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Undetermined sets of point-open games
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Janusz Pawlikowski (Wroctaw)

Abstract. We show that a set of reals is undetermined in Galvin’s point-open game
iff it is uncountable and has property C”, which answers a question of Gruenhage.

Let X be a topological space. The point-open game G(X) of Galvin [G]
is played as follows. Black chooses a point g € X, then White chooses an
open set Uy O g, then B chooses a point 7 € X, then W chooses an open
set U1 2 x1, etc. B wins the play (zo, Uo, z1,Us,...) iff X =, Un.

Galvin [G] showed that the Continuum Hypothesis yields a Lusin set X
which is undetermined (i.e. for which the game G(X) is undetermined). (A
Lusin set is an uncountable set of reals which has countable intersection
with every meager set.)

Recently Rectaw [R] showed that every Lusin set is undetermined. Mo-
tivated by Rectaw’s result we prove the following.

THEOREM. Let X be a topological space in which every point is Gs. Then
G(X) is undetermined iff X is uncountable and has property C".

Property C” was introduced by Rothberger (see [M]). A topological space
X has property C" if for every sequence U,, (n € w) of open covers of X
there exist U,, € U,, such that X = (J,, U,. It is known (see [M] or [FM])
that every Lusin set has property C”.

Clearly, a space with property C”' must be Lindelof. Martin’s Axiom im-
plies that every Lindeldf space of size less than 2% has property C” and that
there are sets of reals of size 2% with property C” (see [M]). Thus, Martin’s
Axiom yields undetermined sets of reals of size 2% (Theorem 4 of [G]).

On the other hand, in Laver’s [L] model for Borel’s conjecture all metric
spaces with property C” are countable (see Note 1). Thus, consistently, all
metric spaces are determined.

1991 Mathematics Subject Classification: 03E15, 54G15.
Supported by KBN grant PB 2 1017 91 01.



280 J. Pawlikowski

The connection between property C” and point-open games is made
transparent by the following dual game G*(X), due also to Galvin [G]. Now
‘W chooses an open cover Uy of X, then B chooses a set Uy € Uy, then W
chooses an open cover U; of X, then B chooses a set U; € Uy, etc. As before,
B wins if X =J,, U,.

Galvin [G] showed that the games G(X) and G*(X) are equivalent in
the sense that W T G(X) (has a winning strategy) iff W T G*(X); similarly
for B. In particular, G(X) is determined iff G*(X) is.

Let G7(X) and G*?(X) be games that are played as G(X) and G*(X)
are, but in which B wins if X = (1, U,,>,, Un- These games are again
equivalent (see [G], Theorem 1). Clearly, |[X| <8y =B 1 G*(X) =B
G*(X), and it is not hard to see that if each point of X is Gy, then B 1
G*(X) = | X| < Ng (see [G], Theorem 2). Also, X ¢ C" = W 1 G*(X) =
W 1 G*7(X) (for the first implication W plays covers that witness X ¢ C”).
We shall prove that W 1 G*7(X) = X ¢ C”.

First let us play one more game. The game M*(X) is defined as G*(X)
is but B chooses finite subsets V,, C U,,. He wins if |J,, UV, = X. The o is
introduced as before.

The game is motivated by property M of Menger (see [FM]). A topolog-
ical space has property M if for every sequence U,, (n € w) of open covers
of X there exist finite V,, C U,, such that (J,,|JV, = X. Clearly, property
C" implies property M.

LEMMA 1. Suppose that X has property M. Then W has no winning
strategy in M*?(X).

Proof. X is clearly Lindel6f. Without loss of generality, we can assume
that W plays increasing sequences from which B chooses single sets. Then
a strategy for W can be identified with a family {U, : 0 € <“w} such that
for every o, {U,~; : i < w} is an increasing open cover of X. We seek s € “w
such that Vo € X 3%n x € Ug,.

For integers 7 > 0 and k,m > 0 let

Vi(m,j) = () Ur~s-
TE™ )
Note that {V;(m,j) : k € w} is an increasing open cover of X: given z € X,
find k, (1 € ™j) with € U,~j_ and let k = max, k,; then z € Vi(m, 7).
For integers j > 0, k > j and m,n > 0 let

j:kOSk1§-~-Skn+1:k 1=0

Again {W*(m, j) : k > j} is an increasing open cover of X: given z € X,
find k1 > ko with = € Vk1 (m, ko), next ko > ki with x € sz(m + 1,]€1),
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etc. So, {W}'(m,j): k> j} (n € w) is a sequence of open covers, and, since
X € M, there is t,, ; € “w such that

Vee X 3I®nx c Wg:nj(n)(m,j).
Let s € “w be strictly increasing such that Vm, j V>*n s(m +n) > t,, ;(n).
Then
Ve € X Vm,j3Inz € W, ., (m,j).
Cram. Vz € X 3%°n z € Uy),.

