -generic condition
q ≤ p such that q °“g covers N [Ġ]”.

Lemma 1.3. Let P be a proper forcing notion. If P almost preserves v
then °P (∀f ∈ C ∩ V [Ġ])(∃g ∈ V ) f v g. Moreover , if v is transitive then
these two properties are equivalent.

P r o o f. Assume there is a condition p and a name ḟ such that p °“there
is no g ∈ V such that ḟ v g”. Let N ≺ H(χ) and let ḟ , p ∈ N . There is
g ∈ V which covers N . Since P almost preserves v there is q ≤ p such that
q ° ḟ v g, a contradiction.

Conversely, let N ≺ H(χ) and assume that g covers N and

°P (∀f ∈ C)(∃f ′ ∈ V )f v f ′ .
Then anyN -generic condition q forces: q ° (∀f ∈ C∩N [Ġ])(∃f ′ ∈ N)f v f ′.
Hence, by transitivity of v we get q ° (∀f ∈ C ∩N [Ġ]) f v g.

We would like to preserve the properties mentioned in Lemma 1.3 in
countable support iterations. However, for our preservation theorem we need
a slightly stronger property (Definition 1.5). Fortunately, in some interesting
cases these three properties coincide.

Before we give the definition which we will actually use we have to recall
the concept of interpretation.

Definition 1.4. Assume P is a forcing notion, ḟ0, . . . , ḟk are P -names of
functions in C, f∗0 , . . . , f

∗
k are functions in ωω and 〈pn : n ∈ ω〉 is a decreasing

sequence of conditions. We say that 〈pn : n ∈ ω〉 interprets 〈ḟ0, . . . , ḟk〉 as
〈f∗0 , . . . , f∗k 〉 if for all i ≤ k and for all n, pn ° ḟi¹n = f∗i ¹n.
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Note that if 〈pn : n ∈ ω〉 interprets ḟ as f∗ where ḟ is a P -name for a
function in C then f∗ is a function in C. This is because C is closed.

Definition 1.5. We say that a forcing notion P preserves v if: whenever
N ≺ H(χ) is a countable model containing P and v and whenever g covers
N and 〈pn : n ∈ ω〉 in N is a decreasing sequence of conditions interpreting
〈ḟ0, . . . , ḟk〉 ∈ N as 〈f∗0 , . . . , f∗k 〉 then there is an N -generic condition p ≤ p0

such that

(a) p °“g covers N [Ġ]”, and
(b) (∀n ∈ ω)(∀i ≤ k) p ° f∗i vn g → ḟi vn g.

The following lemma is a special case of the preservation theorem we
are going to prove. Although we will not use this result in the proof of the
preservation theorem, an easy trick used in the proof will be repeated later
in a somewhat more complicated situation.

Lemma 1.6. If P preserves v and °P “Q̇ preserves v” then P ∗ Q̇ pre-
serves v.

P r o o f. Assume N , 〈〈pn, q̇n〉 : n ∈ ω〉, 〈ḟ0, . . . , ḟk〉, 〈f∗0 , . . . , f∗k 〉 are as
in Definition 1.5 (for the forcing notion P ∗ Q̇ ∈ N with 〈pn, q̇n〉 in the role
of pn) and let g cover N .

In V P we define names of functions ḟ ′i for i ≤ k and names for conditions
q̇′n ∈ Q̇ as follows: Let ṅ∗ = sup{n : pn ∈ Ġ}. If ṅ∗ = ω then set ḟ ′i = f∗i
and q̇′n = q̇n. If ṅ∗ < ω then find a decreasing sequence 〈q̇′n : n ∈ ω〉 ∈ ωQ̇
and functions ḟ ′i , i ≤ k, such that q̇′0 ≤ q̇ṅ∗ and 〈q̇′n : n ∈ ω〉 interprets
〈ḟ0, . . . , ḟk〉 as 〈ḟ ′0, . . . , ḟ ′k〉 in V P .

Observe that p0 °P ḟ ′i¹ṅ∗ = f∗i ¹ṅ∗ and pn °P ṅ∗ ≥ n. In particular,
pn °P ḟ ′i¹n = f∗i ¹n.

We can find all these names in N . Since P preserves v, there is an
N -generic condition p ∈ P , p ≤ p0, such that p °“g covers N [ĠP ]” and for
n ∈ ω and i ≤ k, if ḟ∗i vn g then p °P ḟ ′i vn g. Now using the preserving
property of Q̇ we can find in V P a name q̇ ∈ Q̇ of an N [ĠP ]-generic condition
such that q̇ ≤ q̇′0 and such that

p °P q̇ °Q̇ “g covers N [ĠP ∗ ĠQ̇] and if f ′i vn g then ḟi vn g”.

It can easily be seen that the condition (p, q̇) has the required properties.

Theorem 1.7. If 〈Pα, Q̇α : α < δ〉 is a countable support iterated forcing
system and for each α < δ, °α“Q̇α preserves v” then Pδ preserves v.

P r o o f. Let N ≺ H(χ) be a countable elementary substructure contain-
ing the forcing system 〈Pα, Q̇α : α < δ〉 and Pδ. We shall show by induction
on β ≤ δ that every Pβ ∈ N has a somewhat stronger property than Defi-
nition 1.5 requires.
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Recall that for α < β, Ṗα,β is a Pα-name for a forcing notion with the
property that Pα∗Ṗα,β can be densely embedded into r.o. Pβ . We define it so
that the domain of this name is formed by functions p ∈ Pβ with p¹α = 1Pα
and for two such functions p, p′, °α p ≤α,β p′ iff p ≤β p′.

