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Abstract. We prove that an ultrametric space can be bi-Lipschitz embedded in Rn if
its metric dimension in Assouad’s sense is smaller than n. We also characterize ultrametric
spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits
of certain inverse sequences of discrete spaces.

1. Introduction. A map f : M → M ′ of metric spaces is said to be
bi-Lipschitz if there is a constant L ≥ 1 such that d(x, y)/L ≤ d(f(x),
f(y)) ≤ Ld(x, y) for all x, y ∈ M ; then f is also called L-bi-Lipschitz (we
denote every metric by d if not otherwise specified). It is an open problem
to characterize the metric spaces which can be bi-Lipschitz embedded in
a (finite-dimensional) Euclidean space. If a compact metric space M can
locally be bi-Lipschitz embedded in Rn, n ≥ 2, then M can be bi-Lipschitz
embedded in Rn(n+1) by [13, Remark 4.6]; in particular, a compact Lipschitz
n-manifold has a bi-Lipschitz embedding in R2n+1 by [12, Corollary 4.6]. By
[4, Lemme 4.9], a metric space admits an L-bi-Lipschitz embedding in Rn if
all of its finite subsets have this property.

These results cannot be considered satisfactory characterizations, but
Assouad [2]–[4] takes a promising approach. For a metric space (M,d), he de-
fines a bi-Lipschitz invariant called the metric dimension (see Definition 3.2)
and proves that in order for (M,d) to be of finite metric dimension it is suf-
ficient that for some p ∈ (0, 1] and necessary that for each p ∈ (0, 1) the
metric space (M,dp) is bi-Lipschitz embeddable in a Euclidean space. How-
ever, whether the necessity also extends to the case p = 1 is not known, but
Assouad conjectures this is so.

In this paper we study the existence of bi-Lipschitz embeddings in Eu-
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clidean spaces for a more tractable, yet important subclass of metric spaces,
that of ultrametric ones. Recall that an ultrametric space is a metric space M
whose metric d, then also called an ultrametric, satisfies the strong trian-
gle inequality d(x, y) ≤ max{d(x, z), d(y, z)} for all x, y, z ∈ M . Based on
the fact that every positive power of an ultrametric is also an ultramet-
ric, Assouad deduces from his result that an ultrametric space M can be
bi-Lipschitz embedded in a Euclidean space if and only if M is of finite met-
ric dimension (see Proposition 3.3). In our simple Proposition 3.1 we show
that ultrametric subspaces of Euclidean spaces are finite. This implies that
the Euclidean bi-Lipschitz image of an ultrametric space M of finite metric
dimension cannot itself be chosen ultrametric if M is infinite. On the other
hand, if M is finite and cardM = n + 1, then M is evidently bi-Lipschitz
homeomorphic to the ultrametric vertex set of a regular n-simplex in Rn.
(See the paragraph after the next one for a more exact result.)

In our main result, Theorem 3.8, we prove that for each n ∈ N an ultra-
metric space of metric dimension < n can be bi-Lipschitz embedded in Rn.
Since every metric space which is bi-Lipschitz embeddable in Rn must be of
metric dimension ≤ n, for ultrametric spaces of fractional metric dimension
our result thus gives the smallest possible Euclidean bi-Lipschitz embedding
dimension. However, whether this also holds for all ultrametric spaces of
integral metric dimension remains open, but for each n ∈ N we construct
an example of a compact ultrametric space of metric dimension n for which
this is really the case, that is, which is not bi-Lipschitz embeddable in Rn.
Crucial for our proof is the characteristic property of ultrametric spaces
that for every fixed radius the closed balls form a partition of the space.
A variant of our method was used by the second author in [15, Theorem 2.3]
to show that every compact ultrametric space is bi-Lipschitz embeddable in
a Hilbert space.

For the sake of comparison, let us recall results concerning other types of
embeddings of ultrametric spaces. Note first that a metrizable space admits
an ultrametric if and only if its topological dimension (in the large inductive
or covering sense) is at most zero [6, Theorem 4.1.24 and Problem 4.1.G].
Thus every separable ultrametric space can be topologically embedded in
the Cantor set in R1 [6, Theorem 1.3.15]. By van Rooij [17, Corollary 2.2],
every compact ultrametric space can be topologically embedded in every
complete non-Archimedean (i.e., ultrametric) nontrivially valued field. The
result referred to above is that an ultrametric space can be isometrically
embedded in Rn if and only if it has at most n+ 1 points. This was proved
independently by Timan [19] (at least in a special case), Lemin [11], and
Aschbacher, Baldi, Baum, and Wilson [1, Theorems 1.1 and 6.7]. Further,
every ultrametric space can be isometrically embedded in a Hilbert space.
This was shown independently by Kelly ([8, Theorem 8.1], [9, Theorem 2],



Bi-Lipschitz embeddings 183

[21, Theorem 2.4]), Timan and Vestfrid [20], and Lemin [11]. Timan [19] also
constructed isometric embeddings of certain countable ultrametric spaces in
Lp-spaces, p ≥ 1. Finally, by Schikhof [18, Theorem A.10] every ultrametric
space can be isometrically embedded in a spherically complete (thus com-
plete) non-Archimedean valued field.

