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Shape index and other indices of Conley type
for local maps on locally compact Hausdorff spaces

by

Marian Mrozek (Atlanta, Ga.)

Abstract. We present a scheme for constructing various Conley indices for locally
defined maps. In particular, we extend the shape index of Robbin and Salamon to the
case of a locally defined map in a locally compact Hausdorff space. We compare the shape
index with the cohomological Conley index for maps. We also prove the commutativity
property of the Conley index, which is analogous to the commutativity property of the
fixed point index.

Introduction. The shape index is a time-discrete analog of Conley’s
homotopy index for flows. It was constructed by Robbin and Salamon [RS]
for isolated invariant sets of a diffeomorphism on a smooth manifold. In [Mr1]
the author presented a cohomological Conley index for isolated invariant sets
of homeomorphisms (see also [MR]). Its construction was based on a functor,
called the Leray functor and introduced in [Mr1, Sect. 4]. It turns out that
there are at least three other functors which can be used in the construction
instead of the Leray functor. They provide various Conley indices but with
the same basic properties. One of such functors is the inverse limit functor,
which can be used to construct the shape index.

In the present paper, we propose a general scheme for constructing Con-
ley indices. This enables us to unify the results in [RS] and [Mr1], to get rid
of smoothness and injectivity in the construction of the shape index and to
compare the shape index with the cohomological Conley index. The scheme
also provides other Conley indices: the homology index, the homotopy group
index, the shape group index.

In contrast to [RS] and [Mr1], in this paper we work with locally defined
maps. This is important because of forthcoming applications to differential
equations, where one has to deal with t-translations or Poincaré maps which
are often defined only in some open subset of the given space.
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We prove basic properties of the Conley index: the Ważewski property,
the homotopy property, the additivity property and the commutativity prop-
erty. The commutativity property for the Conley index, which is an analog of
the commutativity property of the fixed point index (see [Do, Sect. VI.5.9]),
seems to appear here for the first time.

The contents of the paper are as follows. Main results are summarized
in the first section. The shape index is introduced in the second section
and various algebraic Conley indices in the third section. Section 4 presents
the adaptation of the construction of index pairs from [Mr1] to the case
of a map. In Section 5 we make the division of compact spaces functorial
by introducing the category of pairs and the quotient functor. This is used
in the following section to construct the Conley index. The remaining two
sections contain proofs of the properties of the Conley index.

In the paper we follow the notations and conventions introduced in [Mr1].

1. Main results. In this section, we give a brief overview of the results
of the paper. Details are postponed to the following sections.

LetX denote a fixed, locally compact Hausdorff space. By a local discrete
semidynamical system onX we mean a continuous map f : X −→◦ X defined
on some open subset of X. We say that the function σ : Z → X is a (full)
solution to f through x in N ⊂ X if f(σ(i)) = σ(i+1) for all i ∈ Z, σ(0) = x
and σ(i) ∈ N for all i ∈ Z. The invariant part of N ⊂ X (with respect to f)
is defined as the set of all x ∈ N which admit a solution to f through x
in N . It will be denoted by Inv(N, f) or InvN , if f is clear from context.

The set K is said to be invariant if f(K) = K. This is easily seen to
be equivalent to K = Inv(K, f). K is called isolated invariant if it admits
a compact neighborhood N such that K = InvN . The neighborhood N is
then called an isolating neighborhood of K.

The set A ⊂ N is called positively invariant with respect to N and f if
A ∩ f−1(N) ⊂ f−1(A).

In order to assign to each isolated invariant set an index, we need the
notion of the index pair. There are various concepts of index pairs. A very
weak notion of the index pair was proposed by Robbin and Salamon [RS,
Def. 4.1]. The following definition is a straightforward adaptation of the
original definition by Conley [Co, Def. III.4.1].

Definition 1.1. The pair P = (P1, P2) of compact subsets of N will
be called an index pair of K in N (with respect to f) iff the following three
conditions are satisfied.

(1.1) P1, P2 are positively invariant with respect to N ,
(1.2) P1\P2 ⊂ f−1(N),
(1.3) K ⊂ int(P1\P2).
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The index pair introduced in [Mr1, Def. 2.1] is stronger. Index pairs of
this kind are called in this paper strong index pairs (see Def. 4.1).

As in [Mr1] we do not assume that P2 ⊂ P1, i.e. that P is a topological
pair. However, it is straightforward to verify that if (P1, P2) is an index pair,
so is (P1, P1 ∩ P2).

The family of all index pairs in N will be denoted by IP(N, f) or simply
by IP(N).

Theorem 1.2. Every isolating neighborhood admits an index pair.

(The proof will be given in Sect. 4. For similar theorems in different
settings see [RS, Mr1, MR].)

Let P1/P2 denote the quotient space. We will consider it as an object
in Comp∗, the category of pointed Hausdorff compact spaces, by assuming
that the point distinguished in P1/P2 is P2 collapsed to a point.

The map f induces a continuous map fP : P1/P2 → P1/P2 called the
index map (see Def. 6.1).

It turns out to be natural to consider each index pair with respect to f
together with its index map fP . For this reason, together with each category
E we consider the category of endomorphisms of E denoted by Endo(E). This
concept was introduced in [Mr1, Sect. 1] in the special case of the category
of graded moduli. The objects of Endo(E) are pairs (A, a), where A ∈ E and
a ∈ E(A,A) is a distinguished endomorphism of A. The set of morphisms
from (A, a) ∈ E to (B, b) ∈ E is the subset of E(A,B) consisting of exactly
those morphisms ϕ ∈ E(A,B) for which bϕ = ϕa. We write ϕ : (A, a) →
(B, b) to denote that ϕ is a morphism from (A, a) to (B, b) in Endo(E).
We define the category of automorphisms of E as the full subcategory of
Endo(E) consisting of pairs (A, a) ∈ Endo(E) such that a ∈ E(A,A) is an
automorphism, i.e. both an endomorphism and an isomorphism in E . The
category of automorphisms of E will be denoted by Auto(E). There is a
functorial embedding

E 3 A→ (A, idA) ∈ Auto(E),

E(A,B) 3 ϕ→ ϕ ∈ Auto(E)(A,B),

hence we can consider the category E as a subcategory of Auto(E).
Thus, we can write (P1/P2, fP ) ∈ Endo(Comp∗).
Assume C is a full subcategory of Endo(E) and F : C → Auto(E) is a

functor. Let (A, a) ∈ C. Then F (A, a) is an object of Auto(E). Let a′ denote
the automorphism distinguished in F (A, a). Obviously a : (A, a) → (A, a)
is a morphism in Endo(E) and since C is a full subcategory of Endo(E) it
is also a morphism in C. Hence F (a) is defined and it is a morphism from
F (A, a) to F (A, a) in Auto(E). However, it need not be that F (a) = a′ in
general. F (a) need not even be an isomorphism in Auto(E).
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Definition 1.3. We will say that F : C → Auto(E) is normal if for each
(A, a) ∈ C the morphism F (a) is equal to the automorphism distinguished
in F (A, a).