Lemma 1.8. Let α < β ≤ δ, α, β ∈ N . Assume that 〈ṗn : n ∈ ω〉 ∈ N is
a sequence of Pα-names for conditions in Ṗα,β such that °α“〈ṗn : n ∈ ω〉
interprets 〈ḟ0, . . . , ḟk〉 as 〈ḟ∗0 , . . . , ḟ∗k 〉”, where the ḟi are Pβ-names in N and
the ḟ∗i are Pα-names, for i ≤ k. Furthermore, assume p ∈ Pα is N -generic
and for some g, p °α“g covers N [Ġα]”. Then there exists r ∈ Pβ , an N -
generic condition, such that r¹α = p and

(a) r °β “g covers N [Ġβ ]”;
(b) r °β ḟ∗i vn g → ḟi vn g, for n ∈ ω, i ≤ k;
(c) p °α r¹〈α, β) ≤ ṗ0.

In the proof of the case “β limit” of Lemma 1.8 we will need the following
lemma.

Lemma 1.9. Assume 0 < α′ < β, β limit , 〈pn : n ∈ ω〉 ∈ N is a
decreasing sequence of conditions in Pβ. Let τ ∈ N be a Pβ-name of an
ordinal and j ∈ ω. Assume 〈ḟ0, . . . , ḟk+1〉 ∈ N are Pβ-names of functions
and 〈pn : n ∈ ω〉 interprets 〈ḟ0, . . . , ḟk〉 as 〈f∗0 , . . . , f∗k 〉. Then there are
α ∈ N , with α′ ≤ α < β, a Pα-name for a decreasing sequence 〈p∗n : n ∈ ω〉
of conditions in Ṗα,β , Pα-names 〈ḟ ′0, . . . , ḟ ′k+1〉 ∈ N and a Pα-name for a
sequence of conditions in Ṗα,β , 〈ṗ′n : n ∈ ω〉 ∈ N such that

(a) °α “〈ṗ′n : n ∈ ω〉 interprets 〈ḟ0, . . . , ḟk+1〉 as 〈ḟ ′0, . . . , ḟ ′k+1〉”;
(b) °α “ ṗ′0 decides ḟ0¹j, . . . , ḟk+1¹j”;
(c) °α p′0 °α,β τ ∈ N [Ġα];
(d) p∗n¹α °α ṗ′0 ≤ p∗n¹〈α, β);
(e) 〈p∗n¹α : n ∈ ω〉 interprets 〈ḟ ′0, . . . , ḟ ′k〉 as 〈f∗0 , . . . , f∗k 〉;
(f) p∗n ≤ pn for n ∈ ω (and in fact p∗n¹〈α, β) = pn¹〈α, β)).

P r o o f. We say that a sequence 〈pn : n ∈ ω〉 of conditions in Pβ is
consistent if it has a lower bound, otherwise it is inconsistent . We say that
it is strongly inconsistent if min{ξ : {pn¹ξ : n ∈ ω} is inconsistent} < β.

(i) First assume that 〈pn : n ∈ ω〉 is consistent. Let α = α′, p∗n = pn and
in V Pα define ṅ∗ = sup{n : p∗n¹α ∈ Ġα} and ṗ′n, ḟ ′i so that

(1) if ṅ∗ < ω then ṗ′0 ≤ pṅ∗¹〈α, β);
(2) if ṅ∗ = ω then ṗ′0 ≤ pn¹〈α, β), for all n ∈ ω;
(3) if ṅ∗ is not defined then ṗ0 is arbitrary,

but in all these cases ṗ′n is chosen so that ṗ′0 decides τ, ḟ0¹j, . . . , ḟk+1¹j, and
〈ṗ′n : n ∈ ω〉 interprets 〈ḟ0, . . . , ḟk+1〉 as 〈ḟ ′0, . . . , ḟ ′k+1〉 in V Pα .
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Clearly all these names can be found in N and also conditions (a), (b),
(f) are satisfied. To see (c) it is enough to realize that the name τ is forced
by conditions in N so its decision is forced to be in N [Ġα].

(d) By the construction, p∗n¹α °α“ṅ∗ ≥ n”. Hence p∗n¹α °α“if ṅ∗ < ω,
ṗ′0 ≤ p∗ṅ∗¹〈α, β) ≤ p∗n¹〈α, β)” and also by the definition p∗n¹α °α“if ṅ∗ = ω
then ṗ′0 ≤ p∗n¹〈α, β)”.

(e) By (d), p∗n¹α °α ṗ′n ≤ p∗n¹〈α, β), hence p∗n¹α °α ṗ′n °α,β ḟ ′i¹n =
ḟi¹n = f∗i ¹n, i ≤ k. But the formula “ḟ ′i¹n = f∗¹n” is an (absolute) formula
about V Pα , so p∗n¹α °α ḟ ′i¹n = f∗i ¹n.

(ii) Assume that 〈pn : n ∈ ω〉 is strongly inconsistent. Let α = min{ξ ≥
α : 〈pn¹ξ : n ∈ ω〉 is inconsistent} < β, p∗n = pn and in V Pα define ṅ∗ =
sup{n : p∗n¹α ∈ Ġα} < ω and p′n, ḟ ′i so that (1) and (3) hold. Then the
proof that (a)–(f) are satisfied is the same as in case (i).

(iii) Finally, assume that 〈pn : n ∈ ω〉 is inconsistent but not strongly
inconsistent. We work in N .

We claim that there is γ, α′ ≤ γ < β, and q ∈ Pγ such that q ≤ pn¹γ,
for all n, and q °γ “〈pn¹〈γ, β) : n ∈ ω〉 is strongly inconsistent”.

Assume that the claim is not true. Let ξn, n ∈ ω, be an increasing
sequence of ordinals with ξ0 = 0 and limn ξn = sup(N ∩ β). By induction on
k ∈ ω we can construct Pξk -names q̇k ∈ Ṗξk,ξk+1 such that q̇k ≤ pn¹〈ξk, ξk+1)
for all n ∈ ω (forced in Pξk) and (q̇0, . . . , q̇k) °ξk+1 “〈pn¹ξk+1 : n ∈ ω〉 is not
strongly inconsistent”.

