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Undetermined sets of point-open games

by

Janusz P a w l i k o w s k i (Wrocław)

Abstract. We show that a set of reals is undetermined in Galvin’s point-open game
iff it is uncountable and has property C′′, which answers a question of Gruenhage.

Let X be a topological space. The point-open game G(X) of Galvin [G]
is played as follows. Black chooses a point x0 ∈ X, then White chooses an
open set U0 3 x0, then B chooses a point x1 ∈ X, then W chooses an open
set U1 3 x1, etc. B wins the play (x0, U0, x1, U1, . . .) iff X =

⋃
n Un.

Galvin [G] showed that the Continuum Hypothesis yields a Lusin set X
which is undetermined (i.e. for which the game G(X) is undetermined). (A
Lusin set is an uncountable set of reals which has countable intersection
with every meager set.)

Recently Rec law [R] showed that every Lusin set is undetermined. Mo-
tivated by Rec law’s result we prove the following.

Theorem. Let X be a topological space in which every point is Gδ. Then
G(X) is undetermined iff X is uncountable and has property C ′′.

Property C ′′ was introduced by Rothberger (see [M]). A topological space
X has property C ′′ if for every sequence Un (n ∈ ω) of open covers of X
there exist Un ∈ Un such that X =

⋃
n Un. It is known (see [M] or [FM])

that every Lusin set has property C ′′.
Clearly, a space with property C ′′ must be Lindelöf. Martin’s Axiom im-

plies that every Lindelöf space of size less than 2ℵ0 has property C ′′ and that
there are sets of reals of size 2ℵ0 with property C ′′ (see [M]). Thus, Martin’s
Axiom yields undetermined sets of reals of size 2ℵ0 (Theorem 4 of [G]).

On the other hand, in Laver’s [L] model for Borel’s conjecture all metric
spaces with property C ′′ are countable (see Note 1). Thus, consistently, all
metric spaces are determined.
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The connection between property C ′′ and point-open games is made
transparent by the following dual game G∗(X), due also to Galvin [G]. Now
W chooses an open cover U0 of X, then B chooses a set U0 ∈ U0, then W
chooses an open cover U1 of X, then B chooses a set U1 ∈ U1, etc. As before,
B wins if X =

⋃
n Un.

Galvin [G] showed that the games G(X) and G∗(X) are equivalent in
the sense that W ↑ G(X) (has a winning strategy) iff W ↑ G∗(X); similarly
for B. In particular, G(X) is determined iff G∗(X) is.

Let Gσ(X) and G∗σ(X) be games that are played as G(X) and G∗(X)
are, but in which B wins if X =

⋂
n

⋃
m>n Um. These games are again

equivalent (see [G], Theorem 1). Clearly, |X| ≤ ℵ0 ⇒ B ↑ G∗σ(X) ⇒ B ↑
G∗(X), and it is not hard to see that if each point of X is Gδ, then B ↑
G∗(X) ⇒ |X| ≤ ℵ0 (see [G], Theorem 2). Also, X 6∈ C ′′ ⇒W ↑ G∗(X) ⇒
W ↑ G∗σ(X) (for the first implication W plays covers that witness X 6∈ C ′′).
We shall prove that W ↑ G∗σ(X)⇒ X 6∈ C ′′.

First let us play one more game. The game M∗(X) is defined as G∗(X)
is but B chooses finite subsets Vn ⊆ Un. He wins if

⋃
n

⋃Vn = X. The σ is
introduced as before.

The game is motivated by property M of Menger (see [FM]). A topolog-
ical space has property M if for every sequence Un (n ∈ ω) of open covers
of X there exist finite Vn ⊆ Un such that

⋃
n

⋃Vn = X. Clearly, property
C ′′ implies property M .

Lemma 1. Suppose that X has property M. Then W has no winning
strategy in M∗σ(X).

P r o o f. X is clearly Lindelöf. Without loss of generality, we can assume
that W plays increasing sequences from which B chooses single sets. Then
a strategy for W can be identified with a family {Uσ : σ ∈ <ωω} such that
for every σ, {Uσ_i : i < ω} is an increasing open cover of X. We seek s ∈ ωω
such that ∀x ∈ X ∃∞n x ∈ Us|n.

