Cantor manifolds in the theory of transfinite dimension

by

Wojciech Olszewski (Warszawa)

Abstract. For every countable non-limit ordinal α we construct an α -dimensional Cantor ind-manifold, i.e., a compact metrizable space Z_{α} such that $\operatorname{ind} Z_{\alpha} = \alpha$, and no closed subset L of Z_{α} with $\operatorname{ind} L$ less than the predecessor of α is a partition in Z_{α} . An α -dimensional Cantor Ind-manifold can be constructed similarly.

1. Introduction. Unless otherwise stated all spaces considered are metrizable and separable. Our terminology and notation follow [2] and [4] with the exception of the boundary, closure, and interior of a subset A of a topological space X, which are denoted by bd A, cl A, and int A, respectively.

We denote by I the unit closed interval, and by I^n the standard *n*dimensional cube, i.e., the Cartesian product of n copies of I. By an *arc* we mean every space homeomorphic to I, and by an *n*-dimensional cube every space homeomorphic to I^n ; we identify every such space with I^n by a "canonical" homeomorphism. This allows us to apply geometrical notions, e.g., broken line or parallelism, to spaces homeomorphic to I^n . In the sequel, we assume that "canonical" homeomorphisms are always defined in a natural way, and they are not described; we will simply apply geometrical notions to the cubes.

We denote by $a^{\wedge}b$ any arc with endpoints a and b, i.e., an arc J such that h(0) = a and h(1) = b, where $h : I \to J$ is the "canonical" homeomorphism.

A partition in a space X between a pair of disjoint sets A and B is a closed set L such that $X - L = U \cup V$, where U and V are disjoint open sets with $A \subseteq U$ and $B \subseteq V$.

The small transfinite dimension ind and the large transfinite dimension Ind are the extension by transfinite induction of the classical Menger– Urysohn dimension and the classical Brouwer–Čech dimension:

• ind X = -1 as well as Ind X = -1 means $X = \emptyset$,

1991 Mathematics Subject Classification: Primary 54F45.

^[39]

• ind $X \leq \alpha$ (resp. Ind $X \leq \alpha$), where α is an ordinal, if and only if for every $x \in X$ and each closed set $B \subseteq X$ such that $x \notin B$ (resp. for every pair A, B of disjoint closed subsets of X), there exists a partition L between x and B (resp. a partition L between A and B) such that ind $L < \alpha$ (resp. Ind $L < \alpha$),

• ind X is the smallest ordinal α with ind $X \leq \alpha$ if such an ordinal exists, and ind $X = \infty$ otherwise,

• Ind X is the smallest ordinal α with Ind $X \leq \alpha$ if such an ordinal exists, and ind $X = \infty$ otherwise.

The transfinite dimension ind was first discussed by W. Hurewicz [6] and the transfinite dimension Ind by Yu. M. Smirnov [12]; a comprehensive survey of the topic is given by R. Engelking [3].

The small transfinite dimension of a space X at a point x does not exceed an ordinal α (written briefly $\operatorname{ind}_x X \leq \alpha$) if for each closed set $B \subseteq X$ not containing x there exists a partition L between x and B such that $\operatorname{ind} L < \alpha$. The small transfinite dimension of a space X at a point x, denoted by $\operatorname{ind}_x X$, is the smallest ordinal α such that $\operatorname{ind}_x X \leq \alpha$ if such an ordinal exists, and ∞ otherwise.

If $X \neq \emptyset$, then ind X and Ind X are either countable ordinals or equal to infinity (see [6] and [12], or [3], Theorems 3.5 and 3.8). Obviously, ind $X \leq$ Ind X, but the reverse inequality does not hold; there exists a compact space X such that ind X < Ind X (see [9]).

For a long time all known compact spaces X with $\operatorname{ind} X = \alpha \ge \omega_0$ had the property that $\operatorname{ind}_x X = \alpha$ only for some distinguished points x; B. A. Pasynkov asked whether there exist compact spaces X with $\operatorname{ind}_x X = \alpha$ for every $x \in X$, or even with a stronger property that X is an α dimensional Cantor manifold (see [1]).