But since we deal with proper forcing notions this leads to a construction
of a lower bound for 〈pn : n ∈ ω〉. A contradiction.

Assume q, γ satisfy the above claim. Then for some extension q′ ≤γ q and
for some γ′ with γ < γ′ < β, q′ °γ “〈pn¹〈γ, γ′) : n ∈ ω〉 is inconsistent”. So
the sequence p∗n = q′∪pn¹〈γ, β) is strongly inconsistent and we proceed with
it exactly as in case (ii) (with a strongly inconsistent sequence 〈pn : n ∈ ω〉).

P r o o f o f L e m m a 1.8. By induction on β ≤ δ, β ∈ N . For β = 0
the lemma is trivially true. Now assume that the lemma holds for β and we
prove it for β + 1.

Let α < β+1. Assume that 〈ṗn : n ∈ ω〉 ∈ N is a Pα-name for a decreas-
ing sequence in Ṗα,β+1 which in V Pα interprets 〈ḟ0, . . . , ḟk〉 as 〈ḟ∗0 , . . . , ḟ∗k 〉.

Working in V Pβ we can define a Pβ-name for an ordinal, ṅ∗ ≤ ω, Pβ-
names 〈ḟ ′0, . . . , ḟ ′k〉 for functions in ωω, and a Pβ-name 〈ṗ′n : n ∈ ω〉 for a
decreasing sequence in Q̇β such that

(1) ṅ∗ = sup{n ∈ ω : ṗn¹β ∈ Ġβ};
(2) if ṅ∗ < ω then ṗ′0 ≤ ṗṅ∗(β); and if ṅ∗ = ω then ṗ′n = ṗn(β) and

〈ḟ ′0, . . . , ḟ ′k〉 = 〈ḟ∗0 , . . . , ḟ∗k 〉;
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(3) in the case of ṅ∗ < ω, 〈ṗ′n : n ∈ ω〉 is such that ṗ′n decides ḟi¹n and
ṗ′n °Q̇β ḟi¹n = ḟ ′i¹n, i ≤ k.

As in the proof of Lemma 1.6,

(4) °α “〈ṗn¹β : n ∈ ω〉 interprets 〈ḟ ′0, . . . , ḟ ′k〉 as 〈ḟ∗0 , . . . , ḟ∗k 〉”, and
(5) °α “ṗ0¹β °α,β 〈ṗ′n : n ∈ ω〉 interprets 〈ḟ0, . . . , ḟk〉 as 〈ḟ ′0, . . . , ḟ ′k〉”.

Now using the induction hypothesis for β, there is an N -generic condition
r ∈ Pβ such that r¹α = p and

(6) r °β “g covers N [Ġβ ]”;
(7) r °β (∀n ∈ ω)(∀i ≤ k) ḟ∗i vn g → ḟ ′i vn g;
(8) p °α r¹〈α, β) ≤ ṗ0¹β.

Hence using the hypothesis on Q̇β , since (5) holds, we can find a Pβ-name
ṡ for an N [Ġβ ]-generic condition in Q̇β such that

(9) r °β “s ≤ ṗ′0 ≤ ṗ0(β) & ṡ °Q̇α g covers N [Ġβ ][ĠQ̇β ]”, and

(10) °β ṡ °Q̇β (∀n ∈ ω)(∀i ≤ k) ḟ ′n vn g → ḟi vn g.

So (7)–(10) say that the condition (r, ṡ) ∈ Pβ+1 is as required and the
successor step of the induction is finished.

Now let β ∈ N be a limit ordinal, β ≤ δ. Let {τn : n ∈ ω} be an
enumeration of all Pβ-names of ordinals in N , and {ḟn : n ∈ ω} be an
enumeration of all Pβ-names ḟ ∈ N satisfying °β ḟ ∈ C with the first k+ 1
members already fixed. Let α < β, α ∈ N .

So p ∈ Pα is an N -generic condition, p °α “g covers N [Ġα]”, and °α
“〈ṗn : n ∈ ω〉 interprets 〈ḟ0, . . . , ḟk〉 as 〈ḟ∗0 , . . . , ḟ∗k 〉”.

By induction on j ∈ ω we will construct

(i) a sequence of Pβ-names of ordinals α̇j ∈ N such that α̇0 = α, α̇j+1

is a Pα̇j -name of an ordinal (recall that Pα̇j = Pα̇0 ∗ Ṗα̇0,α̇1 ∗ . . . ∗ Ṗα̇j−1,α̇j )
such that °α̇j α̇j < α̇j+1 < β, and °β limj∈ω α̇j = sup(N ∩ β);

(ii) Pα̇j -names 〈ḟ j0 , . . . , ḟ jk+j〉 ∈ N for functions and two Pα̇j -names for

decreasing sequences of conditions in Ṗα̇j ,β , 〈ṗjn : n ∈ ω〉 ∈ N and 〈ṗj∗n : n ∈
ω〉 ∈ N ,

so that the following holds:

(`1) 〈ḟ0
0 , . . . , ḟ

0
k 〉 = 〈ḟ∗0 , . . . , ḟ∗k 〉, 〈ṗ0

n : n ∈ ω〉 = 〈ṗn : n ∈ ω〉;
(`2) °α̇j ṗj∗n ¹α̇j+1 °α̇j ,α̇j+1 ṗ

j+1
0 ≤ ṗj∗n ¹〈α̇j+1, β);

(`3) °α̇j “〈ṗjn : n ∈ ω〉 interprets 〈ḟ0, . . . , ḟk+j〉 as 〈ḟ j0 , . . . , ḟ jk+j〉”;

(`4) °α̇j “〈ṗj∗n ¹α̇j+1 : n ∈ ω〉 interprets 〈ḟ j+1
0 , . . . , ḟ j+1

k+j 〉 as 〈ḟ j0 , . . .
. . . , ḟ jk+j〉”;

(`5) °α̇j “ṗj0 decides ḟ0¹j, . . . , ḟk+j¹j”;
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(`6) °α̇j+1 “ṗj+1
0 °α̇j+1,β τj ∈ N [Ġα̇j+1 ]”;

(`7) °α̇j (∀n) ṗj∗n ≤ pjn.

