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Accessibility of typical points for invariant measures
of positive Lyapunov exponents for iterations

of holomorphic maps

by

F. P r z y t y c k i (Warszawa)

Abstract. We prove that if A is the basin of immediate attraction to a periodic
attracting or parabolic point for a rational map f on the Riemann sphere, ifA is completely
invariant (i.e. f−1(A) = A), and if µ is an arbitrary f -invariant measure with positive
Lyapunov exponents on ∂A, then µ-almost every point q ∈ ∂A is accessible along a curve
from A. In fact, we prove the accessibility of every “good” q, i.e. one for which “small
neighbourhoods arrive at large scale” under iteration of f .

This generalizes the Douady–Eremenko–Levin–Petersen theorem on the accessibility
of periodic sources.

We prove a general “tree” version of this theorem. This allows us to deduce that on the
limit set of a geometric coding tree (in particular, on the whole Julia set), if the diameters
of the edges converge to 0 uniformly as the generation number tends to ∞, then every
f -invariant probability ergodic measure with positive Lyapunov exponent is the image,
via coding with the help of the tree, of an invariant measure on the full one-sided shift
space.

The assumption that f is holomorphic on A, or on the domain U of the tree, can be
relaxed and one need not assume that f extends beyond A or U .

Finally, we prove that if f is polynomial-like on a neighbourhood of C \A, then every
“good” q ∈ ∂A is accessible along an external ray.

Introduction. Let f : C→ C be a rational map of the Riemann sphere
C. Let J(f) denote its Julia set. We say a periodic point p of period m is
attracting (a sink) if |(fm)′(p)| < 1, repelling (a source) if |(fm)′(p)| > 1 and
parabolic if (fm)′(p) is a root of unity. We say that A = Ap is an immediate
basin of attraction to a sink or a parabolic point p if A is a component of
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C \ J(f) such that fnm|A → p as n → ∞ and p ∈ Ap for p attracting, and
p ∈ ∂A for p parabolic.

We call q ∈ ∂A good if there exist real numbers r > 0, κ > 0, δ with
0 < δ < r and an integer ∆ > 0 such that for every n large enough,

(0.0) ]{good times}/n ≥ κ .
We call here n (0 ≤ n ≤ n) a good time if for each 0 ≤ l ≤ n − ∆ the
component Bn̄,l of f−(n̄−l)(B(f n̄(q), r)) containing f l(q) satisfies

(0.1) Bn̄,l ⊂ B(f l(q), r − δ) .
In the definition of good q we also assume that

(0.2) lim
n̄→∞

diamBn̄,0 → 0

with lim taken over good n’s.
Finally, in the definition of good q we assume that for each good n,

(0.3) f−n̄(A) ∩Bn̄,0 ⊂ A .
We shall prove the following

Theorem A. Every good q ∈ ∂A is accessible from A, i.e. there exists a
continuous curve γ : [0, 1]→ C such that γ([0, 1)) ⊂ A and γ(1) = q.

Theorem A generalizes the Douady–Eremenko–Levin–Petersen theorem
on the accessibility of periodic sources. Note that in the case of periodic
sources one obtains curves of finite lengths along which a periodic q is ac-
cessible (see Section 1). Condition (0.1) holds for all n’s in the case where q
is a periodic source. Condition (0.3) is true if A is the basin of attraction to
∞ for f a polynomial, and more generally if A is completely invariant, i.e.
f−1(A) = A.

Condition (0.3) in the case of a source is equivalent to Petersen’s condi-
tion [Pe].

Under the assumption of the complete invariance of A, µ-almost every
point (for µ an invariant probability measure with positive Lyapunov expo-
nents) is good, hence accessible (cf. Corollary 0.2).

In fact, we shall introduce in Section 2 a weaker definition of good q
and prove Theorem A with that weaker definition. In that weaker definition
parabolic periodic points in ∂A are good. The traces of telescopes built
there can sit in an arbitrary interpetal, so one obtains the accessibility in
each interpetal. One obtains in particular Theorem 18.9 of [Mi1].

Note that the above conditions of being good are already quite weak. In
particular, we do not exclude critical points in Bn̄,l.

For example, every point in ∂A is good if A is the basin of attraction to
∞ for a polynomial z 7→ z2 + c which is non-renormalizable, with c outside
the “cardioid”. This is Yoccoz–Branner–Hubbard theory (see [Mi2]). (In this
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case, however, Theorem A is worthless because one proves directly the local
connectedness of ∂A, in particular one proves the existence of an infinite
telescope.)

Note that complete invariance of A, the basin of attraction to a sink,
does not imply that f is polynomial-like on a neighbourhood of C \ A.
(Polynomial-like maps were first defined and studied in [DH].) In [P4] an
example of degree 3 is described, of the form z → z2 + c + b

z−a , with a
completely invariant basin of attraction to ∞, not simply connected, with
only 2 critical points in the basin.

We prove in the present paper a theorem more general than Theorem A,
namely a theorem on the accessibility along branches of a geometric coding
tree. We now recall basic definitions from [P1, P2, PUZ, PS].

Let U be an open connected subset of the Riemann sphere C. Consider
any holomorphic mapping f : U → C such that f(U) ⊃ U and f : U → f(U)
is a proper map. Write Crit f = {z : f ′(z) = 0}. This is the set of critical
points for f . Suppose that Crit f is finite. Consider any z ∈ f(U). Let
z1, . . . , zd be all the f -preimages of z in U where d = deg f ≥ 2. (We
emphasize that we consider here, in contrast to other papers, only the full
tree, i.e. not just some preimages but all preimages of z in U .)