1.1. DEFINITION. Let $\alpha = \beta + 1$ be a non-limit ordinal. A compact metrizable space X such that $\operatorname{ind} X = \alpha$ (resp. $\operatorname{Ind} X = \alpha$) is an α -dimensional *Cantor* ind-manifold (resp. Ind -manifold) if no closed set $L \subseteq X$ with $\operatorname{ind} L < \beta$ (resp. $\operatorname{Ind} L < \beta$) is a partition in X between any pair of points.

For $\alpha = n < \omega_0$, the above notions and the classical notion of a Cantor manifold (see [2], Definition 1.9.5) are equivalent; the *n*-dimensional cube I^n is an example of an α -dimensional Cantor manifold. Of course, every α -dimensional Cantor ind-manifold has the property that $\operatorname{ind}_x X = \alpha$ for each $x \in X$. In [1], V. A. Chatyrko gave examples of a non-metrizable α dimensional ind-manifold and a non-metrizable α -dimensional Ind-manifold for every non-limit ordinal α such that $\omega_0 < \alpha < \omega_1$; he also constructed, for every infinite $\alpha < \omega_1$, a compact metrizable space X_α with $\operatorname{ind} X_\alpha < \infty$, and a compact metrizable space Y_α with $\operatorname{Ind} Y_\alpha < \infty$ such that $\operatorname{ind} L \geq \alpha$ for every partition L in X_{α} between any pair of points, and $\operatorname{Ind} L \geq \alpha$ for every partition L in Y_{α} between any pair of points.

In the present paper, we construct a metrizable α -dimensional Cantor ind-manifold Z_{α} for every non-limit infinite ordinal $\alpha < \omega_1$. Slightly modifying this construction, one can also define metrizable Cantor Ind-manifolds. However, we will restrict the discussion to the small transfinite dimension, and in the sequel "Cantor manifold" will mean "Cantor ind-manifold".

Acknowledgements. The paper contains some of the results of my Ph.D. thesis written under the supervision of Professor R. Engelking whom I wish to express my thanks for his active interest in the preparation of the thesis.

2. Henderson's spaces. Yu. M. Smirnov defined a sequence $\{S_{\alpha} : \alpha < \omega_1\}$ of compact metrizable spaces with the property that $\operatorname{Ind} S_{\alpha} = \alpha$ for every $\alpha < \omega_1$ (see [12]). Slightly modifying his construction, D. W. Henderson defined a sequence $\{H_{\alpha} : \alpha < \omega_1\}$ of absolute retracts with the same property (see [5]).

Let us recall the definitions of S_{α} and H_{α} .

We apply induction on α ; we simultaneously distinguish a point $p_{\alpha} \in H_{\alpha}$ and, for $\alpha > 0$, a covering C_{α} of H_{α} by cubes of positive dimensions.

Let $S_0 = H_0 = \{p_0\}$ be the one-point space, $S_1 = H_1 = I$, $p_1 = 0$, and $C_1 = \{I\}$. Assume that $S_\beta, H_\beta, p_\beta$, and C_β are defined for every $\beta < \alpha$.

If $\alpha = \beta + 1$ for some β , then set $S_{\alpha} = S_{\beta} \times I$, $H_{\alpha} = H_{\beta} \times I$, $p_{\alpha} = (p_{\beta}, 0)$, $C_{\alpha} = \{C \times I : C \in C_{\beta}\}.$

If α is a limit ordinal, then let S_{α} be the one-point compactification of the topological sum $\bigoplus \{S_{\beta} : \beta < \alpha\}$. In order to define H_{α} take a half-open arc A'_{β} with endpoint p_{β} such that $H_{\beta} \cap A'_{\beta} = \{p_{\beta}\}$, and set $K'_{\beta} = H_{\beta} \cup A'_{\beta}$ for every $\beta < \alpha$. Let H_{α} be the one-point compactification of the topological sum $\bigoplus \{K'_{\beta} : \beta < \alpha\}$; let p_{α} stand for the unique point of the remainder. Set $A_{\beta} = A'_{\beta} \cup \{p_{\alpha}\}$ and $K_{\beta} = K'_{\beta} \cup \{p_{\alpha}\}$ for $\beta < \alpha$. Let

$$\mathcal{C}_{\alpha} = \{A_{\beta} : \beta < \alpha\} \cup \bigcup \{\mathcal{C}_{\beta} : 0 < \beta < \alpha\}.$$

For simplicity of notation, we will identify the spaces $H_n = I^n$ and $H_0 \times I^n$, where $H_0 = \{p_0\}$.