Section 2 deals with a related problem. Analogously to the characteri-
zation of ultrametrizable topological spaces up to homeomorphism as sub-
spaces of countable products of discrete spaces [17, Theorem 2.1], we ultra-
metrize the inverse limit of every doubly infinite inverse sequence of discrete
spaces satisfying a certain one-sidedness condition and show every ultra-
metric space to be bi-Lipschitz homeomorphic to a dense subset of such an
ultrametric inverse limit. These results generalize those of the second au-
thor in [15]. We also analogously generalize results due to Lemin [10] about
isometric characterization of ultrametric spaces. For compact ultrametric
spaces the results of Section 2 have earlier been obtained by Michon [14].

For basic properties of ultrametric spaces we refer to [17] and [18]. We
assume 0 6∈ N.

2. Bi-Lipschitz embeddings in inverse limits. We first construct a
class of ultrametric spaces as inverse limits.

2.1. Construction. Let Xj be a discrete topological space for each
j ∈ Z, let gj : Xj+1 → Xj be a map for each j ∈ Z, and let Σ be the inverse
limit space lim←(Xj , gj) of the doubly infinite (i.e., with Z as index set)
inverse sequence (Xj , gj)j∈Z, i.e., Σ is the subspace {(xj) | gj(xj+1) = xj
for each j ∈ Z} of the product space

∏
j∈ZXj . Moreover, suppose that if

x, y ∈ Σ, then xj = yj for some j ∈ Z, implying that xi = yi whenever i ≤ j.
We call doubly infinite inverse sequences (Xj , gj)j∈Z of this kind one-sided .

Let (rj)j∈Z be a sequence of positive real numbers such that rj+1 < rj
for each j ∈ Z, that limj→∞ rj = 0, and that limj→−∞ rj =∞. Then we can
define a complete compatible ultrametric % on Σ by setting %(x, y) = rj for
two distinct points x, y if j is the greatest integer with xj = yj . We call this
metric % on Σ a comparison ultrametric. If all spaces Xj are countable, Σ is
separable; if they are finite, Σ is compact. If cardX1 = 1, guaranteeing the
one-sidedness property, then we may obviously reduce the index set Z to N
in the definition of (Σ, %) getting a canonically isometric copy of (Σ, %).

The following theorem shows that the class of ultrametric spaces con-
structed in 2.1 is in a certain sense universal for the category of ultrametric
spaces and bi-Lipschitz embeddings.

2.2. Theorem. Let M be an ultrametric space. Then M is bi-Lipschitz
embeddable as a dense subset in the inverse limit of a one-sided doubly in-
finite inverse sequence of discrete spaces with a comparison ultrametric.
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P r o o f. Let K > 1 be a constant and (rj)j∈Z a sequence such that
0 < rj+1 < rj ≤ Krj+1 for each j ∈ Z, that limj→∞ rj = 0, and that
limj→−∞ rj = ∞. Let B(x, r) = {y ∈ M | d(x, y) ≤ r} for x ∈ M , r > 0.
Noting that B(x, r) = B(y, r) if y ∈ B(x, r), construct partitions Xj =
{B(x, rj) | x ∈ M} (j ∈ Z) of M and maps gj : Xj+1 → Xj , B(x, rj+1) 7→
B(x, rj) (j ∈ Z). Then let Σ = lim←(Xj , gj). If (Bj)j∈Z and (B′j)j∈Z are
points of Σ, there are j < 0 and B′′j ∈ Xj such that B0 ∪ B′0 ⊂ B′′j ,
which implies Bj = B′′j = B′j . Thus, the inverse sequence (Xj , gj)j∈Z is
one-sided. Now give Σ the comparison ultrametric % associated with the
sequence (rj)j∈Z.

Define a map f : M → Σ by f(x) = (B(x, rj))j∈Z. Consider x, y ∈ M ,
x 6= y. Choose j ∈ Z with rj+1 < d(x, y) ≤ rj . Then x and y are in the same
member of Xj but in distinct members of Xj+1. Hence, %(f(x), f(y)) = rj ,
and therefore d(x, y) ≤ %(f(x), f(y)) ≤ Kd(x, y). Consequently, f is a bi-
Lipschitz embedding.