Consider smooth curves γj : [0, 1] → f(U), j = 1, . . . , d, joining z and
zj (i.e. γj(0) = z, γj(1) = zj), such that there are no critical values for
iterations of f in

⋃d
j=1 γ

j , i.e. γj ∩ fn(Crit f) = ∅ for every j and n > 0. We
allow self-intersections of each γj .

Let Σd := {1, . . . , d}Z+
denote the one-sided shift space and σ the shift

to the left, i.e. σ((αn)) = (αn+1). We consider the standard metric on Σd,

%((αn), (βn)) = exp(−k((αn), (βn))) ,

where k((αn), (βn)) is the least integer for which αk 6= βk.
For every sequence α = (αn)∞n=0 ∈ Σd we define γ0(α) := γα0 . Suppose

that for some n ≥ 0, for every 0 ≤ m ≤ n, and all α ∈ Σd, the curves γm(α)
are already defined. Suppose that for 1 ≤ m ≤ n we have f ◦ γm(α) =
γm−1(σ(α)), and γm(α)(0) = γm−1(α)(1).

Define the curves γn+1(α) so that the previous equalities hold by taking
suitable components of the f -preimages of the curves γn. For every α ∈ Σd

and n ≥ 0 define zn(α) := γn(α)(1).
For every n ≥ 0 denote by Σn = Σd

n the space of all sequences of
elements of {1, . . . , d} of length n + 1. Let πn denote the projection πn :
Σd → Σn defined by πn(α) = (α0, . . . , αn). As zn(α) and γn(α) depend
only on (α0, . . . , αn), we can consider zn and γn as functions on Σn.

The graph T = T (z, γ1, . . . , γd) with vertices z and zn(α) and edges
γn(α) for all n ≥ 0 is called a geometric coding tree with root at z. For
every α ∈ Σd the subgraph composed of z, zn(α) and γn(α) for all n ≥ 0
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is called a geometric branch and denoted by b(α). The branch b(α) is called
convergent if the sequence γn(α) converges to a point in clU . We define the
coding map z∞ : D(z∞) → clU by z∞(α) := limn→∞ zn(α) on the domain
D = D(z∞) of all α’s for which b(α) is convergent.

In Sections 1–3, for any curve (maybe with self-intersections) γ : I → C
where I is a closed interval in R, we call γ restricted to any subinterval of
I (maybe degenerate) a part of γ. Consider now γ on J1 ⊂ [0, 1] and γ′ on
J2 ⊂ [0, 1] with either both γ and γ′ being parts of one γn(α), J1∩J2 = ∅, J1

between 0 and J2 , or γ a part of γn1(α) and γ′ a part of γn2(α) where n1 <
n2. Let Γ : [0, n2 − n1 + 1]→ C be the concatenation of γn1 , γn1+1, . . . , γn2 .
We call the restriction of Γ to the convex hull of J1 ⊂ [0, 1] and J2 ⊂
[n2 − n1, n2 − n1 + 1] (we identified here [0, 1] with [n2 − n1, n2 − n1 + 1])
the part of b(α) between γ and γ′ .

For every continuous map F : X → X of a compact space X denote
by M(F ) the set of all probability F -invariant measures on X. In the case
where X is a compact subset of the Riemann sphere C and the map F
extends holomorphically to a neighbourhood of X and µ ∈ M(F ) we can
consider, for µ-a.e. x, the Lyapunov characteristic exponent

χ(F, x) = lim
n→∞

1
n

log |(Fn)′(x)|

(derivative in the standard spherical metric on C).
If µ is ergodic then for µ-a.e. x,

χ(F, x) = χµ(F ) =
∫

log |F ′| dµ .
Since in this paper we discuss properties of µ-a.e. point, it is enough

to consider only ergodic measures, because by the Rokhlin Decomposition
Theorem every µ ∈M(F ) can be decomposed into ergodic measures.

Define

Mχ+
e (F ) = {µ ∈M(F ) : µ ergodic, χµ(F ) > 0} ,

Mh+
e (F ) = {µ ∈M(F ) : µ ergodic, hµ(F ) > 0} ,

where hµ denotes measure-theoretic entropy.
From the Ruelle Theorem it follows that hµ(F ) ≤ 2χµ(F ) (see [R]), so

Mh+
e (F ) ⊂Mχ+

e (F ).
The basic theorem concerning convergence of geometric coding trees is

the following:

Convergence Theorem. 1. Every branch, except branches in a set of
Hausdorff dimension 0 in the metric % on Σd, is convergent (i.e. HD(Σd \
D) = 0). In particular , for every ν ∈ Mh+

e (σ) we have ν(Σd \ D) = 0, so
the measure (z∞)∗(ν) makes sense.
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2. For every z ∈ clU , HD(z−1
∞ ({z})) = 0. Hence for every ν ∈ M(σ)

we have hνϕ(σ) = h(z∞)∗(νϕ)(f) > 0 (provided we assume that there exists a
continuous extension f of f to clU).

The proof of this theorem can be found in [P1] and [P2] under some
assumptions on slow convergence of fn(Crit f) to γj as n→∞, and in [PS]
in full generality (even with fn(Crit f) ∩ γj 6= ∅ allowed).

Let Λ̂ ⊂ clU denote the set of all limit points of f−n(z), n → ∞.
Analogously to the case q ∈ ∂A we say that q ∈ Λ̂ is good if f extends
holomorphically to a neighbourhood of {fn(q) : n = 0, 1, . . .} (we use the
same symbol f to denote the extension) and conditions (0.0′), (0.1′), (0.2′)
and (0.3′) hold. These are defined similarly to (0.0)–(0.3), with A replaced
by U and ∂A replaced by Λ̂.

Again recall that we shall give a precise weaker definition of q good in
Section 2 and prove Theorem B with that weaker definition. That definition
will not require extending f beyond U .

