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Normal numbers and subsets of N with given densities

by

Haseo K i (Pasadena, Cal.) and Tom L i n t o n (Salem, Oreg.)

Abstract. For X ⊆ [0, 1], let DX denote the collection of subsets of N whose densities
lie in X. Given the exact location of X in the Borel or difference hierarchy, we exhibit the
exact location of DX . For α ≥ 3, X is properly Dξ(Π0

α) iff DX is properly Dξ(Π0
1+α).

We also show that for every nonempty set X ⊆ [0, 1], DX is Π0
3 -hard. For each nonempty

Π0
2 set X ⊆ [0, 1], in particular for X = {x}, DX is Π0

3 -complete. For each n ≥ 2, the
collection of real numbers that are normal or simply normal to base n is Π0

3 -complete.
Moreover, DQ, the subsets of N with rational densities, is D2(Π0

3 )-complete.

Introduction. The collection of “naturally arising” or “non-ad hoc” sets
that are properly located in the Borel hierarchy (meaning for example Π0

2
non-Σ0

2), is relatively small. In fact, only a small number of specific exam-
ples of any sort are known to be properly located above the third level of the
Borel hierarchy. Recently, A. Kechris asked whether the set of real numbers
that are normal to base two is Π0

3 -complete. A. Ditzen then conjectured
that if this was true for each base n ≥ 2, then the set of real numbers that
are normal to at least one base n ≥ 2 should be Σ0

4 -complete. Certainly
this example is non-ad hoc. We found this set extremely difficult to manage,
and hence we are inclined to agree with Ditzen’s conjecture. There is some
evidence supporting this conjecture. Namely results as in [6] which suggest
that normality to base two and normality to base three have a weak form of
independence. Unfortunately, such proofs are nonconstructive and the con-
jecture appears to be more number theoretic than set theoretic. It seemed
reasonable to replace the set in the conjecture with the easier to manage
collection of subsets of N with density 1/n, for some (varying) n ∈ N. How-
ever, in this case, the limit one computes is the same for all n, and the set
is too simple. We then looked at the subsets of N with rational densities,
DQ, and were able to show it was properly the difference of two Π0

3 sets, i.e.
D2(Π0

3 )-complete. As DQ is at least somewhat natural, this is rather surpris-
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ing, since it lies above the third level of the Borel hierarchy. In continuing the
study of the relationship between the Borel class of X ⊆ [0, 1], and that of
DX ⊆ 2N, the collection of subsets of N whose densities lie in X, we were able
to show that if X is properly Π0

n (Σ0
n), then DX is properly Π0

n+1 (Σ0
n+1)

for n ≥ 3. Furthermore, the relationship extended to the difference hierarchy
of ∆0

n+1 sets. If X is properly Dξ(Π0
n), then DX is properly Dξ(Π0

n+1), so
long as n ≥ 2. However, on the dual side, at the finite levels of the difference
hierarchy for n = 2, an interesting phenomenon arises. For m < ω, if X is
properly D̃m(Π0

2 ), then DX is properly Dm+1(Π0
3 ). So the analogy of Q to

DQ extends to all finite levels of the difference hierarchy, and no DX can be
properly D̃m(Π0

3 ). If ξ ≥ ω and X is properly D̃ξ(Π0
2 ), then DX is properly

D̃ξ(Π0
3 ). For α ≥ 3, if Γ = Π0

α, Σ0
α, Dξ(Π0

α), or D̃ξ(Π0
α), and Γ ∗ is the

class where the α in Γ is replaced by 1 + α, then X is properly Γ iff DX

is properly Γ ∗. In particular, we are able to show that for every nonempty
set X ⊆ [0, 1], DX is Π0

3 -hard; for each nonempty Π0
2 set X ⊆ [0, 1], DX is

Π0
3 -complete; for each n ≥ 2, the collection of real numbers that are normal

or simply normal to base n is Π0
3 -complete; and as mentioned above, DQ,

or DX for any Σ0
2 -complete set X, is D2(Π0

3 )-complete.

Both authors would like to thank Professor Kechris for his help, encour-
agement and engaging conversations in relation to this work.

Notation and background information. For sets A and B, |A| is the
cardinality of A, A denotes the topological closure of A, and we denote the
set of all functions from B into A by AB . If X ⊆ A, we denote the preimage
under f of X by f←(X). We sometimes identify n ∈ N = {0, 1, 2, . . .} with
the set {0, 1, . . . , n−1}. Thus 2N is the collection of functions f :N→ {0, 1}.
We let A<N =

⋃
n∈NA

n denote all finite sequences on A, and A≤N = A<N ∪
AN. ~0 and ~1 denote the constant zero and constant one functions in 2N. If
f ∈ A≤N and n ∈ N, f¹n = 〈f(0), . . . , f(n − 1)〉, and for s, t ∈ A<N, |s|
denotes the length of s (the unique n for which s ∈ An), s ⊆ t (t extends s)
means t¹|s| = s, and ŝt is the sequence s followed by the sequence t. We
use R and Q to denote the reals and rationals, and P denotes the irrationals
between zero and one.

We describe the Borel hierarchy using the standard modern terminology
of Addison, and define the difference hierarchy, on the ambiguous classes of
∆0
α+1 sets, based on decreasing sequences of Π0

α sets. For Polish topological
spaces X, let Σ0

1(X) denote the collection of open subsets of X, and Π0
1 (X)

denote the closed subsets of X. Inductively define for countable ordinals
α ≥ 2,

Σ0
α(X) =

{
A ⊆ X

∣∣∣A =
⋃

n∈N
An, where each An ∈Π0

βn(X) and βn < α
}
,
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Π0
α(X) =

{
A ⊆ X

∣∣∣A =
⋂

n∈N
An, where each An ∈ Σ0

βn(X) and βn < α
}
,

∆0
α(X) = {A ⊆ X | A ∈Π0

α(X) ∩Σ0
α(X)} .