Before starting the construction fix an arbitrary strictly increasing se-
quence {α′j : j ∈ ω} ⊆ N of ordinals with limj α

′
j = sup(N ∩ β).

For j = 0, the conditions (`1), (`3) are given by the assumptions of
Lemma 1.8 and (`5) is trivially true. Assume α̇j , 〈ḟ j0 , . . . , ḟ jk+j〉 and 〈ṗjn :

n ∈ ω〉 are defined. Using Lemma 1.9 in V Pα̇j with the assumptions forced
in (`3), we get a Pα̇j -name of an ordinal α̇j+1 > max{α′j , α̇j , α} less than β,
a Pα̇j -name of a decreasing sequence 〈ṗj∗n : n ∈ ω〉, Pα̇j+1-names of functions
〈ḟ j+1

0 , . . . , ḟ j+1
k+j+1〉 and a Pα̇j+1 -name of a sequence 〈ṗj+1

n : n ∈ ω〉 such that
conditions (`2), (`3)j+1 and (`4)–(`7) are fulfilled. Also requirements (i), (ii)
are satisfied.

Let us make some easy remarks about the names α̇j . The name α̇0 is in
fact the ordinal α and α̇1 is a Pα-name for an ordinal. So if p ∈ Pβ decides
α̇1 and p °β “α̇1 = ξ” for some ξ < β then also p¹α decides α̇1, p¹ξ ∈ Pα̇1

and Pξ is dense in Pα̇1 below p¹ξ. In general, if p ∈ Pβ decides α̇i for i ≤ j
and forces for them the values ξi, i ≤ j, then p¹ξj ∈ Pα̇j and Pξj is dense in
Pα̇j below p¹ξj . Moreover,

Dj = {p¹ξ : p ∈ Pβ & p decides α̇0, . . . , α̇j+1 & p °β α̇j = ξ}
is a dense subset of Pα̇j (but not open). On the other hand, Pα̇j is not a
subset of Pβ .

Recall that for p ∈ Pβ ,

supp(p) = {ξ ∈ β : p¹ξ 6°ξ p(ξ) = 1Q̇ξ}.
By induction on j ∈ ω we will construct N -generic conditions rj ∈ Pα̇j

such that

(α) rj ∈ Pβ (i.e. supp(rj) is countable),
(β) rj °α̇j “rj+1¹〈α̇j , α̇j+1) ≤ ṗj∗0 ¹〈α̇j , α̇j+1) & rj+1¹α̇j = rj”,

(γ) rj °α̇j “g covers N [Ġα̇j ]”,

(δ) rj+1 °α̇j+1“(∀n ∈ ω)(∀i ≤ k + j) ḟ ji vn g → ḟ j+1
i vn g”,

(ε) rj+2¹α′j = rj+1¹α′j .
By assumptions of Lemma 1.8, r0 = p satisfies (α) and (γ). Assume rj is

constructed and choose a maximal antichain A ⊆ Dj , A ∈ N . Hence every
condition s ∈ A decides α̇j and α̇j+1 and so for some ordinals αj,s, αj+1,s,

s °α̇j α̇j = αj,s & α̇j+1 = αj+1,s.

For every s ∈ A let us fix (in N) Pαj,s -names 〈ṗj,sn : n ∈ ω〉, 〈ḟ j,s0 , . . . , ḟ j,sk+j〉
and Pαj+1,s -names 〈ṗj+1,s

n : n ∈ ω〉, 〈ḟ j+1,s
n : n ∈ ω〉 such that for every
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n ∈ ω,

s °α̇j ṗj,sn = ṗj∗n & ḟ j,si = ḟ ji , for i ≤ k + j,

s °α̇j°α̇j ,α̇j+1 ṗ
j+1,s
n = ṗj+1∗

n & ḟ j+1,s
i = ḟ j+1

i , for i ≤ k + j + 1,

and such that analogous conditions to conditions (`2)–(`7) are valid and
forced in Pαj,s and Pαj+1,s , respectively. This is possible because Pα̇j , Pαj,s
(and also Pα̇j+1 , Pαj+1,s) are the same below s.

Now when the names α̇j , α̇j+1 are fixed by the conditions from A, we
can use the induction hypothesis, for every s ∈ A in particular, to get an
extension rj+1,s ∈ Pαj+1,s of rj¹αj,s which is (N,Pαj+1,s)-generic and

(β)s rj¹αj,s °αj,s rj+1,s¹〈αj,s, αj+1,s) ≤ ṗj,s0 ¹〈αj,s, αj+1,s);
(γ)s rj+1,s °αj+1,s “g covers N [Ġαj+1,s ]”;

(δ)s rj+1,s °αj+1,s (∀n ∈ ω)(∀i ≤ k + j) ḟ j,si vn g → ḟ j+1,s
i vn g.

Now define rj+1 so that for every s ∈ A,

if s, rj are compatible then s °α̇j rj+1 = rj+1,s .

We show that rj+1 satisfies (α)–(ε). Immediately we see that rj+1 satisfies
(β). By genericity of rj , rj meets only countably many elements of A and
so rj+1 is composed of countably many conditions rj+1,s ∈ Pα̇j+1 . Therefore
the support of rj+1 is countable:

supp(rj+1) ⊆
⋃
{supp(rj+1,s) : s ∈ A ∩N}.

Since rj °α̇j “rj+1¹α̇j = rj & rj+1¹〈α̇j , α̇j+1) is N [Ġα̇j ,α̇j+1 ]-generic”, rj+1

is (N,Pα̇j+1)-generic and condition (α) is satisfied. Clearly, (γ) and (δ) are
also satisfied. The validity of (ε) follows from the fact that °α̇j α̇j+1 > α′j .