Theorem B. Let f : U → C be a holomorphic mapping and T be a
geometric coding tree in U as above. Suppose

(0.4) diam γn(α)→ 0 as n→∞
uniformly in α∈Σd. Then each good q∈ Λ̂ is the limit point of a branch b(α).

Using a lemma belonging to Pesin’s theory (see Section 2) we prove that
µ-a.e. q is good and easily obtain the following

Corollary 0.1. Let f : U → C be a holomorphic mapping and T
be a geometric coding tree in U such that condition (0.4) holds. If µ is a
probability measure on Λ̂ and the map f extends holomorphically from U
to a neighbourhood of suppµ so that µ ∈ Mχ+

e (f), then for µ-almost every
q ∈ Λ̂ satisfying (0.3′) there exists α ∈ Σd such that b(α) converges to q. In
particular , every µ such that µ-a.e. q satisfies (0.3′) is the (z∞)∗-image of
a measure m ∈M(σ) on Σd.

Note that Corollary 0.1 concerns in particular every µ with hµ(f) > 0.
Assuming that f extends holomorphically to a neighbourhood of Λ̂ and
referring also to the Convergence Theorem we see that (z∞)∗ maps Mh+

e (σ)
onto Mh+

e (f |Λ̂) preserving entropy.
The question whether this correspondence is onto is stated in [P3]. Thus

Corollary 0.1 answers this question in the affirmative under the additional
assumptions (0.3′) and (0.4).

We do not know whether this correspondence is finite-to-one except for
measures supported by orbits of periodic sources for which the answer is
positive (see Proposition 1.2).
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Two special cases are of particular interest. The first one corresponds to
Theorem A:

Corollary 0.2. Let f : C → C be a rational mapping and A be a
completely invariant basin of attraction to a sink or a parabolic point. Then
for every µ ∈Mχ+

e (f |∂A), µ-a.e. q ∈ ∂A is accessible from A.

Corollary 0.3. Let f : C → C be a rational mapping , deg f = d,
and T = T (z, γ1, . . . , γd) be a geometric coding tree. Assume (0.4). Let
µ ∈Mχ+

e (f). Then for µ-a.e. q there exists α ∈ Σd such that b(α) converges
to q.

In Theorem A and Corollary 0.2, in the case of f being a polynomial
(or a polynomial-like map) and A the basin of attraction to∞, accessibility
of a point along a curve often automatically implies accessibility along an
external ray. For A simply connected this follows from Lindelöf’s Theorem.
External rays are defined as the images under the standard Riemann map
of rays tζ, ζ ∈ ∂D, 1 < t <∞.

If A is not simply connected one should first define external rays in
the absence of the Riemann map. This is done in [GM] and [LevS] for f a
polynomial, and in [LevP] in the polynomial-like situation. We recall these
definitions in Section 3.

In Section 3, we prove the following

Theorem C. Let W1 ⊂W be open, connected , simply connected domains
in C such that clW1 ⊂ W , and let f : W1 → W be a polynomial-like map.
Define K =

⋂
n≥0 f

−n(W ). Then every good q ∈ ∂K is accessible along an
external ray in W \K.

An alternative way to prove accessibility along an external ray is to
use Lindelöf’s Theorem somehow, as in the simply connected case. This is
performed in [LevP]. It is proved there that if q is accessible along a curve
in W \K and q belongs to a periodic or preperiodic component K(q) of K
then it is accessible along an external ray.

Note also that for every q ∈ ∂K, if K(q) is one point then q is accessible
along an external ray. This is easy (see [GM, Appendix] and [LevP]).

R e m a r k 0.4 (Proof of Theorem A from B and Corollary 0.2 from 0.1).
We do not know how to get rid of the assumption (0.4) in Theorem B and
Corollary 0.1. In Theorem A and Corollary 0.2 this condition is guaranteed
automatically. More precisely, to deduce Theorem A from B and Corol-
lary 0.2 from 0.1 we consider an arbitrary tree T = T (z, γ1, . . . , γd) in A,
where d = deg f |A, so that γj ∩⋃n>0 f

n(Crit f) = ∅ and p 6∈ ⋃dj=1 γ
j . Only

critical points in A count here. The forward orbits of these critical points
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converge to p, hence the following condition holds:

(0.5)
( d⋃

j=1

γj
)
∩ cl

⋃
n>0

fn(Crit f) = ∅ .

Hence we can take open discs U j ⊃ γj such that
d⋃

j=1

U j ∩ cl
⋃
n>0

fn(Crit f) = ∅

and consider univalent branches Fn(α) of f−n mapping a suitable γj to
γn(α). {Fn(α)}α,n is a normal family of maps. If it had a non-constant limit
function G then we would find an open domain V ⊂ U in the range of G
such that fnt(V ) ⊂ U j for an integer j, as nt → ∞. On the other hand,
fnt(V )→ p. If we assumed p 6∈ U j we would arrive at a contradiction. This
proves (0.4). Finally, by the complete invariance of A every q ∈ Λ̂ satisfies
(0.3) and we have Λ̂ = ∂A.

In Corollary 0.3, to find T such that (0.4) holds it is enough to assume
that the forward limit set of fn(Crit f) does not dissect C, because then we
find T so that (0.5) holds, which easily implies (0.4).

We believe, however, that in the proof of Corollary 3 one can omit (0.4),
or maybe often find a tree such that (0.4) holds.

R e m a r k 0.5. Observe that there are examples where (0.4) does not
hold. Take for example z in a Siegel disc or z being just a sink. Even if
J(f) = C one should be careful: for M. Herman’s examples

z 7→ λz
z − a
1− az

/
z − b
1− bz , |λ| = 1, a 6= 0 6= b, a ≈ b

(see [H1]), the unit circle is invariant and for a branch in it (0.4) fails. These
examples are related to the notion of neutral sets (see [GPS]).