If X is known by context or irrelevant we frequently drop it for notational
convenience. Thus, Σ0

1 = Open, Π0
1 = Closed, Σ0

2 = Fσ, Π0
2 = Gδ, and so

on. The difference hierarchy, which is a finer two-sided hierarchy on the ∆0
α

sets, extends the Borel hierarchy by including it as the first level (ξ = 1)
for each countable ordinal α. For ξ a countable ordinal and any sequence of
subsets of X, 〈Aβ〉β<ξ, where Aβ ⊇ Aβ′ if β < β′ (so 〈Aβ〉 is decreasing)
and for limit λ < ξ, Aλ =

⋂
β<λAβ (so the sequence is continuous), define

a set A = Dξ(〈Aβ〉β<ξ), the difference of the 〈Aβ〉β<ξ , by

x ∈ A⇔ ∃β < ξ (x ∈ Aβ), and the largest such β is even.

A countable ordinal β is even if when we write β = λ + n, with λ = 0 or
a limit ordinal, n is even. Let Dξ(Π0

α) be the collection of sets of the form
Dξ(〈Aβ〉β<ξ), where 〈Aβ〉β<ξ is a decreasing, continuous sequence ofΠ0

α sets
(for ξ < ω, the decreasing requirement is redundant). So D1(Π0

α) = Π0
α,

D2(Π0
α) = {A − B | A,B ∈ Π0

α, and A ⊇ B} (so in R, [0, 2) is a typical
D2(Π0

1 ) set), and D3(Π0
α) is the collection of sets of the form

(A−B) ∪ C where A,B,C ∈Π0
α and A ⊇ B ⊇ C .

For any class of sets Γ , let the dual class, Γ̃ , be the collection of complements
of sets in Γ (so D̃1(Π0

α) = Σ0
α), and say A is properly Γ if A ∈ Γ − Γ̃ . We

need the following elementary facts about the difference hierarchy classes.
The Dξ(Π0

α) sets are closed under:

(i) intersections with Π0
α sets;

(ii) intersections with Σ0
α sets if ξ is even;

(iii) unions with Π0
α sets if ξ is odd;

(iv) unions with Σ0
α sets if ξ ≥ ω.

Each of these implies a dual property for the D̃ξ(Π0
α) sets. For example,

(i) says that the D̃ξ(Π0
α) sets are closed under unions with Σ0

α sets. By
combining the above properties with the fact that if A is Π0

α, and B is Π0
β

(β < α), then both A − B and A ∪ B are Π0
α, we also have (for α > β, or

α = β and ξ ≥ ω):

(v) the D̃ξ(Π0
α) sets are closed under intersections with Π0

β sets.

We will need this for β = 3 later.
In order to determine the exact location of a set in the above hierarchy,

one must produce an upper bound, or prove membership in the class Γ ,
and then a lower bound, showing the set is not in Γ̃ . In general the lower
bounds are more difficult, but since these classes are closed under continuous
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preimages, the notion of a continuous or Wadge reduction yields a powerful
technique for producing lower bounds. The idea is to take a set C that
is known to be a non-Γ̃ set, and find a continuous function f such that
f←(A) = C. Then A cannot be in Γ̃ either. The Cantor space 2N (with the
usual product topology and 2 = {0, 1} discrete) is known to contain sets that
are proper, in all the classes above. A subset, A, of a Polish topological space,
X, is called Γ -hard (for Γ = Dξ(Π0

α) or D̃ξ(Π0
α)) if for every C ∈ Γ (2N)

there is a continuous function, f : 2N → X, such that x ∈ C ⇔ f(x) ∈ A,
that is, f←(A) = C. Thus if A is Γ -hard, then A 6∈ Γ̃ . If in addition to
being Γ -hard, A is also in Γ , we say A is Γ -complete. Wadge [7] (using
Borel determinacy [3]) showed that in zero-dimensional Polish spaces, there
is no difference between a set being Γ -complete or properly Γ . Let X and Y
be Polish spaces, C ⊆ X, A and B disjoint subsets of Y , let C ≤W (A;B)
assert that there is a continuous function f : X → Y where

x ∈ C ⇒ f(x) ∈ A, and x 6∈ C ⇒ f(x) ∈ B .
If B = ¬A = Y − A, we write C ≤W A for C ≤W (A;¬A), and say C
is Wadge reducible to A. Wadge’s result mentioned above was that for all
Borel subsets A and B of zero-dimensional Polish spaces, either A ≤W B
or ¬B ≤W A. Louveau and Saint-Raymond [2] later showed a similar result
(which Wadge obtained using analytic determinacy) for C ≤W (A;B), using
closed games. It implies that for each class Γ = Dξ(Π0

α) or D̃ξ(Π0
α) (α ≥ 2),

there is a Γ -complete set HΓ ⊆ 2N such that for all disjoint analytic A and
B (in any Polish space), either HΓ ≤W (A;B) (by a one-to-one continuous
function), or there is a Γ̃ set S such that A ⊆ S and B ∩ S = ∅. For our
classes (since we only work in Polish spaces), being Γ -hard and being a non-
Γ̃ set are the same thing. Hence a set will be properly Γ iff it is Γ -complete.
Notice also that if C is Γ -hard, and C ≤W B, then B is Γ -hard. And if
C ≤W (A;B), and D is any set containing A and disjoint from B, then
C ≤W D.

Subsets of N with given densities. We describe here the basic facts
and properties about the densities of subsets of the natural numbers, that
we need. This topic is covered in detail in [1], for example.

Definition 1. For A ⊆ N, let δ(A) = limn→∞ |A∩ [0, n)|/n if the limit
exists, and say δ(A) does not exist otherwise. We call δ(A) the density of A.

Thus, whenever it exists, δ(A) ∈ R ∩ [0, 1], and is roughly the frequency
of occurrences of A in N. For nonempty X ⊆ [0, 1] ∩ R, let

DX = {A ⊆ N | δ(A) ∈ X}
(if X = {r} we write Dr for D{r}). Let DE = D[0,1] denote the collection of
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subsets of N whose densities exist. If we identify A ⊆ N with its characteristic
function χA : N→ 2, given by

χA(n) =
{

1 if n ∈ A;
0 if n 6∈ A,

then DX becomes a subset of the Cantor space 2N (with the usual product
topology). For s ∈ 2<N, let ‖s‖ = |{i ∈ Dom(s) : s(i) = 1}| and let |s|
denote the length of s. We can then define the density of s as

δ(s) =
‖s‖
|s| ∈ Q ∩ [0, 1] .