Now we define r =
⋃
j∈ω rj+1¹α′j . Since supp(r) ⊆ sup(N ∩ β), r ∈ Pβ .

Also, r¹α = p and rj °α̇j r¹α̇j+1 = rj+1 for j ∈ ω.
From (`2) and (β) it can be seen that

(∗) rj °α̇j r¹〈α̇j , β) ≤ ṗj∗0 ,
and in particular by (`7), p °α r¹〈α, β) ≤ ṗ0. This proves condition (c) of
Lemma 1.8.

Since the condition rj+1 is (N,Pα̇j+1)-generic,

rj+1 °α̇j+1 On ∩N [Ġα̇j+1 ] = On ∩N
and (`6) and (`7) give

rj+1 °α̇j+1 ṗ
j+1∗
0 °α̇j+1,β τj ∈ N.

Hence by (∗) we have r °β τ ∈ N , for every j ∈ ω. Therefore, r is (N,Pβ)-
generic.



Goldstern–Judah–Shelah theorem 63

We verify conditions (a) and (b) of Lemma 1.8. By (`5) and (`3),

°α̇j ṗj0 °α̇j ,β ḟi¹j = ḟ ji ¹j, for j ≥ i− k
and so

r °β (∀j ≥ i− k) ḟi¹j = ḟ ji ¹j.
By (δ),

r °β (∀j ≥ i− k) ḟ ji vn g → ḟ j+1
i vn g,

and so by (γ) for j0 = i− k,

r °β ∃n ḟ j0i vn g.
Putting the last three facts together we can find some name ṅ for an integer
such that r °β (∀j ≥ j0) ḟ ji vṅ g. But the set {f ∈ C : f vn g} is closed
for every n and ḟi = limj∈ω ḟ

j
i in V Pβ , so r °β ḟi vṅ g. This proves (a).

A similar reasoning also proves (b).
The proof of Lemma 1.8 and also of Theorem 1.7 is finished.

2. Applications. The main results of this section are proved in [4]. We
fill in some details, and arrange material in another way. Theorems 2.10
and 2.15 generalize Lemma 6.15 and Example 6.23 of [4], respectively. As a
consequence of the relations in Cichoń’s diagram we deduce that a forcing
notion P preserves the base of the ideal of meager sets if and only if P is
ωω-bounding and P preserves nonmeager sets. This leads to a new result
(Theorem 2.18). The part about preservation of the ωω-bounding property
is as in [4] and we include it for the sake of completeness. Theorem 2.5
was first proved by S. Shelah [11] for ω-proper forcing notions. Preservation
of the base of Lebesgue measure zero sets (Theorem 2.22) is equivalent to
preservation of the Sacks property (see [4]) and we have no analogy here for
preservation of the Laver property.

We will proceed more or less in this way:

(a) we take into account some ‘simple property’ of forcing notions which
we would like to preserve by countable support iterations;

(b) we find some sequence v = 〈vn: n ∈ ω〉 of appropriate relations
on ωω (i.e. having all properties stated in the previous section) such that
“°P (∀f ∈ V [Ġ])(∃g ∈ V ) f v g” implies “P has the simple property”;

(c) we try to prove that the choice of v in (b) is effective, i.e. if possible,
we try to prove that the following conditions are equivalent:

(i) P has the ‘simple property’;
(ii) (∀f ∈ V [G])(∃g ∈ V ) f v g;

(iii) P almost preserves v;
(iv) P preserves v.

Concerning the relation between (iii) and (iv) we have the following:
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Lemma 2.1. If for all g and all n the set {f : f v g} is relatively open
in C = dom(v) then P almost preserves v iff P preserves v.

P r o o f. ← is clear.
→ Assume that g covers N and 〈pn : n ∈ ω〉 ∈ N interprets 〈ḟ0, . . . , ḟk〉 ∈

N as 〈f∗0 , . . . , f∗k 〉 ∈ N . For i ≤ k let ni = min{n : f∗i vn g}. Since the
sets Ai = {f : f vni g} are open in C, there is an integer n∗ such that
C ∩ [f∗i ¹n∗] ⊆ Ai for i ≤ k. As P almost preserves v, we can find an
N -generic condition p ≤ pn∗ ≤ p0 such that p ° “g covers N [Ġ]”. For each
i, p ° ḟi¹n∗ = f∗i ¹n∗ and so p ° ḟi ∈ C ∩ [f∗¹n∗] ⊆ {f : f vni g}. Hence
from the minimality of ni we get p ° (∀n ∈ ω)(∀i ≤ k) f∗i vn g → ḟi vn g.
Therefore P preserves v.

Preservation of ωω-bounding property

Definition 2.2. A forcing notion P is called ωω-bounding iff °P
(∀f ∈ ωω)(∃g ∈ ωω ∩ V )(∀n ∈ ω) f(n) ≤ g(n).

There is a natural way to translate this property into the framework of
Definition 1.5.

Definition 2.3. For f, g ∈ ωω, we let f vbn g iff (∀k ≥ n) f(k) ≤ g(k),
vb =

⋃
n∈ω vbn.

Lemma 2.4. Let P be a proper forcing notion. The following conditions
are equivalent.