R e m a r k 0.6. The assumption that f is holomorphic on U (or A) can
be replaced by the assumption that f is just a continuous map, a branched
cover over f(U) ⊃ U .

However, without the holomorphy of f we do not know how the assump-
tion (0.4) could be verified.

R e m a r k 0.7. The fact that in, say, Theorem A we do not need to
assume that f extends holomorphically beyond the basin A suggests that
maybe the assumption (0.3) is substantial and without it the accessibility
in Theorem A is not true. We have in mind here the analogous situation
of a Siegel disc with boundary not simply connected, where the map is
only smooth beyond it (see [H2]). Accessibility of periodic sources in the
boundary of A in the absence of the assumption (0.3) is a famous open
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problem and we think that if the answer is positive one should substantially
use in the proof the holomorphy of f outside A.

The paper is organized as follows: in Section 1 we prove Theorem B for
q a periodic source, in Section 2 we deal with the general case. The case
of sources was known in the polynomial-like and parabolic situations ([D],
[EL], [Pe]). The general case contains the case of sources but it is more
tricky (though not more complicated) so we decided to separate the case
of sources to make the paper more understandable. Section 3 is devoted to
Theorem C.

1. Accessibility of periodic sources

Theorem D. Let f : U → C be a holomorphic map and T (z, γ1, . . . , γd)
be a geometric coding tree in U , with d = deg f |U . Assume (0.4). Next
assume that f extends holomorphically to a neighbourhood of a family of
points q0, . . . , qn−1 ∈ Λ̂ in such a way that this family is a periodic repelling
orbit of period n for this extension (the extension is also denoted by f).

Assume finally that there exists a neighbourhood V of q = q0 on which
fn is linearizable and if F is its inverse on V such that F (q) = q then

(1.1) F (V ∩ U) ⊂ U .
Then there exists a periodic α ∈ Σd such that b(α) converges to q. More-

over , the convergence is exponential , in particular the curve which is the
body of b(α) is of finite length.

P r o o f. As usual, we can suppose that q is a fixed point by passing to
the iterate fn if n > 1.

Assume that q 6= z. We shall deal with the case q = z later.
Let h denote a linearizing map, i.e. h conjugates f on a neighbourhood

of clV to z → λz with λ = f ′(q), and maps q to 0 ∈ C.
Replace if necessary the set V by a smaller neighbourhood of q so that

z 6∈ V and ∂V = h−1 exp({<ξ = a}) for a constant a ∈ R.
For every set K ⊂ (clV )\{q} consider its diameter in the radial direction

(with origin at q) in the logarithmic scale, i.e. the diameter of the projection
of the set log h(K) to the real axis. This will be denoted by diam< log K.

For every m ≥ 0 write

Rm := h−1 exp({ζ ∈ C : a− (m+ 1) log |λ| < <ζ < a−m log |λ|})
and

Vm := h−1 exp({ζ ∈ C : <ζ < a−m log |λ|}) .
Observe the following important property of γn(w)’s, n ≥ 0, w ∈ Σd:
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For every ε > 0 there exists N(ε) such that if a component γ of γn(w)∩
Rm satisfies

(1.2) diam< log γ > ε log |λ| and zn(w) ∈ Vm
then

(1.3) 0 ≤ n−m < N(ε) .

Indeed, by (1.2) for every t = 0, 1, . . . ,m we have f t(zn(w)) ∈ Vm−t so
f t(zn(w)) 6= z. Hence n ≥ m. On the other hand, we have

ε ≤ diam< log γ = diam< log f
m(γ) ≤ Const diam fm(γ) .

So from (0.4) and from the estimate diamfm(γn(w)) = diam γn−m(σm(w))
≥ ε, we deduce that n−m is bounded by a constant depending only on ε.
This proves (1.3).

Fix topological discs U1, . . . , Ud which are neighbourhoods of γ1, . . . , γd

respectively such that
⋃N(ε)
i=1 f i(Crit f) ∩ U j = ∅ for every j = 1, . . . , d.

(There is a minor inaccuracy here because this concerns the case where
the curves γj are embedded. If they have self-intersections we should cover
them by families of small discs and later lift them by branches of f−t one
by one along each curve.)

For every γ which is part of γn(w) satisfying (1.2) we can consider

W1 = Fn−(m−1)(σ
m−1(w))(U j) ,

which is a neighbourhood of fm−1(γn(w)). We have used here the notation
Ft(v) for the branch of f−t mapping γj to γt(v), v ∈ Σd. Here j = vt.

Next consider the component W2 of W1 ∩ V containing fm−1(γ). Using
Koebe’s Bounded Distortion Theorem we can find a disc

(1.4) W (γ) = B(x,Const ελ−m)

in Fm−1(W2) with x ∈ γ such that fn maps W (γ) univalently into U j . We
take Const such that

(1.5) diam< log W (γ) < 1
2 log |λ| .

(Note that this part is easier if (0.5) is assumed. Then we just consider U j ’s
disjoint from cl

⋃∞
n=1 f

n(Crit f).)
By the definition of Λ̂ there exist n0 ≥ 0 and α ∈ Σd such that γn0(α)∩

V 6= ∅ . By (1.1) there exist β1, β2, . . . in {1, . . . , d} such that for each k ≥ 0
we have

F k(b(α)) = b(βk, βk−1, . . . , β1, α) .

More precisely, we consider an arbitrary component γ̂ of γn0(α) ∩ V and
extend F k from it holomorphically along b(α).

Denote for abbreviation the concatenation βkβk−1 . . . β1α by k]α.
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Denote also F k(γ̂) by γ̂k] and the part of γn0+k(k]α) between γ̂k] and
zn0+k−1(k]α) by γk].