The spaces H_{ω_0} and H_{ω_0+1} are exhibited in Fig. 2.1.

Observe that S_{α} is embeddable in H_{α} for every $\alpha < \omega_1$, and that if $\beta < \alpha$, then S_{β} is embeddable in S_{α} and H_{β} is embeddable in H_{α} .

Henderson's spaces play an important role in our considerations, whereas Smirnov's spaces will only be used in the proof of Theorem 2.1.

Both Henderson's and Smirnov's spaces are also a source of examples of compact metrizable spaces with given small transfinite dimension.

W. Olszewski

Indeed, one proves that

Ind $X \leq \omega_0 \cdot \operatorname{ind} X$ for every hereditarily normal compact space X (see [8]),

 $\operatorname{ind}(X \times I) \leq \operatorname{ind} X + 1$ for every metrizable space X

(see [13]).

From the theorems mentioned above and the easy equality

(2.1)
$$\operatorname{ind} H_{\lambda} = \sup\{\operatorname{ind} H_{\alpha} : \alpha < \lambda\},\$$

where λ is any countable limit ordinal, it follows that for every ordinal $\alpha < \omega_1$, there exists an ordinal $\beta \geq \alpha$ such that $\operatorname{ind} H_\beta = \alpha$.

The least ordinal β with ind $H_{\beta} = \alpha$ will be denoted by $\beta(\alpha)$. Note that $\beta(\alpha) > \alpha$ for some α (see [9]), and ind H_{α} is unknown for some α (see [3], Problems 2.3 and 2.4). From (2.1) it follows immediately that

(2.2) if
$$\alpha$$
 is a non-limit ordinal, then so is $\beta(\alpha)$.

The remaining part of this section is devoted to some notions and results concerning the spaces H_{α} .

Every ordinal α can be uniquely represented as the sum $\lambda + n$ of a limit ordinal λ or $\lambda = 0$ and a natural number n. From the construction of H_{α} it follows that $H_{\alpha} = H_{\lambda} \times I^n$. Let B_{α} denote the set $\{p_{\lambda}\} \times I^n$; we call it the base of H_{α} . Sometimes, we will identify the base B_{α} and the cube I^n ; in particular, we will write $H_{\alpha} = H_{\lambda} \times B_{\alpha}$. Thus for every ordinal $\alpha < \omega_1$, the base B_{α} of H_{α} is a finite-dimensional cube, and it has positive dimension whenever α is a non-limit ordinal.

In the sequel, we need the following two theorems. The first theorem for ind is a consequence of a theorem of G. H. Toulmin ([13], or [3], Theorem 5.16), and for Ind it is a consequence of a theorem obtained independently by M. Landau and A. R. Pears ([7] and [11], or [3], Theorem 5.17); the theorem for Ind also follows from a theorem of B. T. Levshenko ([8], or [3], Theorem 5.15). The second theorem was established by G. H. Toulmin ([13]).

2.A. THEOREM ([13], resp. [7] and [11]). If a hereditarily normal space X can be represented as the union of closed subspaces A_1 and A_2 such that ind $A_i \leq \alpha \geq \omega_0$ (resp. Ind $A_i \leq \alpha \geq \omega_0$) for i = 1, 2, and $A_1 \cap A_2$ is finite-dimensional, then ind $X \leq \alpha$ (resp. Ind $X \leq \alpha$).