The main reason for introducing normal functors is the following theo-
rem, which is essential in the construction of the Conley index. It can be
proved as an easy exercise (comp. [Mr2, Th. 3.1]).

Theorem 1.4. Assume C is a full subcategory of Endo(E), F : C →
Auto(E) is a normal functor , (A, a), (B, b) ∈ C and ϕ ∈ E(A,B), ψ ∈
E(B,A) are such that a = ϕψ, b = ψϕ. Then ϕ,ψ are also morphisms in
Endo(E) and we have the commutative diagram

(1.4)

F (A, a) F (A, a)

F (B, b) F (B, b)

F (a) //

F (ϕ)
²²

F (ϕ)
²²

F (b)
//

F (ψ)ssssssss99

in Auto(E), in which all morphisms are isomorphisms.

There is a scheme for producing normal functors. To explain it, assume
C ⊂ Endo(E) is a full subcategory and L : C → E is a functor. Assume
(A, a), (B, b) ∈ Endo(E) and ϕ : (A, a)→ (B, b) is a morphism in Endo(E).
Put

L′(A, a) := (L(A, a), L(a)),(1.5)

L′(ϕ) := L(ϕ).(1.6)

Theorem 1.5 (comp. [Mr2]). If for every (A, a) ∈ C, L(a) is an iso-
morphism in E then formulae (1.5)–(1.6) define a normal functor L′ : C →
Auto(E).

There are trivial examples of normal functors F : Endo(E) → Auto(E):
If O ∈ E is the zero object in E , then one can define the zero functor from
Endo(E) to Auto(E) by assigning (O, id) to each object (A, a) ∈ Endo(E)
and the identity map in O to each morphism ϕ : A→ B in E . It is straight-
forward to verify that the zero functor is a normal functor. We are interested,
however, in less trivial examples.

A good condition for nontriviality, which is also useful in applications, is
to assume that F restricted to the subcategory Auto(E) is naturally equiv-
alent to the identity functor. Hence we introduce the following.

Definition 1.6. Assume B is a category and B0 is its subcategory.
The functor F : B → B0 will be called a retractor iff F restricted to B0 is
naturally equivalent to the identity functor on B0.
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An example of a normal retractor is the Leray functor introduced in
[Mr1, Sect. 4].

Assume now that T : Comp∗ → E is a covariant or contravariant functor,
which is homotopy invariant. It extends in a natural way to a functor T :
Endo(Comp∗) → Endo(E) denoted with the same letter. Assume also that
C ⊂ Endo(Comp∗) is a subcategory such that T (Endo(Comp∗)) ⊂ C. Let
L : C → Auto(E) be a normal functor. Then the composite functor LT :=
L ◦ T : Endo(Comp∗)→ Auto(E) is defined.

Theorem 1.7. Assume K is an isolated invariant set with respect to f .
Then LT (P1/P2, fP ) and LT (Q1/Q2, fQ) are isomorphic objects in Auto(E)
for any isolating neighborhoods N,M of K and P ∈ IP(N), Q ∈ IP(M) (for
the proof see Sect. 6).

Theorems 1.2 and 1.7 allow us to make the following

Definition 1.8. The common value LT (P1/P2, fP ) for all index pairs P
of K will be called the (L, T )-Conley index of K and denoted by CL,T (K, f).
If this causes no misunderstanding, we will write C(K, f) or simply C(K).

The empty pair (∅, ∅) is obviously an index pair of the empty set. Hence
we get the following important property of the Conley index.

Proposition 1.9 (Ważewski Property). If T preserves zero objects and
L is a retractor , then C(∅) = 0, i.e. C(K) 6= 0 implies K 6= ∅.

We call it the Ważewski property because in the case of a flow it can be
considered as a reformulation of the Ważewski Retract Theorem (see [Co,
II.2.3] or [Wa]).

Theorem 1.10 (Homotopy Property). Assume f : Λ × X −→◦ X is a
continuous map, Λ ⊂ R is a compact interval and N is an isolating neigh-
borhood with respect to each partial map

fλ : X 3 x −→◦ f(λ, x) ∈ X.
Then C(Inv(N, fλ), fλ) does not depend on λ ∈ Λ (for the proof see Sect. 7).

Theorem 1.11 (Additivity Property). Assume an isolated invariant set
K is a disjoint sum of two other isolated invariant sets K1,K2. If T and L
preserve coproducts then C(K) is the coproduct of C(K1) and C(K2). If T
sends coproducts into products and L preserves products then C(K) is the
product of C(K1) and C(K2) (for the proof see Sect. 8).

Theorem 1.12 (Commutativity Property). Assume Y is another locally
compact Hausdorff space and ϕ : X −→◦ Y , ψ : Y −→◦ X are maps with
open domains, f = ψϕ, g := ϕψ. If K ⊂ X is an isolated invariant set with
respect to f then ϕ(K) is an isolated invariant set with respect to g and
C(K, f) = C(ϕ(K), g) (for the proof see Sect. 8).
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As an example of a straightforward application of the commutativity
property, we have the following theorem.

Theorem 1.13. Assume f(X) ⊂ A, where A is a locally compact subset
of X. If K is an isolated invariant set with respect to f then K is an
isolated invariant set with respect to f |A and C(K, f) = C(K, f |A).

P r o o f. Let i : A → X denote the inclusion. Take ϕ := i, ψ := f and
apply the commutativity property.

2. The shape index. The notion of shape was invented by K. Bor-
suk [Bo1, Bo2] as a modification of the homotopy type (see also Borsuk’s
book [Bo3]). Homotopy theory behaves well if the spaces are locally nice
like ANR’s or polyhedra. Shape theory takes into account only the global
properties of spaces in such a way that it is equivalent to homotopy theory
when restricted to ANR’s and has some nice properties, which fail in case
of homotopy theory.

The precise definition of shape, regardless of approach, is rather compli-
cated. From our point of view it is essential to understand only the main
similarities and differences between shape and homotopy. A very concise sur-
vey of shape theory is presented in [Ma] and we follow here that exposition.
We recommend the book of Mardešić and Segal [MS] to readers interested
in details.

Roughly speaking, shape theory for compact Hausdorff spaces consists
of a certain new category, called the shape category and denoted by Sh and
a covariant functor S : Comp → Sh, called the shape functor. The shape
category has compact Hausdorff spaces as objects and some modification of
homotopy classes of continuous maps, called shape maps, as morphisms. The
shape functor keeps objects fixed and sends each continuous map f : X → Y
to some shape map Sf : X → Y , called the shape map generated by f
(though, in contrast to the homotopy theory, not every shape map has to
be generated by some f). Two spaces are said to have the same shape if
they are isomorphic in the shape category. This is obviously an equivalence
relation. The equivalence class of a given space X in this relation is called
its shape.