For each k ≥ 0 denote by Nk the set of all pairs of integers (t,m) such
that 0 ≤ t ≤ k + n0, 0 < m < k and either γt(k]α) satisfies (1.2) for γ a
part of γt(k]α) if t < k + n0, or γt(k]α) satisfies (1.2) except that we do
not assume zt(k]α) ∈ Vm for γ a part of γk] if t = k + n0. Additionally we
assume

(1.6) {the part of b(α) between γ and γ̂k]} ⊂ Vm .
We write in this case W (γ) = Wk,t,m and γ = γk,t,m. Figure 1 illustrates

our definitions.

Fig. 1

We now have two possibilities:

1. For every k2 > k1 ≥ 0, 0 < m1 < k1, 0 < m2 < k2 and 0 ≤ T ≤ k1+n0

such that (T,m1) ∈ Nk1 , (T,m2) ∈ Nk2 , if there is equality of the T th entries
(k1]α)T = (k2]α)T , then

Wk1,T,m1 ∩Wk2,T,m2 = ∅ .
(Equality of the T th entries means that fT (Wk1,T,m1), fT (Wk2,T,m2) are in
the same U j .)

2. Case 1 does not hold, which obviously implies the existence of T and
the other integers as above such that πT (k1]α) = πT (k2]α) (i.e. the blocks
of k1]α and k2]α from 0 to T are the same).

Later we shall prove that case 1 leads to a contradiction. Now we prove
that case 2 allows us to find a periodic branch converging to q, which proves
our theorem.
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Define K = k2 − k1. Recall that

πT (σK(k2]α)) = πT (k1]α) = πT (k2]α) .

Denote k2]α by ϑ. By the above we get

fK(zT+K(ϑ)) = zT (ϑ) .

Writing this with the help of F which is the inverse of f on V so that F (q) =
q we have FK(zT (ϑ)) = zT+K(ϑ). We also know that γ :=

⋃T+K
t=T+1 γt(ϑ),

which is a curve joining zT (ϑ) and zT+K(ϑ), is contained in V by (1.6).
Hence the curve Γ :=

⋃
n≥0 F

nK(γ) is the body of the part starting from
the T th vertex of the periodic branch (ϑ0, . . . , ϑK−1, ϑ0, . . . , ϑK−1, ϑ0, . . .).

To finish the proof of Theorem D we should now eliminate the disjoint-
ness case 1. We just prove there is not enough room for that case to hold.

For every k ≥ 0 define

A+
k := {m : 0 < m < k, there exists t such that (t,m) ∈ Nk} .

Let A−k := {1, . . . , k − 1} \A+
k .

As γk+n0(k]α) intersects Vk (at γ̂k]), each Rm, 0 < m ≤ k − 1, is fully
intersected by the curve built from the components γ of the intersection of
Rm with the curves γt(k]α), t = 0, . . . , k+ n0 − 1, and γk] such that (1.6) is
satisfied.

For each such γ, diam< log γ < ε log λ so to cross Rm one needs at least
[ε−1]+1 edges γt(k]α) (where γk+n0(k]α) means γk]). We have only k+n0+1
edges at our disposal so

]A−k ε
−1 ≤ 2(k + n0 + 1) .

The coefficient 2 accounts for the possibility that one γ intersects Rm
and Rm+1, where m,m + 1 ∈ A−k (it cannot intersect more than two Rm’s
because diam< log γ < ε).

Hence

]A−k ≤ 2(k + n0 + 1)ε .

So

(1.7) ]A+
k ≥ k − 2(k + n0 + 1)ε− 1 ≥ k(1− 3ε)

for k large enough.
From now on, fix ε = 1/4. Fix an arbitrarily large k0. Let

N+ =
⋃

0≤k≤k0

{(k, (t,m)) : (t,m) ∈ Nk} .

Observe that each point ξ ∈ V belongs to at most

(1.8) 4dN(1/4)

sets W (k, t,m) where (k, (t,m)) ∈ N+.
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Indeed, if W (k1, t1,m1)∩W (k2, t2,m2) 6= ∅ then |m1−m2| ≤ 1 by (1.5),
and by (1.3) we have

|mi − ti| < N(1/4), i = 1, 2 ,

hence

|t1 − t2| < 2N(1/4) .

(If ti = ki + n0 for i = 1 or 2 we cannot in fact refer to (1.3). The trouble
is with its n−m > 0 part, because we do not know whether zki+n0 ∈ Vmi .
But then directly mi < ki ≤ ti.)

But we assumed (this is our case 1) that for any fixed t, m and j all
the sets W (k, t,m) with the tth entry of k]α equal to j, and k varying, are
pairwise disjoint. This finishes the proof of the estimate (1.8).

The conclusion from (1.8) and (1.4) is that because of lack of room,
]N+ < Const k0.

On the other hand, (1.7) gives

]N+ ≥
k0∑

k=0

]A+
k ≥ k2

0(1− 3ε) .

We have arrived at a contradiction for ε = 1/4 and k0 large enough.
The disjointness case 1 is eliminated. Theorem D in the case z 6= q is

proved.
Consider the case z = q. Then, unless γj ≡ q in which case the assertion

is trivial, the role of z in the above proof can be played by arbitrary wj ∈
γj \ {q}. Formally on the level 0 we now have d2 curves joining each wj to
the preimages of wi in γ1((j, i)).

R e m a r k 1.1. Under the assumption z 6= q and moreover q 6∈ ⋃dj=1 γ
j

(which is the case when we apply Theorem B to prove Theorem A) observe
that there exists a constant M such that for every n ≥ 0 and ϑ ∈ Σd we
have diam< log γn(ϑ) < M .

Indeed, let m = m1 ≥ 0 be the smallest integer such that γn(ϑ) intersects
Rm and let m2 be the largest one. Suppose that m2−m1 > 1. Then by (1.3),
n < m1 + 1 +N(1) and m2 ≤ n. (The role of zn(ϑ) in the proof of this part
of (1.3) is played by Vm2 ∩ γn(ϑ).) Thus m2 −m1 ≤ N(1).