For α ∈ 2N, the density of α exists iff the sequence {δ(α¹n)}n∈N converges,
in which case the limit of the sequence is the density of α. This shows that
DE and D0 are Π0

3 , since

α ∈ DE ⇔ ∀n ∃N ∀k (|δ(α¹N )− δ(α¹N+k)| < 1/n)

(that is, the sequence of partial densities of α is Cauchy)

⇔ α ∈
⋂

n∈N

⋃

N∈N

⋂

k∈N
C(n,N, k) ,

where C(n,N, k) is the collection of α ∈ 2N such that |δ(α¹N )− δ(α¹N+k)|
< 1/n, which is clopen (both closed and open). In the future we will not
bother rewriting number quantifiers as countable intersections or countable
unions, nor will we verify that the sets similar to C(n,N, k) above are clopen,
if it is clear that they are. D0 is also Π0

3 since

α ∈ D0 ⇔ ∀n ∃N ∀k ≥ N (δ(α¹k) < 1/n) .

The sequence {δ(α¹n)}n∈N is very close to being a Cauchy sequence, meaning
that if n is large, then δ(α¹n) and δ(α¹n+1) are very close. In fact,

(2) |δ(α¹n)− δ(α¹n+1)| < 1
n+ 1

.

This shows that if I = lim infn→∞{δ(α¹n)}, and S = lim supn→∞{δ(α¹n)},
then for every real number r ∈ [I, S], r is a limit point or cluster value of
the sequence {δ(α¹n)}n∈N .

Two methods for producing subsets with nice densities. We now
give two methods for producing α ∈ 2N so that the density of α is easy
to compute. The first involves copying the values of a sequence {xn}n∈N
with xn ∈ (0, 1). The idea is to define α as a union, α =

⋃
n∈N αn, where

for all n ∈ N, αn+1 is a finite proper extension of αn ∈ 2<N, δ(αn) ≈
xn, and δ(α¹k+1) is between δ(αn) and δ(αn+1) whenever k is between
|αn| and |αn+1|. Thus the density of α will exist iff the sequence {xn}n∈N
converges, and the limit of this sequence will be the density of α. Given any
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sequence {xn}n∈N ∈ (0, 1)N we define α, the result of running the canonical
construction with input {xn}n∈N, inductively as follows:

Let α0 = 〈0, 1〉. Given αn, if δ(αn) < xn+1, fix the least k ∈ N such that

δ(αn̂1k) =
‖αn‖+ k

|αn|+ k
≥ xn+1

(k exists since {δ(αn̂1k)}k∈N starts at δ(αn) and increases to 1). Set αn+1 =
αn̂1k. If δ(αn) ≥ xn+1, fix the least k ∈ N− {0} such that

δ(αn̂0k) =
‖αn‖
|αn|+ k

≤ xn+1 ,

and set αn+1 = αn̂0k. Let α =
⋃
n∈N αn ∈ 2N. Clearly, |αn+1| ≥ |αn|+ 1 >

n+ 1, for all n ∈ N. Using the minimality of k and (2), we see that

|xn+1 − δ(αn+1)| < 1
|αn| < 1/n .

Since αn+1 is αn followed by k zeros or k ones, it is clear that δ(α¹m+1) is
between δ(αn) and δ(αn+1) whenever m is between |αn| and |αn+1|. So the
density of α exists iff the sequence of partial densities of α is Cauchy iff the
sequence of the densities of the αn’s is Cauchy iff {xn}n∈N is Cauchy. More
precisely, for any convergent subsequence {xnk}k∈N,

lim
k→∞

xnk = lim
k→∞

δ(αnk) .

This gives then a canonical way to produce α with δ(α) = r, for any r ∈ [0, 1].
Notice also that if xn happened to be zero or one, we could replace xn with
1/n or 1 − 1/n respectively, and hence we can run this construction for
sequences in [0, 1]N.

The second construction involves partitioning N into a finite or countably
infinite collection of sets with positive densities, and placing a copy of some
αn ∈ 2N on the nth set in the partition. Then even when the partition
is infinite, one can basically add the densities. In general this is not true,
since the union of the singletons has density one, whereas each singleton
has density zero. But when the pieces being combined are contained in
disjoint sets with positive densities, everything works out fine. Let I ⊆
N, and {An}n∈I be a family of pairwise disjoint subsets of N such that⋃
n∈I An = N (i.e. a partition of N); for each n ∈ I, the density of An exists

and is positive; and limN→∞
∑N
n=0 δ(An) = 1. For each n ∈ I, let αn ∈ 2N

be such that δ(αn) exists. Define C ⊆ N, the set obtained by playing a copy
of αn on An, as follows:

First, since δ(An) > 0, An is infinite. Let {ank}k∈N be a one-to-one in-
creasing enumeration of An. Then for each m ∈ N there are unique n and
k such that m = ank . We put m ∈ C iff m = ank and αn(k) = 1. It is
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straightforward to check that

δ(C) =
∑

n∈I
δ(An)δ(αn) .

Thus, whenever we say “let α be the result of playing αn on An”, we
mean that α is the characteristic function of the set C defined above. Of
course we can still make this definition even if δ(αn) does not exist. If at
least two of the αn’s have divergent densities, the density of C may or may
not exist. However, if exactly one of αn’s has a divergent density, then the
density of C does not exist.

Some Π0
3 -complete sets. In this section we establish a strong reduc-

tion of a Π0
3 -complete set to the set D0. Thus we have an affirmative answer

to a question of Kechris, who asked if D0 was Π0
3 -complete. Once this is

done, we are able to show hardness for numerous other sets, including the
collections of normal and simply normal numbers. It is known that the set

C3 = {β ∈ NN | ∀n, β←(n) is finite} = {β ∈ NN | lim inf
n→∞

β(n) =∞}
is Π0

3 -complete (see for example (24) in [4] for a proof).