The definition of pointed shape is based on a similar scheme (see [MS,
I.4.3]). Hence, one has a pointed shape category Sh∗ with pointed compact
Hausdorff spaces as objects and a covariant functor S : Comp∗ → Sh∗.

The shape (pointed shape) functor has the following essential properties
(see [MS, Chpt. I, Sec. 2, Th. 4 and Sec. 5, Cor. 5] or [Bo3, Chpt. XII,
Sec. 1]).

(2.1) S is homotopy invariant, i.e. shape maps generated by (point-pre-
serving) homotopic maps are equal.
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(2.2) Every shape map into an ANR is generated by a (point-preserving)
continuous map unique up to a (point-preserving) homotopy. This
means that shape is equivalent to homotopy type on ANR’s.

(2.3) S is continuous with respect to inverse limits, i.e. it sends inverse
limits in Comp (Comp∗) into inverse limits in Sh (Sh∗).

It is the third property which makes shape essential in the construction
of an analog for maps of Conley’s homotopy index for flows. Note that the
homotopy functor lacks this property (see [MS, Chpt. I.5, Ex. 2]), hence, by
(2.2), the shape functor can be viewed as a moderate modification of the
homotopy functor which ensures the continuity property.

The continuity property allows us to construct the necessary normal
functor. The construction is quite general, so we take an arbitrary category
E . To each object (A, a) ∈ Endo(E) we assign an inverse system of morphisms

(2.4) . . .
a−→A a−→A a−→A.

If (2.4) admits an inverse limit, it will be called the inverse limit of (A, a).
Denote by Endoi(E) the full subcategory of Endo(E) consisting of those

objects (A, a) ∈ Endo(E) for which the sequence (2.4) admits an inverse
limit.

It is straightforward to verify that if (A, a) ∈ Auto(E) then A is the
inverse limit of (A, a). Hence, we have the following.

Proposition 2.1. Auto(E) is a full subcategory of Endoi(E).

Consider (A, a), (B, b) ∈ Endoi(E) and denote the corresponding inverse
limits by A′, B′ respectively. Assume ϕ : (A, a) → (B, b) is a morphism in
Endoi(E). Let ϕ′ : A′ → B′ denote the map induced by ϕ (the inverse limit
of {ϕ}).

It is straightforward to verify that

(A, a)→ A′, ϕ→ ϕ′

define a functor Li : Endoi(E) → E , which will be called the inverse limit
functor. In the dual way one defines the direct limit functor Ld : Endod(E)→
E . By Theorem 1.5 there are also associated normal functors LI : Endoi(E)
→ Endo(E), LD : Endod(E)→ Endo(E).

Theorem 2.2. LI : Endoi(E) → Auto(E) and LD : Endod(E) →
Auto(E) are normal retractors.

P r o o f. Fix (A, a) ∈ Endo(E), put A′ := Li(A, a) and a′ := Li(a). We
will first show that LI(A, a) ∈ Auto(E), i.e. that a′ is an isomorphism in E .

A′, as the inverse limit of (A, a), admits a cone {ai : A′ → A} with
the universal factorization property. The family of morphisms {si := ai+1 |
i ∈ N} is also a cone, hence the universal factorization property implies that
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there exists a morphism u : A′ → A′ such that si = aiu for i ∈ N. Observe
that

aiua
′ = sia

′ = ai+1a
′ = aai+1 = ai.

Hence the family {ai} factorizes both through ua′ and the identity. The
uniqueness of factorization implies ua′ = id. Similarly,

aia
′u = aaiu = asi = aai+1 = ai

and also a′u = id. This shows that a′ is an isomorphism, i.e. LI is indeed
a functor from Endoi(E) into Auto(E). It is now straightforward to verify
that LI is a retractor. Similarly one proves that LD is a retractor.

By (2.1), S is homotopy invariant. Moreover, (2.3) implies that

S(Endo(Comp∗)) ⊂ Endoi(Sh∗).

Hence the (LI, S)-Conley index CLI,S(K, f) makes sense. It will be called
the shape index . By its very definition, the shape index consists of some
shape and a distinguished shape isomorphism class. The two parts of the
index will be denoted by s(K) and si(K) respectively. Hence

CLI,S(K) = (s(K), si(K)).

Our shape index generalizes the shape index of Robbin and Salamon in
two directions: 1. because of the distinguished shape isomorphism class it
carries more information; 2. it is defined for maps which are neither smooth
nor injective nor globally defined. More precisely, we have the following:

Proposition 2.3. Assume X is a smooth manifold , f : X → X is a
diffeomorphism and K is an isolated invariant set with respect to f . Then
s(K, f) is just the shape index of K in the sense of Robbin and Salamon.

P r o o f. The shape index of Robbin and Salamon is, by definition, the
shape of the one-point compactification of the unstable manifold of K with
some special topology (see [RS, Def. 7.4, Def. 9.1]). This compactification is
homeomorphic, by [RS, Th. 3.7] to the inverse limit of the sequence

. . .
fP−→P1/P2

fP−→P1/P2
fP−→P1/P2,

where (P1, P2) is any index pair in the sense of Robbin and Salamon (see
[RS, Def. 1]) and fP is the map induced by f . However, by [RS, Cor. 4.4],
index pair in our sense is a special case of index pair in the sense of [RS,
Def. 5.1]. This completes the proof.

Finally, let us mention the following property of shape, which is an ele-
mentary exercise in shape theory.

(2.5) The pointed shape functor sends zero objects in Top∗ into zero
objects in Sh∗.
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Hence we have the following theorem.

Theorem 2.4. The shape index satisfies the Ważewski , homotopy and
commutativity properties.

The shape functor preserves coproducts; however, it is not clear whether
the inverse limit functor does (certainly it preserves products). Hence we
pose the following problem.

Problem. Does the shape index have the additivity property?

Another problem is whether it is possible to construct the shape index
in non-locally compact spaces like the cohomological Conley index in [MR].
The main obstacle is that the shape theory for noncompact spaces is less
satisfactory. In particular, the continuity property seems to fail (comp. [MS,
Chpt. I, Sec. 6, Ex. 1]).

3. Algebraic Conley indices. In this section, we assume that E denotes
either the category of groups or the category of (graded) moduli over a fixed
ring Ξ. We also assume that T : Comp∗ → E is a homotopy invariant,
covariant or contravariant functor. Basic examples which we have in mind
are: various homology and cohomology functors, the nth homotopy group
functor, the nth shape group functor (see [MS, Chpt. II, Sect. 3.3]).

In order to define the Conley index by means of T we need normal
functors L : Endo(E) → Auto(E). The inverse limit functor LI defined in
the previous section is an example, because, with our choice of E , Endoi(E) =
Endo(E). Another example is LD. We will present two more examples.

First we recall the concept of the generalized kernel (see [Le]). Assume
an endomorphism a : A→ A of A ∈ E is given. Put

gker(a) :=
⋃
{ker(an) | n ∈ N}.

The dual notion is the generalized image of a:

gim(a) :=
⋂
{im(an) | n ∈ N}.