This observation allows one to modify (simplify) slightly the proof of
Theorem B. One does not need (1.6) then.

Proposition 1.2. Every branch b(α) converging to a periodic source q
is periodic (i.e. α is periodic). There are only a finite number of α’s such
that b(α) converges to q.

P r o o f. Suppose z 6= q and b(α) converges to q. Take a neighbourhood
V of q, arbitrarily small. Then the constant n0 (see the proof of Theorem D)
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will depend on it. However, the above proof shows that

πT (k1]α) = πT (k2]α)

for k1 − k2 bounded by a constant independent of n0. Observe also that
z 6= q implies that T → ∞ as V shrinks to q. So there exists a finite block
of symbols β such that α = βββ . . . βα′ (α′ infinite) with arbitrarily many
β’s. So α is periodic. This consideration also gives a bound for the period of
α, hence it proves finiteness of the set of α’s with b(α) converging to q.

Note that with some additional effort we could obtain an estimate for
the number of branches converging to q. For q in the boundary of the basin
of attraction to a sink this estimate should give the so-called Pommerenke–
Levin–Yoccoz inequality (see for example [Pe]).

2. Theorem B and Corollary 0.1. Given a holomorphic map f :
U → C and T = T (z, γ1, . . . , γd) a geometric coding tree in U as in the
introduction we shall give a more general definition of q ∈ Λ̂ being good.

Let us start with some preliminary definitions:

Definition 2.1. D ⊂ U is called n0-significant if there exist α ∈ Σd

and 0 ≤ n ≤ n0 such that γn(α) ∩D 6= ∅.
Definition 2.2. For every δ, κ > 0 and integer k > 0 a pair of sequences

(Dt)t=0,1,...,k and (Dt,t−1)t=1,...,k is called a telescope or a (δ, κ, k)-telescope
if each Dt is an open connected subset of U , there exists a strictly increasing
sequence of integers 0 = n0, n1, . . . , nk such that each Dt,t−1 is a nonempty
component of f−(nt−nt−1)(Dt) contained in Dt−1 (of course fnt−nt−1 can
have critical points in Dt,t−1),

(2.0) t/nt > κ for each t ,

and

(2.1) dist(∂ess
U Dt,t−1, ∂UDt−1) > δ .

Here the subscript U means the boundary in U , and the essential boundary
∂ess
U Dt,t−1 is defined as ∂UDt,t−1 \

⋃nt−nt−1
n=1 f−n(∂U).

Definition 2.3. A (δ, κ, k)-telescope is called n0-significant if Dk is
n0-significant.

Definition 2.4. For any (δ, κ, k)-telescope we can choose inductively
sets Dt,l, where l = t − 2, t − 3, . . . , 0, by taking Dt,l−1 to be a component
of f−(nl−nl−1)(Dt,l) in Dt−1,l−1. We call the sequence of the resulting sets

Dk,0 ⊂ Dk−1,0 ⊂ . . . ⊂ D1,0 ⊂ D0

the trace of the telescope.
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Definition 2.5. We call q ∈ Λ̂ good if there exist δ, κ > 0, an inte-
ger n0 ≥ 0 and a sequence of n0-significant (δ, κ, k)-telescopes Telk, k =
k1, k2, . . . → ∞, with traces Dk

k,0 ⊂ Dk
k−1,0 ⊂ . . . ⊂ Dk

0 respectively (we
add the superscript k to the notation of each object relative to the telescope
Telk) such that

(2.2) Dk
l,0 → q as l→∞ uniformly in k .

R e m a r k 2.6. If q ∈ Λ̂ is good in the sense of the introduction (i.e.
conditions (0.0′)–(0.3′) are satisfied) then it is of course good in the above
sense. Indeed, we choose each ∆’s good time and denote these times by
n0, n1, . . . ; of course then κ in (2.0) is κ/∆ for the old κ from (0.0).

For each k we define a telescope Telk by taking as Dk
k an arbitrary

n0-significant component of B(fnk(q), r)∩U . Such a component exists with
n0 depending only on r because the set of all vertices of the tree T is by
definition dense in Λ̂. Then inductively for each 0 ≤ t < k we choose as
Dk
t the component of B(fnt(q), r) ∩ U containing a component Dk

t+1,t of
f−(nt+1−nt)(Dk

t+1) (such a component Dk
t+1,t exists by (0.3′)). By (0.2′) any

choice of traces will be OK for (2.2).
Of course in the case of U = A, a basin of immediate attraction to a

sink or a parabolic point, one can build telescopes with Dk
t,l containing no

critical points, but there is no reason for that to be possible in general.

P r o o f o f T h e o r e m B. Let q ∈ Λ̂ be a good point according to
the definition above. Fix constants δ, κ and n0 and a sequence of (δ, κ, k)-
telescopes and their traces, k = 0, 1, . . . , as in Definition 2.5.

We can assume that z 6∈ Dk
0 or at least that each γj , j = 1, . . . , d, has a

point outside Dk
0 . If this is not so then either there exists l such that each

γj has a point outside Dk
l,0 for every k, in which case in the considerations

below we should consider m ≥ l rather than m > 0, or else there exists j
such that γj ≡ q, in which case obviously b(j, j, j, . . .) converges to q.

Denote Dk
m,0 \Dk

m+1,0 by Rkm for m = 0, 1, . . . , k − 1, and Dk
k,0 by Rkk.

These sets replace the annuli from Section 1.
Choose for each k a curve γn(k)(αk) for αk ∈ Σd and n(k) ≤ n0 inter-

secting Dk
k . Choose a part γ̂k of γn(k)(αk) in this intersection.