Theorem 3. C3 ≤W (D0;¬DE). In particular , both D0 and DE are
Π0

3 -complete.

P r o o f . The second part of the theorem follows from the first, because
D0 ⊆ DE and DE ∩ ¬DE = ∅. The idea is to associate with β ∈ NN
a sequence {xn}n∈N so that xn depends only on a finite initial segment
of β. We then produce the canonical α with input {xn}n∈N. The function
β 7→ α (from NN into 2N) will then be continuous since the first N values
of α depend only on the first N values of {xn}n∈N, which depend only on a
finite initial segment of β. The sequence xn = 1/β(n) almost works, but we
must first fix β so that β(n) ≥ 2, and β is not eventually constant (so that
limn→∞ 1/β(n) exists iff it is zero). For β ∈ NN, define β′ ∈ NN by

β′(n) =
{
β(n/2) + 2 if n is even;
n+ 1 if n is odd.

Then β 7→ β′ is continuous and β ∈ C3 ⇔ β′ ∈ C3. Given β ∈ NN, let α ∈ 2N

be the result of running the canonical construction on input {1/β′(n)}n∈N.
Then the sequence {δ(α¹n)}n∈N always contains a subsequence which con-
verges to zero, since β′(2n+ 1) = 2n+ 2. Hence the density of α exists iff it
is zero. Thus,

β ∈ C3 ⇔ β′ ∈ C3 ⇔ lim
n→∞

1
β′(n)

= 0⇔ δ(α) = 0⇔ α ∈ D0 ⇔ α ∈ DE .

This shows C3 ≤W (D0;¬DE) and completes the proof.
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Corollary 4. For any nonempty X ⊆ [0, 1], DX is Π0
3 -hard. In par-

ticular , for each r ∈ [0, 1], Dr is Π0
3 -complete.

P r o o f. It is clear that Dr is Π0
3 for each r ∈ [0, 1], so it suffices to prove

the first statement. Let f denote the continuous function from Theorem 3.
If 0 ∈ X, then f shows C3 ≤W DX . If 1 ∈ X let g(β) = φ(f(β)), where φ is
the bit switching homeomorphism of 2N,

φ(α)(n) =
{

0 if α(n) = 1 ;
1 if α(n) = 0 .

Then g shows C3 ≤W DX . Finally, if X ⊆ (0, 1), let x ∈ X be arbitrary. Let
A0 ⊆ N have density x. Fix n ∈ N such that x+ 1/n < 1. Let A1 be disjoint
from A0 and have density 1/n. Given β ∈ NN, let α be the characteristic
function of C = A0∪C1, where C1 is the result of playing f(β) on A1. Then
β 7→ α is continuous, δ(C) exists iff δ(C1) exists, and

β ∈ C3 ⇔ δ(C1) exists⇔ δ(C1) = 0⇔ δ(α) = x+
1
n
· 0⇔ α ∈ Dx .

Hence C3 ≤W (Dx;¬DE), so C3 ≤W DX , because x ∈ X and DX ∩ ¬DE
= ∅.

Normal numbers. For x ∈ [0, 1] and n ≥ 2, the base n expansion of x
is the sequence {di}i∈N ∈ nN such that x =

∑∞
i=1 di/n

i, and di 6= n− 1 for
infinitely many i. For x ∈ [0, 1] and n ≥ 2, say x is simply normal to base n,
and write x ∈ SNn, if for each k = 0, 1, . . . , n− 1,

δ({i ∈ N | di = k}) = 1/n .

Say x ∈ [0, 1] is normal to base n, and write x ∈ Nn, if for each m ∈ N and
each s ∈ nm+1,

δ({i ∈ N | di = s(0), di+1 = s(1), . . . , di+m = s(m)}) = 1/nm+1 .

Thus, x is normal to base n if in the base n expansion of x, all the digits
k < n appear with equal frequency, all the pairs 〈k, j〉 appear with equal
frequency, etc. It is known that the set of numbers in [0, 1] that are normal
to all bases n ≥ 2 simultaneously has Lebesgue measure one (see for example
8.11 in [5]). It is straightforward to see that SNn and Nn are Π0

3 , since each
D1/n is Π0

3 . One of the main questions that motivated this study was to try
to show that NN =

⋃
n∈NNn was Σ0

4 -complete. We were unable to answer
this, but did manage to show that Nn and SNn are each Π0

3 -complete. As
Nn ⊆ SNn the following result shows both of these simultaneously.

Theorem 5. For each n ∈ N−{0, 1}, D0 ≤W (Nn;¬SNn). In particular ,
both SNn and Nn are Π0

3 -complete.

P r o o f. Let x =
∑∞
i=1 di/n

i be any fixed number that is normal to
base n. Let {ik}k∈N be an increasing enumeration of the set I0 = {i ∈ N |
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di = 0}. Then I0 has density 1/n since x ∈ Nn. Given α ∈ 2N let x′ ∈ [0, 1]
be given by the base n expansion,

d′i =
{

1 if i = ik ∈ I0 and α(k) = 1 ;
di otherwise .

That is,

x′ = x+
∑

k∈α←(1)

1
nik

.

The function α 7→ x′ is continuous. If α ∈ D0, then x′ is the result of
changing a subset of density zero of the 0’s in the base n expansion of x
to ones, leaving the rest of the base n expansion of x unchanged. Hence, x′

is still normal to base n. And if α 6∈ D0, then x′ 6∈ SNn, since 0 and 1 no
longer occur with density 1/n in the base n expansion of x′.

The Borel classes of DX . We now turn to the problem of classifying
the Borel class of DX in terms of the class of X. The fact that such an exact
relationship exists is surprising. Basically DX has one more quantifier, and
lies on the same side of the hierarchy as X. We start with the upper bounds.

Proposition 6. For nonempty X ⊆ [0, 1], if X is Π0
2 , then DX ⊆ 2N

is Π0
3 -complete.