For integers j > 0 and k,m ≥ 0 let

Vk(m, j) =
⋂

τ∈mj
Uτ_k .

Note that {Vk(m, j) : k ∈ ω} is an increasing open cover of X: given x ∈ X,
find kτ (τ ∈ mj) with x ∈ Uτ_kτ and let k = maxτ kτ ; then x ∈ Vk(m, j).

For integers j > 0, k ≥ j and m,n ≥ 0 let

Wn
k (m, j) =

⋃

j=k0≤k1≤...≤kn+1=k

n⋂

i=0

Vki+1(m+ i, ki) .

Again {Wn
k (m, j) : k ≥ j} is an increasing open cover of X: given x ∈ X,

find k1 ≥ k0 with x ∈ Vk1(m, k0), next k2 ≥ k1 with x ∈ Vk2(m + 1, k1),
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etc. So, {Wn
k (m, j) : k ≥ j} (n ∈ ω) is a sequence of open covers, and, since

X ∈M , there is tm,j ∈ ωω such that

∀x ∈ X ∃∞n x ∈Wn
tm,j(n)(m, j) .

Let s ∈ ωω be strictly increasing such that ∀m, j ∀∞n s(m+ n) ≥ tm,j(n).
Then

∀x ∈ X ∀m, j ∃n x ∈Wn
s(m+n)(m, j) .

Claim. ∀x ∈ X ∃∞n x ∈ Us|n.

P r o o f. Suppose not. Fix x and m with ∀n x 6∈ Us|(m+n). By the choice
of s there is n with x ∈Wn

s(m+n)(m, s(m)). So, there are integers

s(m) = k0 ≤ k1 ≤ . . . ≤ kn+1 = s(m+ n)

such that

x ∈
n⋂

i=0

Vki+1(m+ i, ki).

Now, s|m ∈ mk0, x ∈ Vk1(m, k0) and x 6∈ Us|m_s(m) yield k1 > s(m). Next,
s|(m + 1) ∈ (m+1)k1, x ∈ Vk2(m + 1, k1) and x 6∈ Us|(m+1)_s(m+1) yield
k2 > s(m + 1). Proceeding in this way we get kn+1 > s(m + n), which is a
contradiction.

It follows that if W plays according to {Uσ : σ ∈ <ωω} and B according
to s, then B wins.

Now we prove that if X ∈ C ′′ then B can spoil each strategy of W in
G∗σ(X). The idea of diagonalization used in the proof is taken from [FM],
Lemma 5.1.

Lemma 2. Suppose that X has property C ′′. Then W has no winning
strategy in G∗σ(X).

P r o o f. Again X is Lindelöf and we can identify a strategy for W with
a family {Uσ : σ ∈ <ωω} of open sets such that ∀σ X =

⋃
i Uσ_i. We seek

s ∈ ωω such that ∀x ∈ X ∃∞n x ∈ Us|n.
For integers j > 0, m ≥ 0 and for σ : jm 7→ ω let

Uσ(m, j) =
⋂

τ∈mj

⋃
{Uτ_σ|i : 0 < i ≤ jm}.

B is sure to cover this set if from round m on he plays according to σ,
provided so far he has played numbers < j.

Claim 1. ∀m, j Uσ(m, j)’s form an open cover of X.

P r o o f. Fix m and j. Let x ∈ X be given. Let 〈τk : k < jm〉 be an
enumeration of mj. Define σ by induction: choose σ(0) so that x ∈ Uτ0_σ(0),
next choose σ(1) so that x ∈ Uτ1_σ(0)_σ(1), etc.
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Claim 2. There are increasing sequences 〈jn : n < ω〉, 〈mn : n < ω〉 of
integers such that

∀x ∈ X ∃∞n ∃ σ : (mn+1 −mn) 7→ jn+1 x ∈ Uσ(mn, jn) .

P r o o f. Let j0 = 1, m0 = 0. We start a game. At the nth round, jn and
mn are given and W plays an open cover

Uσ(mn, jn) (σ : jmnn 7→ ω) .

B responds with an integer jn+1≥jn, but really thinks about
⋃{Uσ(mn, jn) :

maxi σ(i) < jn+1}. Then he declares mn+1 = mn + jmnn .
We view this as the M∗σ(X) game played by W according to a fixed

strategy. Since C ′′ ⇒M , by Lemma 1, B can spoil this strategy.