As in Section 1 there exists k]αk = βk0β
k
1 . . . β

k
nk
k
−1α

k ∈ Σd such that

γn(k)+nk
k
(k]αk) intersects Dk

k,0 and moreover it contains a part γ̂k] which is a

lift of γ̂k by fnk . Denote the part of γn(k)+nk
k
(k]αk) between zn(k)+nk

k
−1(k]αk)

and γ̂k] by γk].
Fix an integer E > 0 to be specified later.
Define Nk to be the set of pairs (t,m) such that 0 < m < k, 0 ≤ t ≤

nkk + n(k), there exist integers E1, E2 ≥ 0 with E1 + E2 < E such that
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γt+E2(k]αk) ∩ Rkm+1 6= ∅, γt−E1(k]αk) ∩ Rkm−1 6= ∅ and there exists a part
γ(t,m) of γt(k]αk) in Rkm, or of γk] if t = nkk + n(k), such that

(2.3) {the part of b(k]α) between γ(t,m) and γ̂k]} ⊂ Dk
m,0 ,

analogously to (1.6) (see Figure 2).

Fig. 2

We claim that analogously to the right hand inequality of (1.3), for
(t,m) ∈ Nk we have

(2.4) t ≤ nkm+1 + E +N(δ/E)

where N(ε) := sup{n: there exists α ∈ Σd such that diam γn(α) ≥ ε}. (The
number N(ε) is finite by (0.4).)

Indeed, denote by Γ the part of the concatenation of γl(k]αk), l = t −
E1, . . . , t+ E2, in Rkm joining Rkm−1 and Rkm+1. Suppose that t− E1 ≥ nkm
(otherwise the claim is proved). Then fn

k
m(Γ ) joins a point ξ ∈ ∂UDk

m+1,m
lying on the curve

fn
k
m(γt′(k]αk)) = γt′−nkm(σn

k
m(k]αk)), t− E1 ≤ t′ ≤ t+ E2 ,

to ∂UDk
m.

If ξ 6∈ ∂ess
U Dk

m+1,m, then

t′ < nkm+1 .

Indeed, otherwise there exists n ≤ nkm+1 such that fn(ξ) ∈ ∂U . This is
already outside U so the trajectory of ξ hits

⋃
γj before time nkm+1.

If ξ ∈ ∂ess
U Dk

m+1,m then by (2.1) at least one of the curves fn
k
m(γl(k]αk)),

t− E1 ≤ l ≤ t+ E2, has diameter not less than δ/E. Hence

l − nm ≤ N(δ/E) .

In both cases (2.4) is proved.
Define

A+
k := {m : 0 < m < k, there exists t such that (t,m) ∈ Nk}
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and

A−k := {1, . . . , k − 1} \A+
k .

As each set Rkm for m ∈ A−k is crossed by a part of b(k]αk) between γj for
some j and γ̂k] which consists of at least E edges and one edge cannot serve
for more than two Rkm’s we obtain, similarly to the inequality preceding
(1.7),

E · ]A−k ≤ 2(nkk + n(k) + 1) .

Hence using (2.0) we obtain

(2.5) ]A+
k ≥ k − 1− 2

E
(n(k) + nkk + 1) ≥ k

(
1− 3

Eκ

)
.

From now on, fix E > 3/κ and set η = 1− 3/(Eκ) > 0.
For every 0 < M ≤ k define

A+
k (M) := {m ∈ A+

k : m < M} .
We claim that there exists M0 > 0, not depending on k, such that for

every M ≥M0, M ∈ A+
k we have

(2.6) ]A+
k (M) ≥ ηM .

This means that the property (2.6), which is true for M = k (see (2.5)),
extends miraculously to all M ∈ A+

k large enough. The proof of this claim
is the same as for A+

k :
Indeed, M ∈ A+

k implies the existence of t such that (t,M) ∈ Nk. By
(2.3), t ≤ nkM+1 + E +N(δ/E). Next we estimate ]A+

k (M) just as we esti-
mated ]A+

k , with nkk+n(k)+1 replaced by nkM+1 +E+N(δ/E). We succeed
for all M large enough.

Now we can conclude our proof of Theorem B. Let Mn := ( 1
2η)−nM0.

By (2.6) for every k ≥ 0 and n ≥ 0 there exists m ∈ A+
k such that Mn ≤

m < Mn+1.
For each n = 0, 1, . . . there are only a finite number of blocks of symbols

of the form πt(k]nk) such that (t,m) ∈ Nk and m < Mn+1. This is so by
(2.4).

So there are constants t0 ≥ 0 and D0 ∈ Σt0 and an infinite set

K0 = {k ≥ 0 : there exists m such that

M0 ≤ m < M1, (t0,m) ∈ Nk, πt0(k]αk) = D0} .
In K0 we find an infinite K1 etc. by induction. For every n > 0 we obtain

infinite Kn ⊂ Kn−1 and constants tn, Dn such that

Kn = {k ∈ Kn−1 : there exists m such that

Mn ≤ m < Mn+1, (tn,m) ∈ Nk, πtn(k]αk) = Dn} .
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For α ∈ Σd such that πtn(α) = πtn(k]αk), we conclude that b(α) con-
verges to q.

We assumed here that tn → ∞ as n → ∞. If sup tn = t∗ < ∞ then
also Dn stabilizes at D∗ and by (2.3), zt∗(D∗) = q. Moreover, there exists
a sequence of integers j1, j2, . . . ∈ {1, . . . , d} such that γt(D∗, j1, j2, . . .) ≡ q
for all t ≥ t∗ so b(D∗, j1, j2, . . .) converges to q.