To see fM to be dense in Σ, note first that as fM = {(Bj)j∈Z ∈ Σ |⋂
j∈ZBj 6= ∅}, we have fM = Σ if and only if M is complete. Now let M̂ be

the completion of M ; it, too, is an ultrametric space. Let (X̂j , ĝj)j∈Z be the
inverse sequence, Σ̂ = lim←(X̂j , ĝj) the ultrametric space, and f̂ : M̂ → Σ̂

the bi-Lipschitz homeomorphism associated with M̂ and (rj)j∈Z. For each
j ∈ Z we have a bijection hj : X̂j → Xj , B 7→ B ∩M . Since hj ĝj = gjhj+1,
the sequence (hj)j∈Z induces a bijection h: Σ̂ → Σ, (Bj)j∈Z 7→ (B∩M)j∈Z,
and h is an isometry. From hf̂ |M = f we then conclude that fM is dense
in Σ.

2.3. R e m a r k s. 1) In the proof, M is totally bounded (respectively,
separable) if and only if the spaces Xj are finite (respectively, countable).
If M is bounded (and nonempty), by choosing r1 ≥ diamM we have Xj =
{M} for all j ≤ 1, and hence we could replace the index set Z by N in the
definition of (Σ, %). Theorem 2.2 generalizes [15, Proposition 2.1], in which
the ultrametric space M is assumed to be bounded and complete and in
whose proof r1 is chosen to be ≥ diamM . For compact ultrametric spaces,
Theorem 2.2 also follows from results of Michon [14].

2) A consequence of Theorem 2.2, which is also easy to establish directly
[17, Exercise 2.F], is that every ultrametric is bi-Lipschitz equivalent to an
ultrametric whose positive values form a discrete set. As not all ultrametrics
satisfy the latter condition, in Theorem 2.2 bi-Lipschitz embeddings cannot
be replaced by isometric embeddings.

3) Analogously to the above characterization of ultrametric spaces up
to bi-Lipschitz homeomorphism, there is the following characterization of
ultrametric spaces up to isometry as dense subsets of ultrametric inverse
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limits of certain countable inverse systems of discrete spaces. For bounded
complete spaces this characterization has been given by Lemin [10, 6.4],
although not as explicitly as here, and for compact spaces by Michon [14].

First, fix a countable dense subset A of (0,∞) for an index set. Now, if
S is an inverse system of discrete topological spaces Xr (r ∈ A) and maps
gsr : Xs → Xr (r, s ∈ A, s ≥ r), if Σ = lim← S is the inverse limit of S,
and if S is one-sided in the sense that for all x, y ∈ Σ there is r ∈ A with
xr = yr, then we can define a complete compatible ultrametric % on Σ
by %(x, y) = sup{1/r | r ∈ A, xr 6= yr}. Conversely, if M is an ultrametric
space, Xr the partition {B(x, 1/r) | x ∈M} of M (r ∈ A), and gsr : Xs → Xr

the map B(x, 1/s) 7→ B(x, 1/r) (r, s ∈ A, s ≥ r), then the inverse system
S = (Xr, g

s
r)A is one-sided, and if Σ = lim← S is ultrametrized as above,

then the map f : M → Σ, x 7→ (B(x, 1/r))r∈A, is an isometry onto a dense
subset, and fM = Σ if and only if M is complete.

3. Bi-Lipschitz embeddings in Euclidean spaces. Our first result
is a weaker form of a known one, but we present it as our proof is so simple.

3.1. Proposition. No infinite ultrametric space is isometric to a subset
of Rn for any n ∈ N.

P r o o f. Suppose the contrary, and assume that n ∈ N is the smallest
number for which Rn contains an infinite ultrametric subspace M . Since
also M is ultrametric, we may assume M to be closed. For distinct points
x, y ∈M let T (x, y) ⊂ Rn denote the perpendicular bisector of the segment
[x, y]. Then z ∈M and |x− y| < |x− z| imply z ∈ T (x, y). In fact, |x− z| ≤
max{|x− y|, |y − z|} = |y − z| and |y − z| ≤ max{|x− y|, |x− z|} = |x− z|,
and so |x− z| = |y − z|.