(i) P is ωω-bounding ;
(ii) P almost preserves vb;

(iii) P preserves vb.
P r o o f. It is clear that the equivalence (i)↔(ii) is a corollary of the

definitions above and Lemma 1.3. The implication (iii)→(ii) is trivial.
(ii)→(iii). Consider a model N and a sequence 〈pn : n ∈ ω〉 interpreting

P -names 〈ḟ0, . . . , ḟk〉 ∈ N as 〈f∗0 , . . . , f∗k 〉. Assume that g ∈ ωω covers N .
Since P is ωω-bounding, for every n ∈ ω we can find p′n ≤ pn, p′n ∈ N ,

and fi,n ∈ ωω ∩N , for i ≤ k, such that p′n ° (∀m) ḟi(m) ≤ fi,n(m). Define

f ′i(m) = max{fi,n(m) : n ≤ m}, i ≤ k, m ∈ ω.
Since g covers N we can define

ni = min{n : (∀m ≥ n) f ′i(m) ≤ g(m)}, i ≤ k.
Let n∗ = max{ni : i ≤ k} and let p ≤ p′n∗ be an N -generic condition such
that p °“g covers N [Ġ]”. Then for every i ≤ k,

p ° (∀m ≥ n∗) ḟi(m) ≤ fi,n∗(m) ≤ f ′i(m) ≤ g(m), and

p ° ḟi¹n∗ = f∗i ¹n∗ .
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This implies p ° (∀n) f∗i vbn g → ḟi vbn g, and so P preserves vb.
We have proved the following theorem.

Theorem 2.5. The countable support iteration of proper ωω-bounding
forcing notions is ωω-bounding.

Preservation of outer measure. Let Ω be the set of clopen subsets of ω2.
We let

Cµ = {f ∈ ωΩ : (∀n ∈ ω)µ(f(n)) ≤ 2−n}.
This is a closed set in the product topology of ωΩ, where Ω is equipped
with the discrete topology. For f ∈ Cµ the set

Af =
⋂
n∈ω

⋃

k≥n
f(k)

has measure zero and for every set H ⊆ ω2 of measure zero there is f ∈ Cµ
such that H ⊆ Af .

Definition 2.6. For f ∈ Cµ, g ∈ ωω and n ∈ ω we let f vµn g iff
(∀k ≥ n) g 6∈ f(k).

Obviously, the set {f : f vµn g} is a closed subset of Cµ. Note that
f vµ g iff g 6∈ Af . Hence we have the following.

Lemma 2.7. g covers N with respect to vµ iff g is random over N .

Lemma 2.8 ([6]). For a homogeneous forcing notion P the following con-
ditions are equivalent (P is homogeneous iff r.o.P is homogeneous):

(i) for every set A of reals, if µ∗(A) > 0 then °P µ∗(A) > 0;
(ii) for every set A of reals and for every real c > 0, if µ∗(A) > c then

°P µ∗(A) > c;
(iii) for every P -name Ȧ of a set of reals and for every real c > 0, if

p ∈ P and p ° µ∗(A) ≤ c then µ∗({x ∈ ω2 : p ° x ∈ Ȧ}) ≤ c.
P r o o f. The implications (ii)→(iii) and (iii)→(i) are easy and do not

require homogeneity of P .
(i)→(ii). Assume µ∗(A) > c and for some p ∈ P , p ° µ∗(A) < c. So

there is a P -name 〈İn : n ∈ ω〉 of a sequence of basic clopen sets such
that p °“A ⊆ ⋃n∈ω İn &

∑
n∈ω µ(İn) ≤ c”. Choose a decreasing sequence

〈pm : m ∈ ω〉 of conditions below p, a sequence 〈In : n ∈ ω〉 of clopen sets
and h ∈ ωω increasing such that

pm ° (∀n ≤ h(m)) İn = In &
∑

n>h(m)

İn < 1/(m+ 1).

Since for every m ∈ ω,
∑
n≤h(m) µ(In) ≤ c and h is increasing, µ∗(A −⋃

n∈ω In) > 0. Set B = A − ⋃n∈ω In. Then pm ° B ⊆ ⋃n>h(m) İn. Using
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homogeneity of P , we can find P -names 〈İmn : h(m) < n < ω〉 such that for
every m,

p ° B ⊆
⋃

n>h(m)

İmn &
∑

n>h(m)

µ(İmn ) < 1/(m+ 1).

But this implies p ° µ∗(B) = 0, while µ∗(B) > 0, which contradicts condi-
tion (i).

Lemma 2.9. If P almost preserves vµ then P satisfies condition (i) of
Lemma 2.8.

P r o o f. Assume µ∗(A) > 0 and p ° µ∗(A) = 0. There is a P -name ḟ such
that p °“ḟ ∈ Cµ & A ⊆ Aḟ”. Let N ≺ H(χ) contain P, ḟ , p and let g ∈ A be

random over N (i.e. g covers N). Then there is q ≤ p, q °“g covers N [Ġ]”.
Hence q ° g 6∈ Aḟ & A ⊆ Aḟ . A contradiction.

Every measure algebra has a stronger property (see the next theorem)
than ‘preserving vµ’. Unfortunately, this property is not preserved by count-
able support iterations since, at least under CH, it implies c.c.c.

Theorem 2.10. Let B = B(κ) for some cardinal κ be the measure algebra
with measure ν for adding κ-many random reals. Then

(i) for every B-name Ȧ of a set of reals, if °B µ(Ȧ) = 0 then

µ({x ∈ ω2 : (∃p ∈ B) p ° x ∈ Ȧ}) = 0 ;

(ii) B preserves vµ.

P r o o f. (i) Let ṙ(κ) denote the canonical name for a generic sequence
from κ to 2. There is a Borel set D ⊆ κ2 × ω2 which is of ν × µ measure
zero and °B Ȧ = (D)ṙ(κ). Hence by the Fubini Theorem,

µ({x ∈ ω2 : (∃p ∈ B) p ° x ∈ Ȧ}) = µ({x ∈ ω2 : ν((D)x) > 0}) = 0 .

(ii) It is easy to see that (i) implies condition (i) of Lemma 2.8, hence
by homogeneity of B, B satisfies all conditions (i)–(iii) of Lemma 2.8.

Assume that N ≺ H(χ), P ∈ N and 〈pn : n ∈ ω〉 ∈ N interprets
〈ḟ0, . . . , ḟk〉 ∈ N as 〈f∗0 , . . . , f∗k 〉, where ḟi are B-names for elements of Cµ.
Let g be random over N . Define ni = min{n : f∗i vµn g} and in N ,

Bn =
{
z ∈ ω2 : pn ° z ∈

⋃

i≤k

⋃

m≥n
ḟi(m)

}
.