P r o o f. Let {Un}n∈N be a countable basis of open sets for R∩ [0, 1] (with
the usual topology). Let X =

⋂
k∈NGk be any nonempty Π0

2 subset of [0, 1],
where each Gk is open. A moment’s reflection shows that

α ∈ DX ⇔ α ∈ DE and ∀k ∃n ∃m ∀p ≥ m (δ(α¹p) ∈ Un ⊆ Un ⊆ Gk) .

Since membership in N(k, n, p) = {α ∈ 2N | δ(α¹p) ∈ Un ⊆ Un ⊆ Gk}
is completely determined by α¹p (and whether or not Un ⊆ Gk, which is
independent of α¹p), N(k, n, p) is clopen for each (k, n, p) ∈ N3. Thus DX

is Π0
3 , and by Corollary 4, DX is Π0

3 -complete. Furthermore, if we denote
by P (X) the set of α ∈ 2N such that

∀k ∃n ∃m ∀p ≥ m (δ(α¹p) ∈ Un ⊆ Un ⊆ Gk) ,

then P (X) is Π0
3 and α ∈ DX ⇔ α ∈ DE ∩ P (X).

Corollary 7. Let X ⊆ [0, 1] be nonempty.

(i) If X is Σ0
2 , then DX is D2(Π0

3 ).
(ii) If X is Π0

α (Σ0
α) for α ≥ 3, then DX is Π0

1+α (Σ0
1+α).

(iii) If X is Dξ(Π0
α) for α and ξ ≥ 2, then DX is Dξ(Π0

1+α).
(iv) If X is D̃ξ(Π0

α) for α ≥ 3, or α = 2 and ξ ≥ ω, then DX is
D̃ξ(Π0

1+α).
(v) If X is D̃m(Π0

2 ) for m < ω, then DX is Dm+1(Π0
3 ).
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P r o o f. If X is Σ0
2 , then ¬X is Π0

2 and DX = DE − D¬X ∈ D2(Π0
3 )

by Proposition 6, so (i) holds. More precisely, for each X ∈ Σ0
2([0, 1]),

there is a Σ0
3 set P ′(X) (namely ¬P (¬X) from Proposition 6) such that

α ∈ DX ⇔ α ∈ DE ∩ P ′(X). Clearly, for W = X −X ′, Y =
⋃
n∈NXn and

Z =
⋂
n∈NXn,

(8) DW = DX −DX′ , DY =
⋃

n∈N
DXn , and DZ =

⋂

n∈N
DXn .

An easy induction then shows, for n ≥ 2, that for each Π0
n (Σ0

n) set X ⊆
[0, 1], there is a Π0

n+1 (Σ0
n+1) set P (X) ⊆ 2N such that

(9) α ∈ DX ⇔ α ∈ DE ∩ P (X) .

This then gives (ii) for α < ω, since the classes Π0
k and Σ0

k, for k ≥ 4, are
closed under intersections with Π0

3 sets. The function f : 2N → R given by

f(α) =
{
δ(α) if δ(α) exists ;
2 otherwise ,

is a Baire class 4 function by Proposition 6. As f←(X) = DX , for all X ⊆
[0, 1], if X is Π0

α or Σ0
α, then DX is Π0

4+α or Σ0
4+α. Thus if α ≥ ω, then

4 + α = 1 + α = α, so (ii) holds (also the levels of the projective hierarchy
do not increase from X to DX). Using (8) and (9), one shows that for
each Dξ(Π0

α) set X ⊆ [0, 1] (with α and ξ ≥ 2), there is a Dξ(Π0
1+α) set

P (X) ⊆ 2N such that

DX = DE ∩ P (X) .

Thus (iii) follows, since Dξ(Π0
1+α) sets are closed under intersections with

Π0
3 sets (as long as α ≥ 2). If X is D̃ξ(Π0

α) for α and ξ ≥ 2, then DX =
DE ∩ ¬D¬X , which is the intersection of a Π0

3 set with a D̃ξ(Π0
1+α) set.

For α ≥ 3, or α = 2 and ξ ≥ ω, the class D̃ξ(Π0
1+α) is closed under

intersections with Π0
3 sets, and hence (iv) follows. Finally, if X is D̃m(Π0

2 ),
then DX = DE ∩ ¬D¬X , which by (iii) and the definition is a Dm+1(Π0

3 )
set, so (v) holds.

The upper bound of D2(Π0
3 ) for X = Q, the rationals, turns out to be

a lower bound also. This is rather surprising, since very few sets are known
to be properly located above the third level of the Borel hierarchy. We now
show that DQ is Σ0

3 -hard. It turns out that no DX is Σ0
3 -complete (except

of course for X = ∅ in which case one might say DX = ¬DE, which is
Σ0

3 -complete by Theorem 3), and our proof of this fact will be the second
half of the proof that DQ is D2(Π0

3 )-complete. Our reduction here uses a
nonstandard Σ0

3 -complete set, namely,

S3 = {α ∈ 2N×N | ∃R ∀r ≥ R ∃c (α(r, c) = 1)} .
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If one views α as an N×N matrix of zeros and ones whose entry in row r and
column c is α(r, c), then S3 is the set of matrices where all but finitely many
rows contain a one, or equivalently with finitely many “all zero” rows. To
prove that ¬C3 ≤W S3, β ∈ NN 7→ α ∈ 2N×N, one attempts to define α¹n×n
so that it contains β(n) partial “all zero” rows. With a little organization,
this makes the number of rows in α without any ones equal to the lim inf of
β, so β 6∈ C3 ⇔ lim infn→∞ β(n) is finite ⇔ α ∈ S3. We define inductively
α¹n×n from β¹n (so that β 7→ α is continuous, and at stage n we must
define α’s entries in column n for the rows 0, 1, 2, . . . , n − 1, as well as row
n, columns 0, 1, . . . , n), as follows:

S t a g e 0: If β(0) = 0, set α(0, 0) = 1 and if β(0) > 0, set α(0, 0) = 0.
Thus Z1, the number of “all zero” rows in α¹1×1, is either 0 = β(0) or
1 ≤ β(0), and hence Z1 ≤ β(0).