We first show M to be discrete. If not, M has a cluster point x. Let
A = M \ {x}. Choose a sequence (yj) in A converging to x. Let Fk =⋂
j>k T (x, yj) for k ∈ N. Then F1 ⊂ F2 ⊂ . . . are proper affine subspaces

of Rn (possibly empty), which implies that such is also their union F . If
z ∈ A, choose k with |x−yj | < |x−z| for j > k; then z ∈ Fk. Thus, A ⊂ F .
Consequently, M ⊂ F , a contradiction.

It follows that we can write M = {xj | j ∈ N} with x1 6= x2 and xj →∞.
Choose k with |x1−x2| < |x1−xj | for j > k, and let A = {xj | j > k}. Then
A ⊂ T (x1, x2). Since A is an infinite ultrametric set, this is a contradiction.

The following definition for the metric dimension is equivalent to that of
Assouad [3], [4].

3.2. Definition. Let M be a metric space. Suppose that s ≥ 0 and
C ≥ 0 are numbers such that cardY ≤ C(b/a)s whenever a > 0 and b ≥ a
are numbers and Y ⊂M a set with a ≤ d(x, y) ≤ b for x, y ∈ Y and x 6= y.
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Then M is called (C, s)-homogeneous. We say that M is s-homogeneous if M
is (C, s)-homogeneous for some C. The infimum (in [0,∞]) of the numbers s
(if any) for which M is s-homogeneous is called the metric dimension of M
and denoted by DimM or also by Dim(M,d).

We need the following basic properties of these concepts (cf. [3, Propo-
sition 2] or [4, 2.2]). An L-bi-Lipschitz image of a (C, s)-homogeneous space
is (L2sC, s)-homogeneous. Thus, Dim is a bi-Lipschitz invariant. Consider
A ⊂M . If M is (C, s)-homogeneous, so is A, and conversely whenever A is
dense. Thus, DimA ≤ DimM , with equality if A is dense. The space Rn is
n-homogeneous and DimRn = Dim[0, 1]n = n for all n ≥ 0. If p ∈ (0, 1),
then Dim(M,dp) = (1/p) Dim(M,d). If M =

⋃k
i=1Ai, then DimM =

max1≤i≤k DimAi.
We also mention the following fact [3, Remarque 2] yielding a simple

characterization for being of finite metric dimension. A metric space is (C, s)-
homogeneous for some (C, s) if and only if there is q ∈ N such that for each
r > 0, each closed ball of radius r can be covered by (in the ultrametric
case: is the union of) k closed balls of radius r/2 with k ≤ q. Here (C, s)
and q can be chosen to depend only on each other.

Before proving our main result, Theorem 3.8, we first present and discuss
a weaker form of it due to Assouad [3, Remarque 2 and Proposition 3(g)].

3.3. Proposition. Let M be an ultrametric space. Then there is a bi-
Lipschitz embedding of M in Rn for some n∈N if and only if DimM<∞.

For the “if”-part note that the metric d of M can be written as d=(d2)1/2

with d2, too, being an ultrametric and that Dim(M,d2)=1
2 Dim(M,d)

<∞; hence, the assertion follows from Assouad’s result ([2, Proposition 1.30],
[4, Proposition 2.6]) mentioned in the second paragraph of the introduction.
Both versions of Assouad’s proof show that in the “if”-part n and an up-
per bound for the bi-Lipschitz constant of the embedding can be chosen to
depend only on a pair (C, s) of numbers for which M is (C, s)-homogeneous.

3.4. R e m a r k. The sufficiency part of Proposition 3.3 is not valid even
for compact spaces if the metric dimension Dim is replaced either by the
Hausdorff dimension dimH (cf. [7, (2.11)]) or by the upper fractal dimension
dimf in the sense of [15, p. 558] (called the upper box-counting dimension
in [7, (3.5)]). This amounts to the fact that DimM = ∞ implies neither
dimHM =∞ nor dimf M =∞ as we now establish.

Recall that for a metric space M we can define dimf M ∈ [0,∞] as
follows. If M = ∅, set dimf M = 0; if M is not totally bounded, set dimf M =
∞; otherwise, letting Nr(M) ∈ N for r > 0 be the smallest number of open
r-balls needed to cover M , set dimf M = lim supr→0 logNr(M)/log(1/r).
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We have dimHM ≤ DimM [3, Proposition 2] and dimHM ≤ dimf M
(cf. [7, (3.17)]) for all metric spaces M . By Proposition 3.5 below, dimf M ≤
DimM if M is bounded.