In some sense (see [Mr2, Th. 5.11]), the role dual to gker(a) plays the set

sim(a) := {x ∈ A | ∃{xn}n=0,∞ ⊂ A such that

a(xn+1) = xn for n ∈ N, x0 = x},
which will be called the sequential image of a.

We define the category Mono(E) as the full subcategory of Endo(E)
whose objects have a monomorphism as the distinguished endomorphism.
Similarly, by distinguishing epimorphisms, we define the category Epi(E).
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Assume (A, a), (B, b) ∈ Endo(E) and ϕ : (A, a) → (B, b) is a morphism
in Endo(E). Put

(3.1) Lm(A, a) := A/gker(a),

(3.2) Lm(ϕ) := (A/gker(a) 3 [x]→ [ϕ(x)] ∈ B/gker(b)),

(3.3) Le(A, a) := gim(a),

(3.4) Le(ϕ) := (gim(a) 3 x→ ϕ(x) ∈ gim(a)),

(3.5) Ls(A, a) := sim(a),

(3.6) Ls(ϕ) := (sim(a) 3 x→ ϕ(x) ∈ sim(b)).

One can easily verify that formulae (3.1)–(3.6) define three functors Lm,
Le, Ls : Endo(E)→ E . By Theorem 1.5 we also have functors

LM := (Lm)′, LE := (Le)′, LS := (Ls)′ : Endo(E)→ Endo(E).

It is an easy exercise to prove the following proposition.

Proposition 3.1. The composite functors LMS := LM ◦LS and LSM
:= LS ◦LM are normal retractors from Endo(E) to Auto(E). They preserve
finite products and coproducts.

Examples in [Mr2, Sect. 6] show that the four normal retractors LI,
LD, LMS, LSM are all different. Nevertheless, under some restrictions,
they coincide, as shown by the following.

Theorem 3.2 (see [Mr2, Th. 6.1]). Assume E is the category of vec-
tor spaces over a fixed field and (A, a) ∈ Endo(E) is a finite-dimensional
vector space with a distinguished endomorphism. Then LI(A, a), LD(A, a),
LMS(A, a), LSM(A, a) are all isomorphic.

R e m a r k 3.3. It should be noted that Le(a) for an endomorphism a :
A → A need not be an epimorphism. This causes the functor LE to be
considered only as a functor from Endo(E) into Endo(E). However, it is ob-
vious that LE and LS are equal on the subcategory Mono(E). In particular,
LE ◦ LM = LS ◦ LM . The composite functor LE ◦ LM was introduced in
[Mr1] and called the Leray functor, since the idea of a generalized kernel
comes from the paper [Le] of Leray.

Combining various homotopy invariant functors with the above retrac-
tors, we obtain various Conley indices. As an example consider the nth
homotopy group functor πn.

Proposition 3.4. The (LSM, πn)-Conley index is well defined. It has
all the four properties considered in Section 4.

We finish this section with the following.
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Proposition 3.5. The cohomological Conley index introduced in [Mr1]
coincides with the (LSM,H∗)-Conley index , where H∗ stands for the Alex-
ander–Spanier cohomology.

P r o o f. Assume K is an isolated invariant set and P is an index pair
with respect to K. Put Q1 := P1 ∪ f(P2) and Q2 := P2 ∪ f(P2). We have
the commutative diagram

H∗(P1, P2) H∗(Q1, Q2) H∗(P1, P2)

H∗(P1/P2, [P2]) H∗(Q1/Q2, [Q2]) H∗(P1/P2, [P2])

H∗(P1/P2, [P2]) H∗(P1/P2, [P2])

i //f0oo
OO

²²

OO

f1

oo //

OO

²²

f2

oo

in which f0, f1, f2 are induced by f and the other homomorphisms are in-
duced either by inclusions or by projections. All the vertical arrows and the i
arrow are isomorphisms. The map f0 ◦ i−1 is the index map used in [Mr1] to
construct the Conley index and denoted there by IP , whereas f2 = H∗(fP ).
The above diagram shows that (H∗(P ), IP ) and H∗(P1/P2, [P2], fP ) are iso-
morphic objects in Endo(E). We also have

LSM(H∗(P1/P2, [P2], fP ) ∼ LSM(H∗(P ), IP ) = (LE ◦ LM)(H∗(P ), IP ).

The last equality follows from Remark 3.3. Since LE ◦ LM is the Leray
functor used in [Mr1], our assertion is proved.

4. Construction of index pairs for the discrete case. The con-
struction of index pairs in [Mr1] can be easily adapted to maps in locally
compact Hausdorff spaces. Here are the main differences.

For n ∈ Z+ ∪ {∞} put In := {0, 1, . . . , n} if n < ∞ and In := Z+ if
n = ∞. A function σ : In → N will be called a backward (partial) solution
to f through x in N iff σ(0) = x and

(4.1) f(σ(i+ 1)) = σ(i) for all i ∈ In\{0}.
Note that the backward solution σ : In → N need not be unique and it

may not exist at all.
Similarly, one defines τ : In → N to be a forward (partial) solution to f

through x in N iff τ(0) = x and

(4.2) f(τ(i)) = τ(i+ 1) for all i ∈ In−1.

Formula (4.2) implies that if τ is a forward solution to f through x, then
τ(i) = f i(x) for i ∈ In.
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The family of all backward solutions to f through x in N defined on In
will be denoted by BSn(x,N, f). Similarly, FSn(x,N, f) will stand for the
family of forward solutions.

We also define functions

α = αN = αN,f : N 3 x→ sup{n ∈ Z+ | BSn(x,N, f) 6= ∅},
ω = ωN = ωN,f : N 3 x→ sup{n ∈ Z+ | FSn(x,N, f) 6= ∅},

and sets

Inv−(N, f) := {x ∈ N | BS∞(x,N, f) 6= ∅},
Inv+(N, f) := {x ∈ N | FS∞(x,N, f) 6= ∅}.

We will omit f or N and f in the above notations if they are clear from
context.

Assume now that N is an isolating neighborhood with respect to f .

Definition 4.1 (cf. [Mr1, Def. 2.1]). The pair P = (P1, P2) of compact
subsets of N will be called a strong index pair iff

(4.3) P1, P2 are positively invariant with respect to N,

(4.4) Inv−N ⊂ intN P1, Inv+N ⊂ N\P2,

(4.5) P1\P2 ⊂ intN ∩ f−1(intN).

Proposition 4.2. Each strong index pair is an index pair.

The family of strong index pairs in N will be denoted by SIP(N, f) or
by SIP(N).

The proof of the following proposition is straightforward.

Proposition 4.3. Assume N is compact , {xn} ⊂ N , xn → x and for
some k ∈ N and each n ∈ N, BSk(xn) 6= ∅ (FSk(xn) 6= ∅). Then also
BSk(x) 6= ∅ (FSk(x) 6= ∅).

As an immediate consequence, we get

Proposition 4.4. α and ω are upper semicontinuous.