S t a g e n: We are given α¹n×n and β(n), and must define the first n+ 1
entries, in both column n and row n, of α. Let Zn be the number of partial
rows in α¹n×n that are all zeros.

If β(n) ≤ Zn, extend the “first” β(n) “all zero” rows of α¹n×n by adding
a zero in column n; all the remaining rows (with index less than n) receive
a one in column n; and define the first n + 1 entries in row n to be ones.
Here, “first” is defined from the indices of the rows, so the first 5 rows refers
to the 5 rows with lowest indices.

If β(n) > Zn, extend every “all zero” row by adding a zero in column n;
every row that already has a one gets a one in column n; and make row
n begin with n + 1 zeros. Hence Zn+1, the number of “all zero” rows in
α¹(n+1)×(n+1), is either β(n) or 1 + Zn ≤ β(n), and again Zn+1 ≤ β(n).
More precisely, for r < n, let Zn(r) denote the number of rows in α¹n×n,
with index r′ < r, that are all zeros. Then (for r < n) we set

α(r, n) =
{

0 if ∀c < n [α(r, c) = 0] and Zn(r) < β(n) ;
1 otherwise .

And for c ≤ n set

α(n, c) =
{

0 if β(n) > Zn ;
1 otherwise .

One sees that if for all n ≥ N , β(n) ≥ k, then Zm ≥ k for all m > N + k,
and the first k “all zero” rows in α¹(N+k+1)×(N+k+1) always receive a zero.
Thus,

lim inf
n→∞

β(n) ≤ the number of “all zero” rows in α .

The reverse inequality is trivial if lim inf β=∞, so assume lim inf β=k <∞.
Then β takes the value k infinitely often. Let n1 < . . . < nk+1 be any
collection of k + 1 natural numbers. We show that for some i = 1 to k + 1,
row ni of α contains a one. Since β(n) = k infinitely often, fix n > nk+1
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such that β(n) = k. Then Zn+1 ≤ k, so at least one of the rows with indices
ni gets a one at stage n. Thus lim infn→∞ β(n) = the number of “all zero”
rows in α, which directly translates to

β 6∈ C3 ⇔ α ∈ S3 ,

and ¬C3 ≤W S3. So S3 is Σ0
3 -hard and it is straightforward to see that

S3 ∈ Σ0
3 .

Proposition 10. S3 ≤W (DQ;DP), and hence DQ is Σ0
3-hard.

P r o o f. Let {An}n∈N be a partition of N with δ(An) = 1/2n+1 (for
example one can take {2n(2p + 1) − 1}p∈N for An). Let {ank}k∈N be an
increasing enumeration of An. Let Bn ⊆ An be the set {ank(n!) | k ∈ N}, so
that δ(Bn) = 1/(n! 2n+1). Let B∗ = N − ⋃n∈NBn, so that B∗ ∪ {Bn}n∈N
is a partition of N suitable for our second canonical construction. Given
α ∈ 2N×N, let

α∗r(c) =
{

1 if α(r, c′) = 0 for all c′ ≤ c ;
0 otherwise .

Then α 7→ {α∗r}r∈N is continuous (from 2N×N to (2N)N ) and α∗r is eventually
zero (hence δ(α∗r) = 0) iff row r of α has a one, and α∗r is identically one
(hence δ(α∗r) = 1) iff row r of α is identically zero. Let f(α) ∈ 2N be the
result of playing α∗r on Br, for r ∈ N, and ~0 on B∗. Then

δ(f(α)) =
∞∑
r=0

δ(α∗r)
r! 2r+1

(which always exists), and it is rational iff δ(α∗r) is nonzero finitely often (see
for example 1.7 in [5] or a proof that e is irrational). Thus, α ∈ S3 ⇔ all but
finitely many rows of α contain a 1 ⇔ for all but finitely many r, δ(α∗r) = 0
⇔ δ(f(α)) ∈ Q. Thus S3 ≤W (DQ;DP), and DQ is Σ0

3 -hard, provided
f is continuous. Since f(α)¹n is completely determined by α¹M×n, where
M = max{m ∈ N | Am ∩ [0, n) 6= ∅}, f is continuous and we are done.

Lemma 11. For any set C, if C ≤W (DX ;D¬X), then C3 ×C ≤W DX .

P r o o f. Let f be continuous and witness C ≤W (DX ;D¬X). Assume
C ⊆ Y (some topological space). Then δ(f(y)) exists for all y ∈ Y . As
in Theorem 3, we replace β ∈ NN with β′, where β′(2n) = β(n) + 2, and
β′(2n + 1) = 2n + 2. So that β 7→ β′ is continuous and does not alter
membership in C3. We show C3 × C ≤W DX by defining φ(β, y) to be the
result of playing f(y) (whose density always exists) on A0, the evens, and
α′ on A1, the odds, where α′ comes from the canonical construction with
input {xn}n∈N, where

xn = (1− 1/β′(n))(δ(f(y)¹n) + 1/β′(n)) .
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This defines a continuous function, since f is continuous and α′¹n depends
only on β¹n and the neighborhood of y that determines f(y)¹n (which exists
since f is continuous). If β ∈ C3, then

lim
n→∞

xn = δ(f(y)) .

Hence, when β ∈ C3,

δ(φ(β, y)) = 1
2δ(f(y)) + 1

2δ(f(y)) = δ(f(y)) ∈ X ⇔ y ∈ C .
When β 6∈ C3 the sequence {xn}n∈N diverges. So δ(α′) does not exist and
the density of φ(β, y) does not exist. Thus φ(β, y) ∈ DX⇔(β, y) ∈ C3×C.

We now construct a sequence of complete sets for the differences of Π0
3

sets. Let m ≥ 1 be a finite integer. In the space
(
NN
)m

, consider the sets
A0, A1, . . . , Am−1, where

A0 = C3 × NN × NN × . . .× NN ,
A1 = C3 × C3 × NN × NN × . . .× NN ,
...
Ai = (C3)i+1 × (NN)m−i−1 ,
...
Am−1 = C3 × C3 × . . .× C3 .