Now in [13, 4.12] it was shown that the compact ultrametric space
M = N ∪ {∞} with the metric defined by d(i, j) = 1/log(i+ 1) if i < j has
no bi-Lipschitz embedding into any Euclidean space although dimHM = 0
as M is countable. In fact, dimf M = ∞, and therefore there is not even
any embedding f : M → Rn, n ∈ N, with f−1|fM Hölder continuous; cf.
Example 3.6. More strongly, [15, Example 3.2] gives a compact ultrametric
space M homeomorphic to the Cantor set such that dimf M <∞ and such
that M is not bi-Lipschitz embeddable in Rn for any n ∈ N (see Example 3.6
for a countable example). This was established by showing dimmM =∞ for
the metric dimension dimm in the sense of [15, Definition 3.1]. The dimen-
sions dimm and Dim are easily seen to coincide for totally bounded metric
spaces. Proposition 3.3 is not, however, valid for dimm either, because for
arbitrary metric spaces M we only have the inequality dimmM ≤ DimM ,
and this assumes the form 0 <∞ if M is an infinite ultrametric space with
d(x, y) = 1 for x 6= y.

3.5. Proposition. If M is a bounded metric space, then dimf M ≤
DimM .

P r o o f. If M is nonempty and totally bounded, we can replace Nr(M)
in the definition of dimf M by N ′r(M) = max{cardY | Y ⊂ M , d(x, y) ≥ r
if x, y ∈ Y , x 6= y} as Nr(M) ≤ N ′r(M) ≤ Nr/2(M).

We may assume that b = diamM > 0 and DimM < ∞. Suppose M
to be (C, s)-homogeneous. Let r ∈ (0, b ]. If Y ⊂ M and d(x, y) ≥ r for
x, y ∈ Y , x 6= y, then cardY ≤ C(b/r)s. Thus, M is totally bounded and
N ′r(M) ≤ C(b/r)s. This implies dimf M ≤ s. Hence, dimf M ≤ DimM .

3.6. Example. It is an open problem to characterize the metric spaces,
or even the compact ultrametric ones, which are bi-Hölder embeddable in
Rn for some n ∈ N (cf. [5], [15]). We show that such spaces need not have
finite metric dimension and thus need not be bi-Lipschitz embeddable in Rn
for any n ∈ N.

Recall that a map f : M → N of metric spaces is called Hölder of expo-
nent α > 0 if d(f(x), f(y)) ≤ cd(x, y)α for all x, y ∈M with some c > 0. If, in
addition, the inverse of f on fM exists and is Hölder of exponent β > 0, we
call f bi-Hölder . Note that if M is compact and f : M → Rn an embedding
with f−1 Hölder of exponent α, then dimf M ≤ (1/α) dimf fM ≤ n/α <∞.
However, it is not known whether M can conversely be bi-Hölder embedded
in a Euclidean space if dimf M < ∞. In our example this is not possible
with an embedding f for which f is Hölder of exponent γ and f−1 Hölder
of exponent 1/γ for some γ > 0 as this implies Dim fM = (1/γ) DimM .
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Our example is a modification of an example in (a preliminary version
of) [5]. Thus, let M = N∪ {∞}, let α > 0, and endow M with the compact
ultrametric defined by d(i, j) = i−α if i < j. Then dimf M = 1/α. Define
an embedding f : M → R1 by f(i) = i−α for i < ∞ and f(∞) = 0. Let
β = α/(α + 1). Then there is c > 0 such that |f(i) − f(j)| ≤ d(i, j) ≤
c|f(i) − f(j)|β for all i, j ∈ M , and so f is bi-Hölder. The first inequality
is trivial, and the second inequality follows from the fact that if i, j ∈ M ,
i < j, and g(x) = (1 + x)−α, then

d(i, j)|f(i)− f(j)|−β ≤ i−α|i−α − (i+ 1)−α|−β
= i−α(1−β)(1− (1 + i−1)−α)−β

= ((g(0)− g(i−1))/i−1)−β = h(i) ≤ h(1)

as g′(x) < 0 < g′′(x) for x ≥ 0. Finally, to see that DimM =∞, let s > 0,
i ∈ N, and Y = {i, i+ 1, . . . , 2i+ 1}. Then note that (2i)−α ≤ d(j, k) ≤ i−α
if j, k ∈ Y , j 6= k, and that cardY/(i−α/(2i)−α)s = (i + 2)2−αs → ∞ as
i→∞.