This is not an imaginary case. Consider a source f(q) = q ∈ U and a tree
T (q, γ1, γ2) such that γ1 ≡ q and γ2 joins q and q′ ∈ f−1(q), q 6= q′. Then
the above proof gives b(2, 1, 1, . . .), a branch for which γn((2, 1, 1, . . .)) ≡ q′

for every n ≥ 1.

R e m a r k 2.7. We needed in the above proof neither the left hand side
inequality (1.3): t ≥ m−Const for (t,m) ∈ Nk, nor the sets W (k, t,m). As
already mentioned in the introduction, no distortion estimates were needed,
i.e. no holomorphy. The holomorphy of f is useful only to verify (0.4).

P r o o f o f C o r o l l a r y 0.1. This follows immediately from Theorem B
and the following fact belonging to Pesin’s theory:

Let X be a compact subset of C and F be a holomorphic mapping of a
neighbourhood of X such that F (X) = X. Let µ ∈ Mχ+

e (F ). Let (X̃, F̃ , µ̃)
be a natural extension (inverse limit) of (X,F, µ). Denote π : X̃ → X the
projection to the 0-coordinate, and by πn the projection to the n-th coordi-
nate.

Then for µ̃-a.e. x̃ ∈ X̃ there exists r = r(x̃) > 0 such that there exist
univalent branches Fn of F−n on B(π(x̃), r) for n = 1, 2, . . . with Fn(π(x̃)) =
π−n(x̃). Moreover , for every λ with exp(−χµ) < λ < 1 (not depending on
x̃) and a constant C = C(x̃) > 0,

|F ′n(π(x̃))| < Cλn and
|F ′n(π(x̃))|
|F ′n(z)| < C

for every z ∈ B(π(x̃), r), n > 0 (distances and derivatives in the Riemann
metric on C).

Moreover , r and C are measurable functions of x̃.

To prove Corollary 0.1, observe that the above fact implies the existence
of numbers r, C > 0 and a set Ỹ ⊂ X̃ of positive µ̃-measure such that the
above properties hold for every x̃ ∈ Ỹ and for these r and C. Ergodicity of
µ implies ergodicity of µ̃. So by Birkhoff’s Ergodic Theorem there exists a
set Z̃ ⊂ X̃ of full measure µ̃ such that for each point x̃ ∈ Z̃ the set of times
at which the forward orbit of x̃ by F̃ hits Ỹ has positive density. These
are good times and π(x̃) is a good point in the sense of the introduction
(provided they satisfy (0.3′)).
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3. External rays. Let W1 ⊂ W be open, connected, simply connected
bounded domains in the complex plane C such that clW1 ⊂ W . Let f :
W1 → W be a holomorphic proper surjective map of degree d ≥ 2. We call
such an f a polynomial-like map. Define K =

⋂
n≥0 f

−n(W ). This set is
called a filled-in Julia set [DH]. We can assume that ∂W is smooth. Let M
be an arbitrary smooth function on a neighbourhood of clW \W1 without
critical points, such that M |∂W ≡ 0, M |∂W1 ≡ 1 and M ◦ f = M − 1
wherever it makes sense. Extend M to W \ K by M(z) = M(fn(z)) + n
where n is such that fn(z) ∈W \W1.

Fix τ with 0 < τ < π and consider curves γ : [0,∞) → (clW ) \K with
γ(0) ∈ ∂W , intersecting lines of constant M at angle τ (this demands fixing
orientations), not containing critical points for M and converging to K as
the parameter tends to∞. One can change the standard euclidean metric on
C so that τ is the right angle and think of gradient lines in the new metric.
We call such a line a smooth τ -ray. Instead of parametrizing such a curve
with the gradient flow time we parametrize it by the values of M . Limits
of smooth τ -rays are called τ -rays. They can pass through critical points
of M . (Such a τ -ray enters a critical point along a stable separatrix and
leaves it along an unstable one, the closest clockwise or counter-clockwise.
If it hits again a critical point for the first time it leaves it along an unstable
separatrix on the same side from which it came to the previous critical point;
see Fig. 3, and [GM] and [LevP] for a more detailed description.

Fig. 3
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P r o o f o f T h e o r e m C. Divide each τ -ray γ into pieces γn, n ≥ 1,
each joining f−n(∂W ) and f−n−1(∂W ).

One easily proves the fact corresponding to (0.4):

(3.0) length γn → 0 as n→∞
uniformly over τ -rays γ.

The proof is the same as that of the implication (0.5)⇒(0.4) in Re-
mark 0.4. We have univalent branches of f−k for all k on neighbourhoods
of γn for external rays γ, neighbourhoods not depending on k, for n large
enough, because then the critical points of f in W \ K do not interfere.
There are a finite number of them and their forward trajectories escape out
of W .

For our q find significant telescopes Telk as in Section 2, where n0-
significant means here that Dk

k intersects γkn(k) for a τ -ray γk and n(k) ≤ n0,
a constant independent of k. This is possible by (3.0).

Denote by γk] the τ -ray containing a point of f−nk(γk) which is in Dk
k,0.

We consider, similarly to Section 2, (2.3), the set

Nk = {(t,m) : the same conditions as in Section 2,

in particular γk]
t ∩Rm 6= ∅} .

Similarly we define A+
k and A+

k (M), M ≤ k .
The same miracle that

]A+
k (M) ≥ ηM

occurs for M ≥M0, M ∈ A+
k .

To get it we prove and use the estimate t ≤ m+ Const for (t,m) ∈ Nk.
Because for M0 ≤ m < M1 and (t,m) ∈ Nk the integers t are uniformly

bounded over all k, by T0 say, the parts γ′k] =
⋃T0
l=1 γ

k]
l of respective τ -rays

γk] have a convergent subsequence and the limit ray (joining levels 0 and
T0) intersects Rm.

Choosing consecutive subsequences we find a limit ray converging to q.
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