2.B. THEOREM ([13]). If a hereditarily normal space X can be represented as the union of closed subspaces A_1 and A_2 with the property that there is a homeomorphism $h: A_1 \to A_2$ such that f(x) = x for every $x \in A_1 \cap A_2$, then

$$\operatorname{ind} X = \operatorname{ind} A_1 = \operatorname{ind} A_2.$$

2.1. THEOREM. Let $\alpha = \lambda + n$, where λ is 0 or a countable limit ordinal and $n \geq 1$ is a natural number. For every partition K in H_{α} between any pair of distinct points $a, b \in B_{\alpha}$, we have

ind
$$K \ge \operatorname{ind} H_{\alpha} - 1$$
 and $\operatorname{Ind} K \ge \lambda + (n-1)$.

Proof. As in the proof of Theorem 2.1 of [10] we can see that

(2.3) for every $x \in B_{\alpha}$ and each closed set $F \subseteq B_{\alpha}$ not containing x, there exists a partition L in H_{α} between x and F such that ind $L \leq \operatorname{ind} K$.

We first prove that

(2.4)
$$\operatorname{ind}_{x} H_{\alpha} \leq \operatorname{ind} K + 1 \quad \text{for every } x \in B_{\alpha}.$$

Let $x \in B_{\alpha}$ and let $F \subseteq H_{\alpha}$ be a closed set not containing x. Since $H_{\alpha} = B_{\alpha}$ for $\alpha < \omega_0$, we can assume that $\alpha \ge \omega_0$. Let $E = F \cap B_{\alpha}$; by (2.3), there exists a partition M in H_{α} between x and E such that ind $M \le \text{ind } K$. Let $U, V \subseteq H_{\alpha}$ be disjoint open sets such that $x \in U$, $E \subseteq V$, and $M = H_{\alpha} - (U \cup V)$.

By construction, we have

$$H_{\alpha} = B_{\alpha} \cup \bigcup \{ (K_{\beta} - \{p_{\lambda}\}) \times I^{n} : \beta < \lambda \};$$

from the definition of H_{α} it also follows that each closed subset of H_{α} disjoint from B_{α} meets only a finite number of the sets $(K_{\beta} - \{p_{\lambda}\}) \times I^{n}$. Thus

$$[F \cap (U \cup M)] \cap [(K_{\beta} - \{p_{\lambda}\}) \times I^{n}] \neq \emptyset$$

only for finitely many β , say for $\beta = \beta_1, \ldots, \beta_k$.

Fig. 2.2

Let $L_i \subseteq A_{\beta_i} \times I^n$, for i = 1, ..., k, be a partition in K_{β_i} between B_{α} and $[F \cap (U \cup M)] \cap [(K_{\beta_i} - \{p_{\lambda}\}) \times I^n]$ (see Fig. 2.2, where k = 2); since $\operatorname{ind}(A_{\beta_i} \times I^n) = n + 1$, we have $\operatorname{ind} L_i \leq n + 1$. It is easily seen that $M \cup \bigcup_{i=1}^{\infty} L_i$ contains a partition L in H_{α} between x and E (see Fig. 2.2); by Theorem 2.A and monotonicity of ind, we have

ind $L \leq \operatorname{ind} K$.

Thus the proof of (2.4) is concluded. Applying (2.4) we prove the first inequality of our theorem by induction on α . For every $\alpha < \omega_0$, the hypothesis of the theorem is equivalent to (2.4). Assume, therefore, that $\alpha \geq \omega_0$; that is, $\alpha = \lambda + n$, where λ is a limit ordinal and n is a natural number. Obviously, ind $K \geq \omega_0$. Assume the inequality holds for each $\beta < \alpha$. By (2.4) it suffices to show that $\operatorname{ind}_x H_{\alpha} \leq \operatorname{ind} K + 1$ for each $x \in H_{\alpha} - B_{\alpha}$.

Observe that K contains a partition in $H_{\beta} \times I^n = H_{\beta+n}$ between a pair of distinct points of the base $B_{\beta+n}$ for all but a finite number of $\beta < \lambda$. Thus, by the inductive assumption, $\operatorname{ind} H_{\beta+n} \leq \operatorname{ind} K + 1$ for those β ; since $\operatorname{ind} H_{\nu} \leq \operatorname{ind} H_{\mu}$ whenever $\nu \leq \mu$, we have $\operatorname{ind} H_{\beta+n} \leq \operatorname{ind} K + 1$ for all $\beta < \lambda$. By Theorem 2.A, every $x \in H_{\alpha} - B_{\alpha}$ has a neighbourhood U in H_{α} with $\operatorname{ind} U \leq \operatorname{ind} K + 1$, which completes the proof of the inequality $\operatorname{ind} H_{\alpha} \leq \operatorname{ind} K + 1$.