Lemma 4.5. Assume N is compact and αN or ωN is unbounded. Then
InvN 6= ∅.

P r o o f. Assume αN is unbounded. Then for each n ∈ N we can choose
xn ∈ N such that αN (xn) = 2n. Let σn : I2n → N be the left solution
through xn in N . Put yn := σn(n). Then, obviously, αN (yn) ≥ n and
ωN (yn) ≥ n. Let y be a cluster point of {yn}. Then, by Proposition 4.4,
αN (y) = ωN (y) =∞, i.e. y ∈ InvN .

If ωN is unbounded, the proof is analogous.

We shall need the m.v. map

FdN := FdN,f : N 3 x→ {f i(x) | i = 0, 1, . . . , ωN (x)} ⊂ N.
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As in [Mr1, Sect. 5] we prove the following two lemmas.

Lemma 4.6. The m.v. mapping FdN is u.s.c. on N\ Inv+N .

Lemma 4.7. Assume Z is compact and Z ∩ Inv+N = ∅. Then FdN (Z)
is compact and FdN (Z)∩ Inv+N = ∅, i.e. N\FdN (Z) is a neighborhood of
Inv+N .

Lemma 4.8. Assume Z is a compact neighborhood of Inv−N in N . Then
FdN (Z) is compact.

P r o o f. Let {yn} ⊂ FdN (Z), yn → y ∈ N . If y ∈ Inv−N then y ∈ Z ⊂
FdN (Z). Otherwise αN (y) < ∞. Choose {jn} ⊂ Z+ and {zn} ⊂ Z such
that f jn(zn) = yn and jn ∈ {0, 1, . . . , ωN (x)}. Now αN (y) <∞ implies that
{jn} is bounded. Hence, we can assume that jn → j ∈ Z+ and zn → z ∈ Z.
Thus f j(z) = y and f i(z) ∈ N for i = 0, 1, . . . , j, i.e. y ∈ FdN (Z). It follows
that FdN (Z) is compact.

Lemma 4.9. Assume A is compact , positively invariant with respect to
N and Inv−N ⊂ A. Then, for every open neighborhood V of A, there exists
a compact neighborhood Z of A in N such that

(4.6) FdN (Z) ⊂ V.
P r o o f. Let k ∈ N be such that αN (y) < k for all y ∈ N\V . For x ∈ A

put
n(x) := min(k, ωN (x)).

As in [Mr1, Lemma 5.8] find an open neighborhood Z of A such that

(4.7) f j(z) ∈ V for all z ∈ Z and j = 0, 1, . . . , n(z).

Take x ∈ FdN (Z). Then there exist z ∈ Zn and m ∈ Z+ such that x = fm(z)
and m ≤ ωN (z). If m ≤ k, then m ≤ n(z) and x ∈ V by (4.7). If m > k
then x 6∈ V implies αN (x) < k. But

{fm−k(z), fm−k+1(z), . . . , fm(z)} ⊂ N,
fm(z) = x and αN (x) ≥ k. Thus x ∈ V .

Theorem 1.2 is a straightforward consequence of the following lemma,
which can be proved as in [Mr1] with Lemmas 5.7, 5.8 replaced by Lemmas
4.8, 4.9 of the present paper.

Lemma 4.10. Assume U and V are open neighborhoods of Inv+N and
Inv−N respectively. Then there exists a strong index pair P in N such that

(4.8) P1 ⊂ V, N\P2 ⊂ U.
Definition 4.11. Assume P,Q ∈ IP(N). We will say that P is related

to Q iff P ⊂ Q and Q1\P2 ⊂ f−1(N).

As in [Mr1], we prove the following lemma.
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Lemma 4.12. For every isolating neighborhood N there exist P,Q ∈
SIP(N) such that P ⊂ intN Q and P is related to Q. If P,Q ∈ SIP(N),
P ⊂ intN Q and P is related to Q, then there exists R ∈ SIP(N) such that
P ⊂ intN R, R ⊂ intN Q, P is related to R, and R is related to Q.

5. The category of pairs and the quotient functor. It will be
convenient to make the division process in P1/P2 functorial. To this end we
introduce the category Prs, defined as follows. Its objects are pairs (P1, P2),
where P1 is a compact topological space and P2 ⊂ P1 is its closed subset.
The set of morphisms from P = (P1, P2) to Q = (Q1, Q2) consists of all
partial continuous maps h : P1 −→◦ Q1 such that

(5.1) domh is closed in P1,

(5.2) h(P2) ⊂ Q2,

(5.3) h(bdP1(domh)) ⊂ Q2.

Observe that the identity map id : P1 → P1 satisfies (5.1)–(5.3) for any
closed subset P2 ⊂ P1. We take it as the identity morphism of P = (P1, P2)
in Prs.

Assume P,Q,R ∈ Prs and α : P → Q and β : Q→ R are morphisms in
Prs. We define the composition βα as the mapping

βα : α−1(domβ) 3 x→ β(α(x)) ∈ R1.

Proposition 5.1. Prs constitutes a category.

P r o o f. The only thing we need to verify is whether the composition of
morphisms in Prs is a morphism in Prs. Obviously βα is continuous and
α−1(domβ), being closed in dom α, is also closed in P1. Property (5.2) is
trivial. To see that
(5.4) βα(bd(α−1(domβ))) ⊂ R2

take x ∈ bd(α−1(domβ)). Then x ∈ domα and α(x) ∈ domβ. If x ∈
bd(domα) then α(x) ∈ Q2 and (βα)(x) ∈ R2, by (5.2). If α(x) ∈ bd(domβ)
then β(α(x)) ∈ β(bd(domβ)) ⊂ R2. Otherwise, x ∈ int(domα) and α(x) ∈
int(domβ). But this contradicts x ∈ bd(α−1(domβ)). Hence (5.3) is proved
and βα is a morphism in Prs.

With every object P = (P1, P2) ∈ Prs we associate the quotient space
P1/P2 defined by

P1/P2 := P1\P2 ∪ {[P2]}
and endowed with the strongest topology for which the projection qP : P1 →
P1/P2 given by

qP (x) :=
{
x if x ∈ P1\P2,
P2 otherwise

is continuous.
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Assume P,Q ∈ Prs and α : P → Q is a morphism in Prs. Put

(5.5) Quot(P ) := (P1/P2, P2),

(5.6) Quot(α)(x) :=
{
qQ(α(x)) if x 6= [P2] and x ∈ domα,
[Q2] otherwise.

Proposition 5.2. Formula (5.6) defines a continuous map

Quot(α) : P1/P2 → Q1/Q2.

P r o o f. Put α′ := Quot(α) and take x ∈ P1/P2. Let U ′ be a neighbor-
hood of α′(x). Put U := qQ−1(U ′). Then U ⊃ Q2 if α′(x) = [Q2]. We can also
assume that U ∩Q2 = ∅, i.e. U = U ′, if α′(x) 6= [Q2]. Since α : domα→ Q1

is continuous, we will find V open in P1 such that V ∩domα = α−1(U). We
will consider two cases. First assume that α′(x) = [Q2]. Then, by (5.2),

P2 = (P2 ∩ domα) ∪ (P2\domα) ⊂ α−1(Q2) ∪ (P2\domα)

⊂ α−1(U) ∪ (P1\domα) ⊂ V ∪ (P1\domα) =: W.