3.7. Construction. We now turn to our main result. We first con-
struct for each n ∈ N a family {(Unk , %) | k ∈ N} of ultrametric spaces,
which will be shown to be universal for the category of ultrametric spaces M
with DimM < n and of bi-Lipschitz embeddings. Thus, fix n, k ∈ N. Let
L = 2k + 1 and A = {0, 1, . . . , k}n. Let ϕa: Rn → Rn for a ∈ A be the
similarity map x 7→ L−1(x + 2a). Let F be the family of axis-parallel
closed cubes Liϕa1 . . . ϕaj [0, 1]n in [0,∞)n with i ∈ N ∪ {0}, j ∈ N, and
a1, . . . , aj ∈ A. Then, letting rj = L−j for j ∈ Z and endowing Rn with
the box norm ‖x‖ = max{|x1|, . . . , |xn|}, it is clear that F has the following
properties:

1) if Fj = {F ∈ F | diamF = rj} for j ∈ Z, then F =
⋃
j∈Z Fj ;

2) dist(F, F ′) ≥ rj if j ∈ Z and F, F ′ ∈ Fj with F 6= F ′;
3) if j ∈ Z, then each F ∈ Fj+1 is contained in a unique cube h(F ) ∈ Fj ;
4) if j ∈ Z, then each F ∈ Fj contains exactly (k + 1)n cubes of Fj+1;

and
5) Fj = [0, rj ]n ∈ Fj for each j ∈ Z.

The third property defines a function h: F → F . Let U = Unk =⋂
j∈Z

⋃Fj ⊂ Rn. Then U is closed and perfect. Define an ultrametric %
on U by setting %(x, y) = rj for two distinct points x, y ∈ U if j is the
greatest integer for which x and y are in the same member of Fj . Then
‖x − y‖ ≤ %(x, y) ≤ L‖x − y‖ and thus |x − y|/√n ≤ %(x, y) ≤ L|x − y|.
Hence, % is bi-Lipschitz compatible.

We study U further, but the following properties of U are not really
needed later.
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We first show (U, ‖ · ‖) to be (C0, t)-homogeneous with C0 = (k + 1)2n

and t = n log(k + 1)/ log(2k + 1) < n. Thus, let 0 < a ≤ b, let Y ⊂ U ,
and let a ≤ ‖x − y‖ ≤ b if x, y ∈ Y and x 6= y. Choose i, j ∈ Z with
ri+1 < a ≤ ri and rj+1 ≤ b < rj ; then i ≥ j. Now each cube in Fi+1

contains at most one point of Y , and Y is contained in one cube of Fj .
Hence cardY ≤ (k + 1)n(i+1−j) = C0(rj+1/ri)t ≤ C0(b/a)t as needed.

It is also easily seen that Dim(U, ‖ · ‖) ≥ t. Alternatively, this follows
from the equality dimH U = t below. Hence, DimU = t. Note that t→ n as
k →∞. Obviously U is the union of countably many disjoint isometric copies
of the compact set U0 = U ∩F0, which is homeomorphic to the middle third
Cantor set and for n = k = 1 even coincides with it. Since {ϕaU0 | a ∈ A} is
a partition of U0, in the terminology of [7, p. 113], U0 is a self-similar fractal
invariant for the similarities ϕa with ratios L−1. Since cardA ·L−t = 1, from
[7, Theorem 9.3] we then conclude that dimH U0 = dimf U0 = t and that the
t-dimensional Hausdorff measure of U0 is positive and finite. Consequently,
dimH U = t.

3.8. Theorem. Let M be an ultrametric space and n ∈ N. If DimM < n,
then M is bi-Lipschitz embeddable in Rn. Conversely , if M is bi-Lipschitz
embeddable in Rn, then DimM ≤ n; in fact , M is n-homogeneous.

P r o o f. It suffices to prove the first part. Here it is reasonable not to use
terminology developed in Section 2 although the structure of ultrametric
spaces related there to inverse limits is pertinent also now. Choose s < n
and C > 0 such that M is (C, s)-homogeneous. Let k ∈ N be the smallest
number with C(2k + 1)s ≤ (k + 1)n. In Rn we use the constructions of 3.7
with this value of k. For j ∈ Z, let Bj be the partition of M by closed balls of
radius rj . Let B be the sum (i.e., disjoint union) of the family {Bj | j ∈ Z}.
Define a function g: B → B such that if j ∈ Z and B ∈ Bj+1, then g(B) is the
unique ball in Bj containing B. If B ∈ Bj and B′, B′′ ∈ Bj+1 with B′ 6= B′′,
then diamB ≤ rj and dist(B′, B′′) > rj+1, which implies card g−1(B) ≤
C(rj/rj+1)s = C(2k+ 1)s. Thus, card g−1(B) ≤ (k+ 1)n = cardh−1(F ) for
all B ∈ B and F ∈ F .