For k1 < . . . < kn < ω and σi : (mki+1 −mki) 7→ jki+1 define

W (k1, . . . , kn;σ1, . . . , σn) =
n⋂

i=1

Uσi(mki , jki) .

By Claim 2 we see that for every n, W (k1, . . . , kn;σ1, . . . , σn)’s form an
open cover of X. Since X ∈ C ′′, there are σni , k

n
i (n = 1, 2, . . . ; i = 1, . . . , n)

such that
∀x ∈ X ∃∞n x ∈W (kn1 , . . . , k

n
n;σn1 , . . . , σ

n
n) .

Let ln ∈ {kn1 , . . . , knn} \ {kn−1
1 , . . . , kn−1

n−1} and let τn be the σni corre-
sponding to ln. Then ln’s are distinct and, by the definition of W ’s, we
get

∀x ∈ X ∃∞n x ∈ Uτn(mln , jln) .

Now define s ∈ ωω by

s(mln + i) = τn(i) ,

for n ∈ ω and i ∈ dom(τn), and put 0 elsewhere.

Claim 3. ∀x ∈ X ∃∞n x ∈ Us|n.

P r o o f. If x ∈ Uτn(mln , jln) then, since s|mln : mln 7→ jln , we get

x ∈
⋃
{Us|mln_τn|i : 0 < i ≤ mln+1 −mln} .

But s|mln
_τn|i = s|(mln + i).

It follows that if W plays according to {Uσ : σ ∈ <ωω} and B plays
according to s, then B wins.

Call an open cover U of X strong if for each U ∈ U , the family {V ∈ U :
U ⊆ V } covers X. Galvin showed that for a regular space X, W ↑ G(X)
iff no strong open cover contains an increasing subcover {Un : n ∈ ω}
([GT], Theorem 4). Combining Galvin’s theorem with ours we can give a
characterization of regular C ′′ spaces. By a covering tree we mean a family
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T of finite sequences σ = 〈U0, . . . , Un−1〉 (n ∈ ω) of open subsets of X such
that ∀σ ∈ T ∀k < |σ| σ|k ∈ T and ∀σ ∈ T {U : σ_U ∈ T} covers X.

Proposition 1. Let X be a regular topological space. Then the following
are equivalent.

(a) X has property C ′′.
(b) In every covering tree there exists a branch 〈Un : n ∈ ω〉 with⋃

n Un = X (equivalently , with
⋂
m

⋃
n>m Un = X).

(c) In every strong open cover there exists an increasing subcover {Un :
n ∈ ω}.

P r o o f (cf. [GT], Theorem 4). (a)⇒(b) follows by Lemma 2. (b)⇒(c)
is easy: given a strong open cover, use increasing finite sequences of its
members as a covering tree.

We shall show (c)⇒(a). Assume (c). First, X is Lindelöf. Otherwise any
finitely additive open cover with no countable subcover violates (c). Also,
X is zerodimensional (has a clopen base). Indeed, there is no continuous
function f from X onto [0, 1] (otherwise {f−1[V ] : V ⊆ [0, 1] open with
[0, 1]\V uncountable} violates (c)). For completely regular spaces this means
having a clopen base, and X, being Lindelöf regular, is completely regular.

Now, let Un (n ∈ ω) be a sequence of open covers of X. Since X is
Lindelöf and zerodimensional, we can assume that each Un is countable and
consists of pairwise disjoint clopens (see [K], §26).

Let Un = {Uni : i < ω} (some Uni ’s may be empty). Define f : X 7→ ωω
by

f(x)(n) = i iff x ∈ Uni .
Let V =

⋃{Uni : |f [Uni ]| ≤ ℵ0}. Then |f [V ]| ≤ ℵ0 and since ∀x ∈ X x ∈⋂
n U

n
f(x)(n), it is not hard to see that there exist t2n+1 ∈ ω (n ∈ ω) with

V ⊆ ⋂n U2n+1
t2n+1

. Suppose that X \ V 6= ∅ (otherwise we are done). We can
easily refine the covers U2n (with the help of U2m’s, m ≥ n) to covers Wn

so that Wn+1 is a refinement of Wn and each W ∈ Wn which meets X \ V
contains at least two sets from Wn+1 which meet X \ V .