Then each Ai ∈Π0
3 and A0 ⊇ A1 ⊇ . . . ⊇ Am−1. Let D3

m = Dm(〈Ai〉i<m) ∈
Dm(Π0

3 ) and D̃3
m = ¬D3

m ∈ D̃m(Π0
3 ). Then

D3
m = {〈βi〉i<m ∈ (NN)m | β0 ∈ C3 and

max{i < m : β0, β1, . . . , βi ∈ C3} is even} ,
D̃3
m = {〈βi〉i<m ∈ (NN)m | β0 6∈ C3 or

max{i < m : β0, β1, . . . , βi ∈ C3} is odd} .
We now show that for any Dm(Π0

3 ) set B ⊆ 2N, B ≤W D3
m, so D3

m

is Dm(Π0
3 )-complete and D̃3

m is D̃m(Π0
3 )-complete. Given such a B, fix

B0 ⊇ B1 ⊇ . . . ⊇ Bm−1, Π0
3 subsets of 2N with B = Dm(〈Bi〉i<m). Since

Bi ∈Π0
3 and C3 isΠ0

3 -complete, there is a continuous function fi : 2N → NN
such that α ∈ Bi ⇔ fi(α) ∈ C3. Define f : 2N → (NN)m by

f(α) = (f0(α), f1(α), . . . , fm−1(α)) .

Since the Bi’s are decreasing, it is straightforward to check that α ∈ Bi ⇔
fi(α) ∈ C3 ⇔ f(α) ∈ Ai, which shows B ≤W D3

m. Notice that C3 × D̃3
m =

D3
m+1.
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Theorem 12. For 1 ≤ m < ω, if DX is D̃m(Π0
3 )-hard , then DX is

Dm+1(Π0
3 )-hard. Thus no DX is D̃m(Π0

3 )-complete, and DQ is D2(Π0
3 )-

complete.

P r o o f. By Lemma 11 and the note above, it suffices to show D̃3
m ≤W

(DX ;D¬X). If this were not the case, then by the result of Louveau and
Saint-Raymond [2] mentioned earlier, there would be a Dm(Π0

3 ) set S such
that DX ⊆ S and S ∩D¬X = ∅. But then DX = S ∩DE, a Dm(Π0

3 ) set,
which is contrary to DX being D̃m(Π0

3 )-hard.

We shall now basically show that X ≤W DX . Literally this cannot be
true because X lives in a connected space and DX lives in a zero-dimensional
space. However, for large enough ξ and α, intersecting a Dξ(Π0

α) set X
with P, the irrationals in [0, 1], does not change the Borel class. Since P is
homeomorphic to NN, if X ⊆ P one can show X ≤W DX . The following
material is well known (see [5], pp. 51–67 for example). Given β ∈ NN, let
β∗(n) = β(n) + 1. For each n ∈ N, let

(13) rn(β) = rn =
1

β∗(0) +
1

β∗(1) +
1

. . . +
1

β∗(n)

so rn ∈ Q ∩ [0, 1]. Then φ(β) = limn→∞ rn exists, is irrational, and φ is a
homeomorphism onto P. In a way, the next two results, as well as Lemma 11,
show that our canonical construction can absorb continuous functions. We
shall see later that it can actually absorb some Baire class one functions too.

Lemma 14. For nonempty X ⊆ NN, X ≤W (Dφ(X);Dφ(¬X)).

P r o o f. Given β ∈ NN, let f(β) ∈ 2N be the result of running the canon-
ical construction on input {xn}n∈N, where xn is the rn(β) in (13) (which
only depends on β¹n+1). Then δ(α) = limn∈N rn = φ(β). Hence, since f is
continuous, for any X ⊆ NN, f shows

X ≤W (Dφ(X);Dφ(¬X)) ,

and we are done.

Theorem 15. Let Γ be one of the classes Π0
α or Σ0

α for α ≥ 3; Dξ(Π0
α)

for α ≥ 2; D̃ξ(Π0
α) for α ≥ 3; or D̃ξ(Π0

2 ) for ξ ≥ ω. If X ⊆ [0, 1] is Γ -hard ,
then so is DX . In particular , if α ≥ ω and X is Γ -complete, then so is DX .

P r o o f. The last part follows from the first and Corollary 7, since in this
case 1 +α = α. For each such Γ , let Γ̃ denote the dual class {¬X | X ∈ Γ}.
Then Γ is closed under intersections with Π0

2 sets and Γ̃ is closed under
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unions with Σ0
2 sets. Since X ⊆ [0, 1] is Γ -hard, X is not in Γ̃ . If X ∩P ∈ Γ̃ ,

then

X = (X ∩ P) ∪ (X ∩Q)

is also in Γ̃ , since X ∩Q is countable and thus Σ0
2 . So X ∩P 6∈ Γ̃ , and hence

X ∩ P is Γ -hard. As φ−1 is a homeomorphism, φ−1(X ∩ P) is Γ -hard. By
Lemma 14,

φ−1(X ∩ P) ≤W (DX∩P;DP∩¬X) .

Thus φ−1(X ∩ P) ≤W DX , and DX is Γ -hard.

Notice that if Γ is one of the projective hierarchy classes, then X is
Γ -complete iff DX is. We have already seen DX is Π0

3 -complete, for any
nonempty Π0

2 subset X of [0, 1]. We shall now show that for α ≥ 3, if X ⊆
[0, 1] is Π0

α-complete (Σ0
α-complete), then DX is Π0

1+α-complete (Σ0
1+α-

complete). We need the complete sets, {Hn ⊆ 2N | n ∈ N}, from [2], and
some basic properties of their function %. For n and m ∈ N, let

〈n,m〉 = 1
2 (n+m)(n+m+ 1) +m.

Thus 〈 , 〉 : N× N→ N is one-to-one and onto. Define % : 2N → 2N by

%(α)(n) = 1⇔ ∀m (α(〈n,m〉) = 0) .

Again, if we think of α as an N×N matrix of zeros and ones, with the entry
in row n and column m being α(〈n,m〉), then

%(α)(n) =
{

0 if row n of α contains a 1 ;
1 if row n of α is identically 0 .