By 2.8(iii), µ∗(Bn) ≤ k∑m≥n 2−m = k2−n+1 and since g is random over N ,
g 6∈ ⋂n∈ω Bn. Let n∗ ≥ max{n0, . . . , nk} be such that g 6∈ Bn∗ . Then there
is p ≤ pn∗ ≤ p0 such that p ° (∀i ≤ k) g 6∈ ⋃m≥n∗ ḟi(m). Since p ≤ pn∗ , and

p ° ḟi¹n∗ = f∗¹n∗ for all i ≤ k, one can easily verify that

p ° (∀n ∈ ω)(∀i ≤ k) f∗i vµn g → ḟi vµn g .
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It remains to show only that p is N -generic and p °“g is random over N [Ġ]”.
The former follows from the fact that B has c.c.c. and so every condition in
B is N -generic. The latter is also forced with value 1 in B. To see this assume
that for some q ∈ B and some B-name ḟ we have q °“ḟ ∈ Cµ & g ∈ Ȧḟ”.
Then g ∈ {x : q ° x ∈ Aḟ} ⊆ {x : (∃q ∈ B) q ° x ∈ Aḟ} ∈ N . This
contradicts the fact that g is random over N , because by (i) the last set has
measure zero.

The next result can also be found in [6] and we do not prove it.

Theorem 2.11. The Laver forcing preserves vµ.

Preservation of nonmeager sets and preservation of bases of the ideal of
meager sets. Again, let Ω be the set of clopen subsets of ω2. We let

Cc = {f ∈ ΩΩ : (∀U ∈ Ω) f(U) ⊆ U} .
For f ∈ Cc the set

Af =
⋃

U∈Ω
f(U)

is an open dense subset of ω2 and for every open dense set H ⊆ ω2 there is
f ∈ Cc such that Af ⊆ H.

Definition 2.12. Fix some standard enumeration {Un : n ∈ ω} of the
set Ω. For f ∈ Cc, g ∈ ω2 and n ∈ ω we let f vcn g iff (∃k ≤ n) g ∈ f(Uk).

Note that f vc g iff g ∈ Af and so by the remark before Definition 2.12
we immediately get

Lemma 2.13. g covers N with respect to vc iff g is a Cohen real over N .

Since the set {f ∈ Cc : f vcn g} is clopen for every g ∈ ω2, by Lemma 2.1
we have

Lemma 2.14. For any forcing notion P , P preserves vc iff P almost
preserves vc.

The category analogue of Theorem 2.10 is true.

Theorem 2.15. (i) For every C(κ)-name Ȧ of a set of reals, if °C(κ)

“Ȧ is meager” then the set {x ∈ ω2 : (∃p ∈ C(κ)) p ° x ∈ Ȧ} is meager.
(ii) C(κ) preserves vc.
P r o o f. (i) The proof is analogous to the proof of 2.10(i).
(ii) Let N ≺ H(χ) and let g be a Cohen real over N . By Lemma 2.14 and

since C(κ) is c.c.c. it is enough to prove that °C(κ) “g is Cohen over N [Ġ]”.
To the contrary assume that for some p ∈ C(κ) and for some C(κ)-name ḟ ,
p ° g 6∈ Aḟ & ḟ ∈ Cc. Hence g ∈ {x : (∃q) q ° x ∈ ω2 − Aḟ} ∈ N . By (i)
this contradicts the fact that g is Cohen over N .
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Lemma 2.16. If P preserves vc then for every nonmeager set A ⊆ ω2,
°P “A is nonmeager”.

P r o o f. This is similar to the proof of Lemma 2.9.

It is not known whether the converse of Lemma 2.16 holds. Anyway we
have at least the following result (see [3], [8], [12]).

Lemma 2.17. Let P be a proper forcing notion. The following conditions
are equivalent :

(i) P is ωω-bounding and preserves vc;
(ii) P is ωω-bounding and preserves nonmeager sets;

(iii) every meager set in the generic extension can be covered by a Borel
meager set coded in the ground model.

P r o o f. (i)→(ii) follows from Lemma 2.16.
(ii)→(iii). Let A ∈ V [G] be a meager subset of ω2. We may assume

without loss of generality that A is closed under finite changes of its elements.
Since ω2∩V is nonmeager, there is x ∈ ω2∩V −A. Let {xn : n ∈ ω} ∈ V be
an enumeration of the set X = {y ∈ ω2 ∩ V : (∃n)(∀m ≥ n)x(m) = x(n)}.
Since A is invariant under rational translations the set X is disjoint from A.

The set A is the union of countably many nowhere dense sets An. For
every n ∈ ω, define in V [G] a function fn ∈ ωω by

fn(k) = min{m : [xk¹m] ∩An = ∅}.
By the ωω-bounding property of P there is a function f ∈ ωω ∩ V which
eventually dominates all fn. Then the set

B = ω2−
⋂
m

⋃

k>m

[xk¹f(k)]

is meager coded in V . Let n ∈ ω. There is m such that (∀k > m) f(k) ≥
fn(k). Hence

An ⊆ ω2−
⋃

k>m

[xk¹fn(k)] ⊆ ω2−
⋃

k>m

[xk¹f(k)] ⊆ B

and so also A ⊆ B.
(iii)→(i). Let M denote the ideal of meager sets. There are mappings

(see [3])

ϕ : ωω →M, ψ :M→ ωω

such that ϕ(f) ⊆ A → f ≤∗ ψ(A) and ϕ,ψ are absolute (the definition of
ψ depends just on Borel codes of Fσ-sets). Hence {ψ(A) : A ∈ M is Fσ
coded in V } is cofinal in ωω ∩ V [G]. This proves that P is ωω-bounding.
It remains to show that P almost preserves vc. So let N ≺ H(χ) be a
countable elementary substructure and g be a Cohen real over N , p, P ∈ N .
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Let q ≤ p be an N -generic condition. Then by (iii) and by genericity of q
we have

q ° (∀A ∈ N [Ġ] ∩M)(∃B ∈ N ∩M)A ⊆ B & g 6∈ B .
So q ° “g is a Cohen over N [Ġ]”.