Proof. Suppose not. Fix x and m with Vn x & Us|(pm4n)- By the choice

of s there is n with z € W, . (m,s(m)). So, there are integers

s(m)=ko <k <...<kpy1=s(m+n)
such that

x € ﬂ Vigir (m 41, k;).
i=0
Now, s|m € "k, © € Vi, (m, ko) and & & Usjyy~ s(m) yield k1 > s(m). Next,
s|(m+1) € Mk o € Vi,(m 4+ 1,k;) and = ¢ Us|(m+1)—s(m+1) yield
ky > s(m + 1). Proceeding in this way we get k,4+1 > s(m + n), which is a
contradiction. m

It follows that if W plays according to {U, : 0 € <“w} and B according
to s, then B wins. =

Now we prove that if X € C” then B can spoil each strategy of W in
G*?(X). The idea of diagonalization used in the proof is taken from [FM],
Lemma 5.1.

LEMMA 2. Suppose that X has property C”. Then W has no winning
strategy in G*7(X).

Proof. Again X is Lindelof and we can identify a strategy for W with
a family {U, : 0 € <“w} of open sets such that Vo X = J, Us~;. We seek
s € “w such that Vo € X 3%°n x € Uy,

For integers 7 > 0, m > 0 and for o : j™ — w let

Uﬂ(maj) = m U{UT’\J\Z' 0<i < ]m}
TEM ]
B is sure to cover this set if from round m on he plays according to o,
provided so far he has played numbers < j.
Cram 1. VYm, j Uy(m, j)’s form an open cover of X.

Proof. Fix m and j. Let x € X be given. Let (1 : £k < j™) be an
enumeration of ™ j. Define o by induction: choose o(0) so that x € Uy ~ (o),
next choose o (1) so that x € Uy, ~(0)~0(1), €tc. m
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CLAIM 2. There are increasing sequences (jn, : n < w), (M, :n < w) of
integers such that

Ve e X 3%°n 3o : (mpyr1 —mp) = Jnr1 € Us(Ma, jn) -

Proof. Let jo =1, mg = 0. We start a game. At the nth round, j, and
m, are given and W plays an open cover

Us(Mipyjn) (040" — w).

B responds with an integer j,,+1 > j,, but really thinks about (J{U, (1, jn ) :
max; (i) < jnt+1}. Then he declares m,,+1 = m, + j'".

We view this as the M*?(X) game played by W according to a fixed
strategy. Since C”" = M, by Lemma 1, B can spoil this strategy. m

For k1 < ... <k, <wand o; : (Mg, +1 — mx,) — Jk,+1 define

W<k17"- 7kn;017"' 7Jn) = ﬂ UO’i(mkiajki) :

i=1
By Claim 2 we see that for every n, W(ky,...,kn;01,...,05,)’s form an
open cover of X. Since X € C”, there are o7, kI' (n=1,2,...;i=1,...,n)

such that
Vee X 3% axe W(kT,...,k);0r,...,00).

7 n’ n

Let 1, € {k?,...,kP} \ {k?"%,...,k""1} and let 7, be the o corre-

2

sponding to [,. Then [,,’s are distinct and, by the definition of W’s, we
get
Ve e X 3%n x € Uy, (my,, ji,,) -
Now define s € “w by
s(my, +1) = 71,(7),
for n € w and ¢ € dom(7,), and put 0 elsewhere.

Cram 3. Vz € X 3%n x € Uy),.

Proof. If x € U, (my,, ji, ) then, since s|my, : my, — ji, , we get

T € U{USImzn“Tn\i 0<i<my,41—my}.
But s|my, " 71p|i = s|(my, +1i). =
It follows that if W plays according to {U, : ¢ € ~“w} and B plays

according to s, then B wins. =

Call an open cover U of X strong if for each U € U, the family {V € U :
U C V} covers X. Galvin showed that for a regular space X, W 1 G(X)
iff no strong open cover contains an increasing subcover {U, : n € w}
([GT], Theorem 4). Combining Galvin’s theorem with ours we can give a
characterization of regular C" spaces. By a covering tree we mean a family
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T of finite sequences o = (U, ...,Up—1) (n € w) of open subsets of X such
that Vo e T Vk < |o| olk € T and Vo € T {U : 0~ U € T} covers X.

PROPOSITION 1. Let X be a reqular topological space. Then the following
are equivalent.

(a) X has property C" .

(b) In every covering tree there exists a branch (U, : n € w) with
U, Un = X (equivalently, with (,, U, sm Un = X).

(c) In every strong open cover there exists an increasing subcover {U,, :

new}.

Proof (cf. [GT], Theorem 4). (a)=-(b) follows by Lemma 2. (b)=(c)
is easy: given a strong open cover, use increasing finite sequences of its
members as a covering tree.