Put W ′ := qP (W ). Then W ′ is an open neighborhood of x in P1/P2 and
α′(W ′) ⊂ U ′.

Hence it remains to consider the case α′(x) 6= [Q2]. Then, by (5.3),
x ∈ int(domα). Thus we can find a set V1 ⊂ V open in P1 such that
x ∈ V1 ⊂ int(domα). It follows that

α′(V1) = α(V1) = α(V1 ∩ domα) ⊂ α(V ∩ domα) ⊂ U = U ′.

Once we know Quot(α) is continuous, it is a straightforward task to
verify the following.

Corollary 5.3. Formulae (5.5)–(5.6) define a covariant functor Quot :
Prs→ Comp∗.

Proposition 5.4. Assume α : P → P is a morphism in Prs. Then
Quot(α) = id iff the following two conditions are satisfied :

(5.7) P1\P2 ⊂ domα,

(5.8) α(x) = x for x ∈ P1\P2.

P r o o f. Put α′ := Quot(α) and assume α′ = id. It follows that x 6=
[P2] ⇒ α′(x) 6= α′([P2]) = [P2]. Since α′(x) = [P2] for x 6∈ domα, we get
P1\P2 ⊂ domα. Moreover, if x ∈ P1\P2 then α(x) = α′(x) = x. Hence (5.7)
and (5.8) are proved.

If (5.7) and (5.8) are satisfied, we have for x ∈ P1\P2, α′(x) = α(x) = x.
Obviously also α′(P2) = [P2], hence α′ = id.

Theorem 5.5 (Excision property for the functor Quot). Assume P,Q ∈
Prs are such that
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(5.9) P1\P2 = Q1\Q2 and P1 is closed in Q1.

Then Quot(iP,Q) is an isomorphism in Comp∗.

P r o o f. We will show that j := idP is a morphism from Q to P in Prs.
Properties (5.1)–(5.2) are obviously satisfied. We also have

bd(dom j) = bdP1 ⊂ cl(Q1\P1) ⊂ Q2,

because, by (5.9), Q1\P1 ⊂ Q2 and Q2 is closed in Q1. This shows (5.3).
Now j ◦ iP,Q = idP , the identity on P in Prs, hence Quot(j ◦ iP,Q) is an

identity in Comp∗. By Proposition 5.4, Quot(iP,Q ◦ j) is also an identity in
Comp∗. It follows that Quot(iP,Q) and Quot(j) are mutually inverse.

A morphism H ∈ Prs(P × I,Q) with I = [0, 1] will be called a homotopy
from P to Q in Prs. For each t ∈ I one defines the partial morphism Ht ∈
Prs(P,Q) by Ht := H ◦ it, where it ∈ Prs(P, P × I) is the full morphism
it := P 3 x→ (x, t) ∈ P × I.

We say that two morphisms f, g ∈ Prs(P,Q) are homotopic if there exists
a homotopy H ∈ Prs(P × I,Q) such that f = H0, g = H1. We then write
f ∼ g in Prs.

The following proposition can be verified as in the case of usual homo-
topies.

Proposition 5.6. Homotopy between morphisms in Prs is an equivalence
relation, which coincides with composition of morphisms.

Thus we can introduce the homotopy category of pairs, which has the
same objects as Prs and equivalence classes of morphisms homotopic in Prs
as morphisms. We will denote this category by HPrs.

Proposition 5.7. If f and g are homotopic in Prs then Quot(f) and
Quot(g) are homotopic in Comp∗.

P r o o f. Observe that

(P1/P2)× I\[P2]× I = P1 × I/P2 × I\[P2 × I].

Consider the map

κ : (P1/P2)× I → P1 × I/P2 × I
which is the identity on (P1/P2)× I\[P2]× I and sends all points in [P2]× I
to [P2 × I]. It is straightforward to verify that κ is continuous. Let H be a
homotopy in Prs such that H0 = f and H1 = g. Put H ′ := Quot(H) ◦ κ.
One can easily verify that H ′ is a homotopy in Comp∗ joining Quot(f) and
Quot(g).

Hence we can also consider the functor Quot as a functor Quot : HPrs→
HComp∗.
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Assume f : X → X is a continuous map and P,Q ∈ Prs consist of
subsets of X. Define the map

fPQ : P1 ∩ f−1(Q1) 3 x→ f(x) ∈ Q1.

Note that this map need not be a morphism from P to Q in Prs. However,
we have the following.

Proposition 5.8. If f satisfies

(5.10) P1\P2 ⊂ f−1(Q1)

and

(5.11) P2 ∩ f−1(Q1) ⊂ f−1(Q2)

then fPQ ∈ Prs(P,Q).

P r o o f. Since dom fPQ = P ∩ f−1(Q) is closed in P , we only need to
verify (5.2) and (5.3). By (5.11),

fPQ(P2) = f(P2 ∩ f−1(Q1)) ⊂ f(f−1(Q2)) ⊂ Q2,

which proves (5.2). By (5.10) we have clP1(P1\f−1(Q1)) ⊂ P2, hence, by
(5.11),

bdP1 P1 ∩ f−1(Q1) = P1 ∩ f−1(Q1) ∩ clP1(P1\f−1(Q1))

⊂ P2 ∩ f−1(Q1) ⊂ f−1(Q2),

which proves (5.3).

6. The construction of the Conley index. It follows from Proposi-
tion 5.8 that fPP ∈ Prs(P, P ). We give the following definition.

Definition 6.1. Both fPP and fP := Quot(fPP ) : P1/P2 → P1/P2 will
be called the index maps associated with the index pair P (and the map f).
This will cause no misunderstanding.

Every index pair P together with the associated index map fPP con-
stitutes an object Pf := (P, fPP ) ∈ Endo(Prs). If we put T ′ := T ◦ Quot,
Theorem 1.7 can be reformulated as follows.

Theorem 6.2. Assume K is an isolated invariant set with respect to f :
X −→◦ X. Then LT ′(Pf ) and LT ′(Qf ) are isomorphic objects in Auto(E)
for all isolating neighborhoods N,M of K and P ∈ IP(N), Q ∈ IP(M).

Obviously, in order to prove Theorem 1.7, it suffices to prove the above
theorem. Theorem 6.2 can be proved as in [Mr1, Th. 2.6] if we are able to
prove the following.

Theorem 6.3. Assume f : X −→◦ X is a map, N is an isolating
neighborhood with respect to f and P,Q ∈ IP(N) are such that P ⊂ Q.
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If ι : P → Q denotes the inclusion and T ′ = T ◦Quot then T ′(ι) : Pf → Qf
is a morphism in Endo(E) and LT ′(ι) is an isomorphism in Auto(E).