We construct an injection α: B → F such that αBj ⊂ Fj for each j ∈ Z
and such that hα = αg. Fix a point x0 ∈M (assuming M 6= ∅). For j ∈ Z let
Bj ∈ Bj be the ball with x0 ∈ Bj . Construct inductively subfamilies B∗0 ⊂
B∗1 ⊂ . . . of B by letting B∗0 = {Bj | j ∈ Z} and B∗i+1 =

⋃{g−1(B) | B ∈ B∗i }
for i ≥ 0. Then B =

⋃
i∈N B∗i . Now define α on B∗1 by letting α|g−1(Bj)

for each j ∈ Z be an arbitrary injection g−1(Bj) → h−1(Fj) which maps
Bj+1 to Fj+1. Suppose inductively that i ≥ 1 and α is defined on B∗i . Then
define α on B∗i+1 \ B∗i by letting α|g−1(B) for each B ∈ B∗i \ B∗i−1 be an
arbitrary injection g−1(B)→ h−1(α(B)). This procedure yields the desired
function α.
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Now we can define a function f : M → U (with f(x0) = 0) by setting
{f(x)} =

⋂{α(B) | x ∈ B ∈ B} for each x ∈ M . Consider x, y ∈ M with
x 6= y. Choose j ∈ Z with rj+1 < d(x, y) ≤ rj . Then x and y are in the
same member of Bj but in distinct members of Bj+1. Hence, f(x) and f(y)
are in the same member of Fj but in distinct members of Fj+1 implying
%(f(x), f(y)) = rj . It follows that 1 ≤ %(f(x), f(y))/d(x, y) ≤ rj/rj+1 = L
and thus that 1/L ≤ |f(x)− f(y)|/d(x, y) ≤ L

√
n. Hence, f : M → Rn is

L1-bi-Lipschitz with L1 = L
√
n depending only on (C, s, n).

3.9. Corollary. Every ultrametric space of finite metric dimension ad-
mits a bi-Hölder embedding in R1.

P r o o f. If DimM < s < ∞, then M ′ = (M,ds) is an ultrametric space
with DimM ′ = (1/s) DimM < 1; now compose the identity map M →M ′

with a bi-Lipschitz embedding M ′ → R1 provided by Theorem 3.8.

We say that an embedding between metric spaces is LIP if it is locally
bi-Lipschitz.

3.10. Lemma. Let n ∈ N, n ≥ 2. If M is a locally compact separable
metric space which locally can be bi-Lipschitz embedded in Rn, then there
is a closed LIP embedding f : M → Rn(n+1). This also holds if “locally
compact” and “closed” are omitted.

P r o o f. See [13, Remark 4.6] for the first part. For the second part, let
M∗ be the completion of M . If x ∈ M , choose an open neighborhood Ux
of x in M∗ with a bounded bi-Lipschitz embedding fx: Vx = Ux ∩M → Rn.
Then fx extends to a bi-Lipschitz homeomorphism f∗x : clM∗ Vx → cl fxVx.
Since Ux ⊂ clM∗ Vx, it follows that Ux is locally compact. Hence, if M ′ =⋃
x∈M Ux, then by the first part there is an LIP embedding f ′: M ′ →

Rn(n+1). Now f = f ′|M is the desired embedding.

By Lemma 3.10 we get the following consequence of Theorem 3.8.

3.11. Corollary. Let n ∈ N, n ≥ 2. If M is a separable ultrametric
space whose every point has a neighborhood of metric dimension < n, then
there is an LIP embedding f : M → Rn(n+1). If M is locally compact , f can
be chosen closed.

3.12. Example. Let n∈N. Then there is a compact ultrametric space M
with DimM = n but such that M is not n-homogeneous and consequently
has no bi-Lipschitz embedding in Rn. In fact, let A = {2k | k ∈ N}, let
Nj = 4n if j ∈ A and Nj = 2n if j ∈ N \A, let (Xj , gj)j∈N be an inverse se-
quence of finite discrete topological spaces and maps such that cardX1 = 1
and card g−1

j (x) = Nj for all j ∈ N and x ∈ Xj , let M = lim←(Xj , gj),
and endow M with the comparison ultrametric associated with the se-
quence (2−j)j∈N (see 2.1). Then for each s > n there is Cs > 0 such that
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∏p
i=0Nj+i ≤ Cs(2−j/2−j−p)s for all j ≥ 1 and p ≥ 0; this follows from the

estimate card(A ∩ [ j, j + p ]) ≤ log2(1 + p) + 1. However, as A is infinite,
the same is not true of s = n. It can now be shown that M is (Cs, s)-
homogeneous for each s > n but not n-homogeneous. Then DimM = n.