Thus, if αn is the binary sequence where αn(m) = α(〈n,m〉), then %(α)(n) =
χ{~0}(αn). One can extend % to 2≤N, by defining for s ∈ 2k, %(s) = s∗ ∈ 2<N,
where

Dom(s∗) = {n ∈ N | 〈n, 0〉 < k}
(so that Dom(s∗) is an initial segment of N), and for n ∈ Dom(s∗),

s∗(n) = 1⇔ for all 〈n,m〉 ∈ Dom(s), s(〈n,m〉) = 0 .

The properties of % that we need are the following, all appear in [2].

(i) ∀α ∈ 2N ∀n ∈ N ∃k ∀m ≥ k (%(α¹m)¹n = %(α)¹n).
(ii) Let H1 = {~0} ⊆ 2N and Hn+1 = %←(Hn). Then Hn is Π0

n-complete.

Thus (i) says that for each i ∈ N, the approximations α∗n(i) = %(α¹n)(i) are
eventually equal to %(α)(i).

Lemma 16. For H ⊆ 2N and X ⊆ [0, 1], if H ≤W X, then %←(H) ≤W
(DX ;D¬X). In particular , for n ≥ 2, and X ⊆ [0, 1], if Hn ≤W X, then
Hn+1 ≤W DX , and if ¬Hn ≤W X, then ¬Hn+1 ≤W DX .
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P r o o f. Let g : 2N → [0, 1] be a continuous function witnessing H ≤W X.
Given α ∈ 2N and n ∈ N, apply % to α¹n, yielding say α∗n ∈ 2<N (this is a
finitary process even though % is Baire class one). Let αn = α∗n̂~0 ∈ 2N, and
set xn = g(αn) ∈ [0, 1]. We let f(α) be the canonical construction on input
{xn}n∈N. As usual, xn depends only on α¹n, so f is continuous. Since g is
continuous, xn = g(αn), and {αn}n∈N converges pointwise to %(α), we see
that limn→∞ xn = g(%(α)) (and δ(f(α)) always exists). Hence,

α ∈ %←(H)⇔ %(α) ∈ H
⇔ g(%(α)) = lim

n→∞
xn = δ(f(α)) ∈ X ⇔ f(α) ∈ DX .

So %←(H) ≤W (DX ;D¬X).

Theorem 17. (i) If X ⊆ [0, 1] is Π0
α-complete (Σ0

α-complete) for α ≥ 3,
then DX is Π0

1+α-complete (Σ0
1+α-complete).

(ii) If X ⊆ [0, 1] is Dξ(Π0
α)-complete for α ≥ 2, then DX is Dξ(Π0

1+α)-
complete.

(iii) If X ⊆ [0, 1] is D̃ξ(Π0
α)-complete for α ≥ 3, or for α = 2 and ξ ≥ ω,

then DX is D̃ξ(Π0
1+α)-complete.

(iv) If X ⊆ [0, 1] is D̃m(Π0
2 )-complete for m<ω, then DX is Dm+1(Π0

3 )-
complete.

Likewise all these hold with “hard” replacing “complete” and all impli-
cations reverse for α ≥ 3.

P r o o f. The upper bounds for DX are from Proposition 6 and Corol-
lary 7. They show the reverse implications hold for α ≥ 3. If α ≥ ω, Theo-
rem 15 gives the above statements. Hence we need only work with α < ω,
which we will denote by n. Now, (i) is just the second part of Lemma 16.
For the remaining cases consider the sets

Dn
ξ = {〈αβ〉β<ξ ∈ (2N)ξ |

α0 ∈ Hn and the least β such that αβ 6∈ Hn is odd} ,
D̃n
ξ = ¬Dn

ξ = {〈αβ〉β<ξ ∈ (2N)ξ |
the least β such that αβ 6∈ Hn is even} ,

where (Hn)ξ is included in Dn
ξ if ξ is odd, and included in D̃n

ξ when ξ

is even. Then Dn
ξ is Dξ(Π0

n)-complete, and D̃n
ξ is D̃ξ(Π0

n)-complete. Fur-
thermore, by applying % coordinatewise to Dn+1

ξ , we obtain Dn
ξ . That is,

~α = 〈αβ〉β<ξ ∈ Dn+1
ξ ⇔ 〈%(αβ)〉β<ξ ∈ Dn

ξ . Thus, we simply mimic the proof

of Lemma 16. Let Γ be any of the classes Dξ(Π0
n) or D̃ξ(Π0

n), mentioned
in the hypothesis, where X is Γ -complete or Γ -hard. Let Γ ∗ be the class
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where the n in Γ is replaced by n+ 1. Let

DΓ =

{
Dn
ξ if Γ = Dξ(Π0

n) ;

D̃n
ξ if Γ = D̃ξ(Π0

n) .

Then the assumptions give a continuous function g witnessing DΓ ≤W
X. Since ξ is countable, (2N)ξ is homeomorphic to 2N by some function
φ : (2N)ξ → 2N. In fact, if we take 〈 , 〉 : ξ×N→ N to be any bijection such
that for each β < ξ, the sequence 〈β, n〉n∈N is increasing, then we can take
φ(~α)(〈β, n〉) = αβ(n). If we then let ~α¹n = {αβ(k) | 〈β, k〉 < n}, this will be
a finite set containing an initial segment of each αβ . We can then apply %
to each initial segment, obtaining say 〈α∗β,n〉β<ξ. Let ~α∗n be the extension of
〈α∗β,n〉β<ξ by setting all undefined values to zero. Then {~α∗n}n∈N converges
pointwise to 〈%(αβ)〉β<ξ. Given ~α ∈ (2N)ξ, let xn = g(~α∗n) ∈ [0, 1] (where ~α∗n
is as above). Then xn depends only on a finite piece of ~α. If we set f(~α) to be
the result of running the canonical construction on {xn}n∈N, then f is con-
tinuous and as in Lemma 16, f witnesses DΓ∗ ≤W (DX ;D¬X). Hence DX

is Γ ∗-hard. Thus we are done, except for the last case where Γ ∗ = D̃m(Π0
3 ),

which follows immediately by Theorem 12.
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