P r o o f. We assume that T is a covariant functor. The proof for a con-
travariant functor is similar. First we assume that

(6.1) P is related to Q,

(6.2) f(Q) ∩N ⊂ P.
Condition (6.2) and Proposition 5.9 imply that fQP ∈ Prs(Q,P ). Hence

we have the following commutative diagram, in which the vertical arrows
denote inclusions:

P P

Q Q

fPP //

ι

²²
ι

²²fQPxxxxxxx<<

fQQ
//

Applying T ′, we obtain the commutative diagram

T ′(P ) T ′(P )

T ′(Q) T ′(Q)

T ′(fP ) //

T ′(ι)
²²

T ′(ι)
²²T ′(fQP )rrrrrrrr99

T ′(fQ)
//

Now Theorem 1.4 shows that LT ′(ι) is an isomorphism.
The rest of the proof proceeds as in Steps 2, 3 of the proof of Theorem 6.4

in [Mr1] with the difference that we use Theorem 5.6 instead of the strong
excision property of the Alexander–Spanier cohomology.

7. Proof of the homotopy property. In this and the following section
T ′ denotes T ◦Quot. Assume Λ ⊂ R is a compact interval, U ⊂ X is open.
For ∆ ⊂ Λ consider the mapping

f(∆) : ∆× U 3 (λ, x)→ (λ, f(λ, x)) ∈ ∆×X
defined for (λ, x) ∈ dom f such that λ ∈ Λ.

We will simply write fλ instead of f({λ}) and λ or ∆ instead of fλ or
f(∆) in all cases where fλ or f(∆) appear as parameters.

Proposition 7.1. Assume N ⊂ U is compact. Then the m.v. mappings

Λ 3 λ→ Inv−(N,λ) ⊂ N, Λ 3 λ→ Inv+(N,λ) ⊂ N
are u.s.c.

Corollary 7.2. If for some µ ∈ Λ, N is an isolating neighborhood with
respect to fµ, then N is an isolating neighborhood with respect to fλ for λ
sufficiently close to µ.
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Lemma 7.3. Assume I ⊂ R is an interval , µ ∈ I, F : X × I −→→ Y is a
m.v. map, U is open in Y and A ⊂ X is compact such that for every x ∈ A
there exist a neighborhood V of x in X and a neighborhood ∆ of µ in I
such that F (V ×∆) ⊂ U . Then there exist µ′, µ′′ ∈ I such that µ ∈ (µ′, µ′′)
and F (A× (µ′, µ′′)) ⊂ U .

P r o o f. Compactness.

Lemma 7.4. If P,Q ∈ SIP(N,µ) are such that P ⊂ intN Q and P is
related to Q then there exists Λ0, a neighborhood of µ in Λ, such that for
every interval ∆ ⊂ Λ0, P (∆) := FdN×∆,∆(P×∆) is an index pair in N×∆
with respect to f(∆) and P ×∆ ⊂ P (∆) ⊂ Q×∆.

P r o o f. By (5.2) and Proposition 7.1 we have

(7.1) Inv−(N,∆) ⊂ intN×∆(P1 ×∆),

(7.2) Inv+(N,∆) ⊂ (N\Q2)×∆
for ∆ contained in some sufficiently small neighborhood Λ1 of µ. Upper
semicontinuity of Fd and continuity of f allow us to apply Lemma 7.3 three
times respectively to

F = FdN×Λ1,Λ1 , U = intN Q1 × Λ1, A = P1,

F = FdN×Λ1,Λ1 , U = intN Q2 × Λ1, A = P2,

F = f(Λ1), U = intN × Λ1, A = cl(Q1\P2).

Hence we can find Λ0 ⊂ Λ such that

(7.3) FdN×Λ1,Λ1(P1 × Λ0) ⊂ intN Qi × Λ0 for i = 1, 2,

(7.4) f(cl(Q1\P2)× Λ0) ⊂ intN.

In particular, by (7.3), for every compact interval ∆ ⊂ Λ1,

(7.5) Pi ×∆ ⊂ Pi(∆) ⊂ Qi ×∆.
Compactness of P1(∆) follows from (7.1) and Lemma 4.8. Compactness of
P2(∆) follows from (7.2) and Lemma 4.7. Positive invariance with respect
to N ×∆ is obvious. Finally, by (7.1)–(7.3),

Inv(N,∆) = Inv−(N,∆) ∩ Inv+(N,∆) ⊂ intN×∆(P1(∆)\P2(∆))

and by (7.5) and (7.4),

P1(∆)\P2(∆) ⊂ (Q1\P2)×∆ ⊂ f(∆)−1(N)×∆.
Lemma 7.5. Assume N ⊂ X, µ ∈ Λ, P,Q ∈ SIP(N,µ) are such as in the

previous lemma. Then there exists Λ0, a neighborhood of µ in Λ, such that
for every κ ∈ Λ0 there exists R(κ) ∈ IP(N,κ) satisfying P ⊂ R(κ) ⊂ Q and
such that the inclusions i : P → R(κ) and j : R(κ)→ Q induce morphisms

T ′(i) : T ′(Pfµ)→ T ′(R(κ)fκ), T ′(j) : T ′(R(κ)fκ)→ T ′(Qfµ)
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in Endo(E). (This applies to a covariant functor T . Arrows are reversed if
T is contravariant.)

P r o o f. We assume that T is covariant, the proof for a contravariant
functor being similar. Applying Lemma 4.12 find R,S ∈ SIP(N) such that
P ⊂ intN R ⊂ R ⊂ intN S ⊂ S ⊂ intN Q. It follows from Lemma 7.3 that
we can find a neighborhood Λ0 of µ such that for every compact interval
∆ ⊂ Λ0 there exist index pairs P (∆), R(∆), S(∆) satisfying

P ×∆ ⊂ P (∆) ⊂ R×∆ ⊂ R(∆) ⊂ S ×∆ ⊂ S(∆) ⊂ Q×∆.
Fix κ ∈ ∆0. Let I denote the closed interval with endpoints µ, κ. Put

H := fP×I,R(κ), G := fR(κ)×I,Q.

We will show that H ∈ Prs(P × I,R(κ)) and G ∈ Prs(R(κ) × I,Q). Since
obviously domH is closed, we need only prove (5.2)–(5.3). Assume (x, λ) ∈
(P2 × I) ∩ f−1(R1(κ)). Then

x ∈ P2 ∩ fλ−1(R1(κ) ⊂ P2(λ) ∩ fλ−1(R1(κ) ⊂ P2(λ) ∩ fλ−1(N)

⊂ fλ−1(P2(λ)) ⊂ fλ−1(R2) ⊂ fλ−1(R2(κ)),

i.e. P2 × I ∩ f−1(R1(κ)) ⊂ f−1(R2(κ)), which proves (5.2).
We have

P1 × I ∩ f−1(R1(κ)) ∩ cl(P1 × I\f−1(R1(κ))

⊂ P1(I) ∩ f(I)−1(N × I) ∩ cl(P1(I)\f(I)−1(P1(I)))

⊂ bd dom fP (I) ⊂ fP (I)−1(P2(I)) ⊂ f−1(R2(κ)).