Let Vσ = V ∪ ⋃n<|σ|Wn
σ(n) for σ ∈ <ωω such that each Wn

σ(n) meets
X \V . Then Vσ’s constitute a strong open cover of X. Also, if Vσ ⊆ Vτ then
σ ⊆ τ (because no Wn

k which meets X \ V can be covered by finitely many
sets taken from different Wm (m > n)).

It follows that from an increasing sequence of Vσ’s covering X, which
exists by (c), we get s ∈ ωω with X \ V ⊆ ⋃nWn

s(n). Since there are t2n
(n ∈ ω) with Wn

s(n) ⊆ U2n
t2n , we get X ⊆ ⋃n Untn .

Rothberger also considered property C ′, which is defined as C ′′ is but
the covers Un are finite. We can define a game corresponding to C ′ by
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introducing to G∗ the requirement that the covers played by W are finite.
Then an analogue of Lemma 2 is true (see the proof of (a)⇒(b) below). We
also have the following. (A tree is finitely branching if the set of immediate
successors of any node is finite.)

Proposition 2. Let X be a regular topological space. Then the following
are equivalent.

(a) X has property C ′.
(b) In every finitely branching covering tree there exists a branch 〈Un :

n ∈ ω〉 with
⋃
n Un = X (equivalently , with

⋂
m

⋃
n>m Un = X).

(c) In every strong open cover U such that for each U ∈ U , a finite
subfamily of {V ∈ U : U ⊆ V } covers X, there exists an increasing subcover
{Un : n ∈ ω}.

P r o o f. We sketch (a)⇒(b); (b)⇒(c)⇒(a) are proved as in Proposition 1.
Suppose that X ∈ C ′. Let T be a finitely branching covering tree. For each
n ∈ ω, let Vn be a common finite refinement of all covers Uσ =df {U :
σ_U ∈ T} (σ ∈ T and |σ| = n). Such a refinement exists because there
are only finitely many covers to refine. Since X ∈ C ′ there is a sequence
Vn ∈ Vn such that X =

⋂
m

⋃
n>m Vn. Define a branch 〈Un : n ∈ ω〉 of T by

Un = any U ⊇ Vn such that 〈U0, . . . , Un−1, U〉 ∈ T .

N o t e. 1. It is folklore that every metric space X ∈ C ′′ is homeomorphic
to a subspace of R (the reals). Such an X is zerodimensional (it cannot be
continuously mapped onto [0, 1] as C ′′ is preserved by continuous images and
[0, 1] 6∈ C ′′; [K], §40). Being Lindelöf, X is separable, and so homeomorphic
to a subset of ωω. Since every C ′′ set of reals has strong measure zero, Borel’s
conjecture implies that every C ′′ metric space is countable.

2. In the spirit of [R], X ⊆ R with property C ′′ can be characterized by
any of the following (see [P]):

(a) for any Fσ (equivalently, closed) A ⊆ R2 with all vertical sections
Ax (x ∈ X) meager,

⋃
x∈X Ax 6= R;

(b) for any closed A ⊆ R2 with all vertical sections Ax (x ∈ X) null,⋃
x∈X Ax is null.

Also, X ⊆ R has strong measure zero iff any of the following holds:

(a) for any Fσ (equivalently, closed) A ⊆ R2 with all vertical sections
Ax (x ∈ R) meager,

⋃
x∈X Ax 6= R ([AR]);

(b) for any closed A ⊆ R2 with all vertical sections Ax (x ∈ R) null,⋃
x∈X Ax is null ([P]);

(c) for any closed null D ⊆ R, X +D is null ([P]).
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3. There exists (in ZFC) an uncountable C ′′ space in which every point
is Gδ. Todorčević [T] has an example of a zerodimensional first countable
Hausdorff space of size ℵ1 whose every continuous image into any second
countable space (in particular, into ωω) is countable.

Question. In Propositions 1 and 2, can one remove the assumption that
X is regular (it is used in (c)⇒(a))?

Acknowledgements. Thanks to Irek Rec law for inspiring correspon-
dence and for communicating Gruenhage’s question.
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