We shall show (c¢)=(a). Assume (c). First, X is Lindel6f. Otherwise any
finitely additive open cover with no countable subcover violates (c). Also,
X is zerodimensional (has a clopen base). Indeed, there is no continuous
function f from X onto [0, 1] (otherwise {f~1[V] : V C [0,1] open with
[0, 1]\ V uncountable} violates (c)). For completely regular spaces this means
having a clopen base, and X, being Lindelof regular, is completely regular.

Now, let U,, (n € w) be a sequence of open covers of X. Since X is
Lindelof and zerodimensional, we can assume that each U, is countable and
consists of pairwise disjoint clopens (see [K], §26).

Let U, = {U* : i < w} (some U*’s may be empty). Define f : X — “w
by

f@)(n)=14 iff z€U".
Let V.= {U : |fIU]"]] < Ro}. Then |f[V]| < Ny and since Vo € X z €
N, Uf(2)(n)» 1t is not hard to see that there exist t2p41 € w (n € w) with

Van, Ui:ill Suppose that X \ V # () (otherwise we are done). We can
easily refine the covers Uy, (with the help of Us,,’s, m > n) to covers W,
so that W, 41 is a refinement of W, and each W € W,, which meets X \ V'
contains at least two sets from W, 11 which meet X \ V.

Let V, =V U Un<‘a‘ W;‘(n) for 0 € <¥w such that each W;(n) meets
X\ V. Then V,’s constitute a strong open cover of X. Also, if V,, C V.. then
o C 7 (because no W}* which meets X \ V' can be covered by finitely many
sets taken from different W, (m > n)).

It follows that from an increasing sequence of V,’s covering X, which

exists by (c), we get s € “w with X \'V € {J, Wg,,). Since there are t3,
(n € w) with W2 CUZ" weget X CJ,U. =

s(n) = “tan?

Rothberger also considered property C’, which is defined as C” is but
the covers U,, are finite. We can define a game corresponding to C’ by
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introducing to G* the requirement that the covers played by W are finite.
Then an analogue of Lemma 2 is true (see the proof of (a)=(b) below). We
also have the following. (A tree is finitely branching if the set of immediate
successors of any node is finite.)

PROPOSITION 2. Let X be a reqular topological space. Then the following
are equivalent.

(a) X has property C'.

(b) In every finitely branching covering tree there exists a branch (U, :
n € w) with |J,, Un = X (equivalently, with (,, U, <, Un = X).

(¢) In every strong open cover U such that for each U € U, a finite
subfamily of {V €U : U C V'} covers X, there exists an increasing subcover

{U, : n € w}.

Proof. We sketch (a)=(b); (b)=(c)=(a) are proved as in Proposition 1.
Suppose that X € C’. Let T be a finitely branching covering tree. For each
n € w, let V, be a common finite refinement of all covers U, =q¢ {U :
o~U €T} (0 € T and |o| = n). Such a refinement exists because there
are only finitely many covers to refine. Since X € C’ there is a sequence
Vin € Vyp such that X =, U, <., Va- Define a branch (U, : n € w) of T' by
U, = any U D V,, such that (Uy,...,U,—1,U) €T. m

Note. 1. It is folklore that every metric space X € C” is homeomorphic
to a subspace of R (the reals). Such an X is zerodimensional (it cannot be
continuously mapped onto [0, 1] as C” is preserved by continuous images and
[0,1] ¢ C”; [K], §40). Being Lindeldf, X is separable, and so homeomorphic
to a subset of “w. Since every C” set of reals has strong measure zero, Borel’s
conjecture implies that every C” metric space is countable.

2. In the spirit of [R], X C R with property C” can be characterized by
any of the following (see [P]):

(a) for any F, (equivalently, closed) A C R? with all vertical sections
Ap (z € X) meager, [,y 4z #R;

(b) for any closed A C R? with all vertical sections 4, (z € X) null,
Uzex Az is null.
Also, X C R has strong measure zero iff any of the following holds:

(a) for any F, (equivalently, closed) A C R? with all vertical sections
4, (z € R) meager, U,y 4. # R ((AR]);

(b) for any closed A C R? with all vertical sections A, (z € R) null,

U,ex Az is null ([P]);
(c) for any closed null D C R, X + D is null ([P]).
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3. There exists (in ZFC) an uncountable C” space in which every point
is G5. Todorcevié [T] has an example of a zerodimensional first countable
Hausdorff space of size N; whose every continuous image into any second
countable space (in particular, into w®) is countable.

QUESTION. In Propositions 1 and 2, can one remove the assumption that
X is regular (it is used in (¢)=(a))?

Acknowledgements. Thanks to Irek Reclaw for inspiring correspon-
dence and for communicating Gruenhage’s question.
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