This proves that H ∈ Prs(P×I,R(κ)). The proof that G ∈ Prs(R(κ)×I,Q)
is analogous.

It is now straightforward to verify that H is a homotopy joining iP,R(κ) ◦
fµ,P and fκ,R(κ) ◦ iP,R(κ) and G is a homotopy joining iR(κ),Q ◦ fκ,R(κ) and
fµ,Q◦iR(κ),Q. Hence, applying T ′, we get the following commutative diagram
in E :

T ′(P ) T ′(P )

T ′(R(κ)) T ′(R(κ))

T ′(Q) T ′(Q)

T ′(fµ,P ) //

²² ²²

²²

T ′(fκ,R(κ)) //

²²T ′(fµ,Q) //

with vertical arrows induced by inclusions. But this proves our assertion.



Shape index and indices of Conley type 35

P r o o f o f T h e o r e m 1.10. Obviously it is sufficient to show that for
any µ ∈ Λ there exists a neighborhood Λ0 of µ such that for all ν ∈ Λ0,

C(Inv(N,µ)) = C(Inv(N, ν)).

Thus fix µ ∈ Λ and using Lemma 4.12 find index pairs P,Q,R ∈ IP(N,µ)
such that P ⊂ intN Q, Q ⊂ intN R, P is related to Q, and Q is related to
R. Applying Lemma 7.5 twice, we can find a neighborhood Λ0 of µ in Λ
such that for every λ ∈ Λ0 there exist index pairs P (λ), Q(λ) ∈ IP(N,λ)
satisfying P ⊂ P (λ) ⊂ Q ⊂ Q(λ) and such that we have the following
commutative diagram of maps induced by inclusions:

T ′(P (λ)fλ) T ′(Qfµ)

T ′(Pfµ) T ′(Q(λ)fλ)

T ′(j1) //

T ′(j2)
²²

T ′(j0)

OO

T ′(j)
//

By applying the functor L to the above diagram, we find from Theorem 6.3
that LT ′(j1) ◦ LT ′(j0) = LT ′(j1 ◦ j0) and LT ′(j2) ◦ LT ′(j1) = LT ′(j2 ◦ j1)
are isomorphisms, thus LT ′(j) is also an isomorphism. Hence

C(Inv(N,µ)) = LT ′(P ) = LT ′(Q(λ)) = C(Inv(N,λ)),

which finishes the proof.

8. Proofs of additivity and commutativity properties

P r o o f o f T h e o r e m 1.11. Choose U1, U2 to be disjoint, open neigh-
borhoods of K1 and K2 respectively. For i = 1, 2 let Ni be a compact
neighborhood of Ki such that

(8.1) Ni ⊂ U.
Select index pairs P ′, P ′′ of K1 and K2 in N1 and N2 respectively. One can
easily verify that P := P ′ ∪ P ′′ is an index pair of K in N := N1 ∪ N2.
Obviously fP = fP ′ ∪ fP ′′ . Hence, since T preserves coproducts, T ′(Pf ) is
the coproduct of T ′(P ′f ) and T ′(P ′′f ). It now suffices to apply L.

P r o o f o f T h e o r e m 1.12. Choose an isolating neighborhood M such
that InvM = K. Since ϕ(K) is compact and by the invariance of K with
respect to f we get ψ(ϕ(K)) = f(K) = K. Hence we can find a compact
neighborhood N of ϕ(K) such that

(8.2) ψ(N) ⊂ intM.

We will show that Inv(N, g) = ϕ(K). Note that g(ϕ(K)) = ϕψϕ(K) =
ϕ(f(K)) = ϕ(K). Hence ϕ(K) is g-invariant, i.e. ϕ(K) = Inv(ϕ(K), g) ⊂
Inv(N, g). To show the opposite inclusion, take y ∈ Inv(N, g). Let τ : Z→ N
be a solution to g through y. Put σ := ψτ . It is straightforward to verify
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that σ is a solution to f through ψ(y). Moreover, (8.2) implies that σ is a
solution in M . In particular, σ(−1) ∈ InvM = K, hence

y = τ(0) = g(τ(−1)) = ϕ(σ(−1)) ∈ ϕ(K).

This proves that ϕ(K) is an isolated invariant set and N isolates ϕ(K).
Put M ′ := M ∩ ϕ−1(N). Observe that InvM ′ ⊂ InvM = K and also

K ⊂ ϕ−1(N), which implies InvM ′ = K. Moreover,

K ⊂ intM ∩ intϕ−1(N) = intM ′.

Thus M ′ is an isolating neighborhood for K.
Select Q ∈ IP(N) and put Pi := M ′ ∩ ϕ−1(Qi) for i = 1, 2. We will

show that P := (P1, P2) ∈ IP(M ′). First observe that if x ∈ Pi(i = 1, 2)
and f(x) ∈ M ′ then ϕ(x) ∈ Qi and g(ϕ(x)) = ϕ(f(x)) ∈ N . Since Q ∈
IP(N), we get ϕ(f(x)) ∈ Qi, i.e. f(x) ∈ Pi. This proves (1.1). Now take
x ∈ P1\P2. Then ϕ(x) ∈ Q1\Q2 ⊂ G−1(N), i.e. ϕf(x) = gϕ(x) ∈ N . Thus
f(x) ∈ ϕ−1(N). Moreover, f(x) = ψϕ(x) ∈ ψ(Q1) ⊂ ψ(N) ⊂ M and we
get f(x) ∈M , which proves (1.2). Finally, since ϕ(K) ⊂ int(P1\P2), we can
find an open neighborhood U ⊂ intM of K such that ϕ(U) ⊂ int(Q1\Q2).
Then U ⊂ int(ϕ−1(Q1)\ϕ−1(Q2)) and

K ⊂ U ⊂ intM ∩ int(ϕ−1(Q1)\ϕ−1(Q2)) = int(P1\P2).

This proves that P ∈ IP(M ′).
One can easily verify the assumptions of Proposition 5.8 to see that

ϕPQ ∈ Prs(P,Q) and ψQP ∈ Prs(Q,P ). Moreover, ψQP ◦ ϕPQ = fP and
ϕPQ ◦ ψQP = gQ, hence, we have a commutative diagram in E (if T is
contravariant, then the arrows are reversed):

T ′(P ) T ′(P )

T ′(Q) T ′(Q)

T (fP ) //

T ′(ϕPQ)
²²

T ′(ϕPQ)
²²T ′(fQP )pppppppppp77

T (gQ)
//

It now follows from Theorem 1.4 that LT ′(ϕPQ) is an isomorphism in
Auto(E), i.e. C(K, f) = LT ′(Pf ) and C(ϕ(K), g) = LT ′(Qg) are isomor-
phic.
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