3.13. Example. If in Example 3.12 we choose Nj = 2n for each j ∈ N,
then M is a (2n, n)-homogeneous compact ultrametric space with DimM =
n. We conjecture that M cannot be bi-Lipschitz embedded in Rn and now
establish this conjecture for n = 1. In fact, we show that if n = 1, there is
no embedding f : M → R1 with f−1: fM →M a Lipschitz map.

Thus, suppose there is such an embedding f . Then we may assume that
|f(x)−f(y)| ≥ d(x, y) for all x, y ∈M . For k ∈ N, let Ik = {1, . . . , 2k}, let Ak
be the (nonempty) set of sequences x = (xi)i∈Ik in M with d(xi, xj) ≥ 2−k

if i 6= j, and let lk be the minimum of the finitely many numbers l(x) =∑2k

i=2 d(xi−1, xi) with x ∈ Ak. Choosing x ∈ Ak with f(x1) < . . . < f(x2k)
we get

diam fM ≥
2k∑

i=2

|f(xi−1)− f(xi)| ≥ l(x) ≥ lk .

Thus, it suffices to show lk = 1
2k as then fM cannot be bounded. Obviously,

each x ∈ Ak has a permutation y ∈ Ak such that if 1 ≤ j ≤ k, then
d(yi−1, yi) = 2−j for 2j−1 of the indexes i, which implies l(y) = 1

2k. It is
now enough to prove by induction that lk ≥ 1

2k.
This being obvious for k = 1, let k > 1 be such that lk−1 ≥ 1

2 (k − 1).
Consider x ∈ Ak. There is an increasing injection ϕ: Ik−1 → Ik with y =
(xϕ(i))i∈Ik−1 ∈ Ak−1. If 2 ≤ i ≤ 2k−1, then d(yi−1, yi) ≤ max{d(xj−1, xj) |
ϕ(i− 1) < j ≤ ϕ(i)}, and consequently,

2k−1∑

i=2

ϕ(i)∑

j=ϕ(i−1)+1

d(xj−1, xj) ≥
2k−1∑

i=2

(d(yi−1, yi) + (ϕ(i)− ϕ(i− 1)− 1)2−k)

= l(y) + (ϕ(2k−1)− ϕ(1)− 2k−1 + 1)2−k .

Moreover,
ϕ(1)∑

j=2

d(xj−1, xj) +
2k∑

j=ϕ(2k−1)+1

d(xj−1, xj) ≥ (ϕ(1)− 1 + 2k − ϕ(2k−1))2−k.

Hence, l(x) ≥ l(y) + 2k−12−k ≥ lk−1 + 1
2 ≥ 1

2k. It follows that lk ≥ 1
2k.

3.14. Conjecture. If n ∈ N and M is an n-homogeneous ultrametric
space with DimM = n, there is no bi-Lipschitz embedding f : M → Rn.

The conjecture is equivalent to the claim that an ultrametric space M
can be bi-Lipschitz embedded in Rn only if DimM < n. In the conjecture we
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may clearly assume M to be complete. In seeking more examples (for n ≥ 2)
to support or counterexamples to refute the conjecture, the results of the
second author [16] about compact metric spaces bi-Lipschitz homeomorphic
to an ultrametric space might be useful. For instance, we must disregard
the counterexample candidate M = {0, 1, 1

2 ,
1
3 , . . .} ⊂ R1 with DimM = 1

(cf. Example 3.6) as M has no bi-Lipschitz compatible ultrametric by [16,
Proposition 2.14]. Let us mention that, on the other hand, M gives an
example of a compact space for which DimM is finite but different from
dimf M = 1

2 [7, Example 3.5].
To establish Conjecture 3.14 for infinite compact spaces we may assume

them to have only one cluster point:

3.15. Proposition. Each infinite compact metric space M contains a
countable closed subset A with a unique cluster point for which DimA =
DimM .

P r o o f. We may assume s = DimM > 0. By the last of the basic
properties after Definition 3.2, there is a point x0 ∈M such that DimU = s
for each neighborhood U of x0. Choose a sequence sj ∈ (0, s) with sj → s.
Then for each j ∈ N there are numbers 0 < aj ≤ bj and a finite set Yj ⊂
B(x0, 1/j) such that aj ≤ d(x, y) ≤ bj whenever x, y ∈ Yj , x 6= y, and such
that cardYj > j(bj/aj)sj . It is easy to see that A = {x0} ∪

⋃
j∈N Yj is the

desired set.

Added in proof (September 1993). Assouad’s conjecture in the Introduction does not
hold; this has been shown by Stephen Semmes in his manuscript Bilipschitz embeddings
of metric spaces into Euclidean spaces. Conjecture 3.14 has been confirmed by Kerkko
Luosto.
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