If P has property (iii) of 2.17 we say that P preserves the base of the ideal
of meager sets. Since condition (i) of Lemma 2.17 is preserved by countable
support iterations we have the following.

Theorem 2.18. The iteration of proper forcing notions preserving the
base of the ideal of meager sets, preserves the base of the ideal of meager
sets.

Examples 2.19. The following forcing notions preserve the base of the
ideal of meager sets (see [10], [7]):

(1) generalized Cohen forcing with support in the dual ideal to a P -point,
(2) every forcing notion preserving bases of the ideal of Lebesgue measure

zero sets, or equivalently, all forcing notions with the Sacks property (e.g.
Silver forcing, Sacks forcing, generalized Cohen forcing with support in a
selective ideal).

Preservation of the base of the ideal of Lebesgue measure zero sets. We
will work with convergent series. The following result justifies that. Essential
ideas of its proof can be found in [1], [9], [3].

Theorem 2.20. Let N ⊆M be transitive models of ZFC. The following
are equivalent :

(i) every measure zero set in M is covered by a Borel measure zero set
in N ;

(ii) every convergent series of positive reals in M is dominated by a
convergent series from N ;

(iii) for every function f ∈ ωω ∩M there exists a function g ∈ N such
that (∀n ∈ ω) f(n) ∈ g(n) & |g(n)| ≤ n2.

Let K = {f ∈ ωQ+ :
∑
n∈ω f(n) < 1}. We say that P is K-bounding if

°P (∀f ∈ K)(∃g ∈ K ∩ V )(∀n) f(n) ≤ g(n).
Let us recall that Q (Q+) is the set of (positive) rational numbers. We

let

CK =
{
f ∈ ω(<ωQ+ − {∅}) : (∀n)

∑

i∈dom(f(n))

f(n)(i) < 2−n
}
.

For f ∈ CK let εf be defined by εf = f(0)∧f(1)∧ . . . Clearly for every g ∈ K
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there is f ∈ CK such that g = εf . For f, g ∈ CK we let

f vKn g iff (∀m ≥ n) εf (m) ≤ εg(m), and

f vK g iff (∃n) f vKn g .
Obviously {f : f vKn g} is a closed subset of CK and CK is closed

in the product topology of ω(<ωQ) where <ωQ is endowed with the discrete
topology. Note that g covers N with respect to vK iff (∀f ∈ K ∩ N)(∃n)
(∀m ≥ n) f(m) ≤ εg(m).

Lemma 2.21. Let P be a proper forcing notion. The following are equiv-
alent :

(i) P is K-bounding ;
(ii) °P (∀f ∈ CK)(∃g ∈ CK ∩ V ) f vK g;

(iii) P almost preserves vK;
(iv) P preserves vK.

P r o o f. The equivalence (i)↔(ii) follows from the definitions. By Lemma
1.3 we have (ii)↔(iii). The implication (iv)→(iii) is trivial. We prove
(iii)→(iv).

Let 〈pn : n ∈ ω〉 ∈ N interpret 〈ḟ0, . . . , ḟk〉 ∈ N as 〈f∗0 , . . . , f∗k 〉, where
ḟi are P -names for elements of CK. Let g cover N .

For f ∈ CK define m(n, f) =
∑
i<n |f(i)|. By (i), for every n ∈ ω we can

find in N a series fi,n, i ≤ k, and a condition p′n ≤ pn such that

p′n ° (∀m) εḟi(m) ≤ fi,n(m) &
∑
m∈ω

fi,n(m) ≤ 2−n +
∑
m∈ω

εḟi(m).

Since p′n decides εḟi¹m(n, f∗i ), we can easily see that for i ≤ k,
∑
{fi,n(m) : m ≥ m(n, f∗i )} ≤ 2−n +

∑

m≥n
2−m < 2−n+2 .

Define

f ′i(m) = max{fi,n(m) : m(n, f∗i ) ≤ m}, i ≤ k, m ∈ ω .
Then ∑

m∈ω
f ′i(m) ≤

∑
n∈ω

∑
{fi,n(m) : m(n, f∗i ) ≤ m} <∞ .

Since g covers N and f ′i ∈ N we can define the integers

ni = min{n : (∀m ≥ n) f ′i(m) ≤ εg(m)}, i ≤ k .
Let n∗ = max{ni : i ≤ k} and let p ≤ pn∗ be an N -generic condition such
that p °“g covers N [Ġ]”. Then for every i ≤ k,

p ° εḟi¹m(n∗, f∗i ) = εf∗
i
¹m(n∗, f∗i ) ,
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and since m(n∗, f∗i ) ≥ n∗,
p ° (∀m ≥ m(n∗, f∗i )) εḟi(m) ≤ fi,n∗(m) ≤ f ′i(m) ≤ εg(m) .

From this we can easily see that

p ° (∀n) f∗i vKn g → ḟi vKn g
and so P preserves vK.

Immediately we have

Theorem 2.22. The countable support iteration of proper K-bounding
forcing notions is K-bounding.

Preservation of non-adding new reals. Obviously, Theorem 1.7 can be un-
derstood as a tool for preservation of non-adding of reals of particular prop-
erties. For example, Theorem 2.5 is a preservation theorem for non-adding
of unbounded reals. Naturally we can ask about non-adding of dominating
reals, Cohen reals, random reals, etc. A partial answer to this question can
be found in [5]. There a preservation theorem for limit steps of countable
support iterations of proper forcing notions is proved. In particular, no ran-
dom reals (and no dominating reals, respectively) are added at limit steps
provided such reals are not added before. Consequently, countable support
iterations of σ-centered forcing notions do not add random reals.
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