Just as the base B_{α} of H_{α} , one can define the base B'_{α} of S_{α} (see [10]). The inequality Ind $K \geq \lambda + (n-1)$ follows from Theorem 2.1 of [10], because there exists an embedding of S_{α} in H_{α} mapping B'_{α} onto B_{α} .

2.2. LEMMA. Let $\beta > 0$ be a countable ordinal. For every $x \in H_{\beta}$ and each closed set $E \subseteq H_{\beta}$ not containing x, there exists a partition Y in H_{β} between x and E such that

(2.5) for every cube $C \in C_{\beta}$, the set $Y \cap C$ is the union of a finite number of cubes of dimension less than that of C, each parallel to a proper face of C; furthermore, if $\beta = \beta(\alpha)$ for some α , then ind $Y < \alpha$.

Proof. For $\beta < \omega_0$ the lemma is obvious. Thus assume that $\beta \geq \omega_0$. Represent β as the sum $\lambda + n$ of a limit ordinal λ and a natural number n.

Let $H_{\beta,k}$, k = 0, 1, ..., n, be the space obtained by sticking the (k + 1)dimensional cube $C_{\beta,k} = I^{k+1}$ to a k-dimensional face D of the base $B_{\beta} \subseteq$ H_{β} along its k-dimensional face (see Fig. 2.3, where $\beta = \omega_0 + 1$ and k = 1). Precisely, define $H_{\beta,k}$ to be the subspace of $H_{\beta} \times I$ consisting of all (y, z)such that either z = 0 or $y \in D$; let $\mathcal{C}_{\beta,k} = \mathcal{C}_{\beta} \cup \{C_{\beta,k}\}$. Observe that from Theorem 2.A it follows that ind $H_{\beta,k} = \operatorname{ind} H_{\beta}$.

We apply induction on β . Since $H_{\beta} \subseteq H_{\beta,k}$ and $\mathcal{C}_{\beta} \subseteq \mathcal{C}_{\beta,k}$, it is sufficient to prove the counterpart of the lemma for each $H_{\beta,k}$, $k = 0, 1, \ldots, n$, and its covering $\mathcal{C}_{\beta,k}$.

Assume that $\lambda = \omega_0$ or $\lambda > \omega_0$ and the modified lemma holds for every ordinal $\beta' = \lambda' + n'$ such that $\lambda' < \lambda$. Fix $k \in \{1, \ldots, n\}$. Then

$$H_{\beta,k} = H_{\beta} \cup C_{\beta,k} = (H_{\lambda} \times I^{n}) \cup C_{\beta,k}$$
$$= \left(\bigcup \{ (A_{\gamma} \cup H_{\gamma}) \times I^{n} : \gamma < \lambda \} \right) \cup C_{\beta,k}$$
$$C_{\beta,k} \cap \bigcup \{ (A_{\gamma} \cup H_{\gamma}) \times I^{n} : \gamma < \lambda \} = D ,$$

Fig. 2.3

and

$$[(A_{\gamma} \cup H_{\gamma}) \times I^n] \cap [(A_{\delta} \cup H_{\delta}) \times I^n] = B_{\beta}$$

for distinct $\gamma, \delta < \lambda$ (see Fig. 2.3).

Let $x \in H_{\beta,k}$ and let $E \subseteq H_{\beta,k}$ be a closed set not containing x. If $x \notin B_{\beta}$, then $x \in C_{\beta,k} - B_{\beta}$ or $x \in (A_{\gamma} \cup H_{\gamma}) \times I^n - B_{\beta}$ for some $\gamma < \lambda$. Since $C_{\beta,k} - B_{\beta}$ and $(A_{\gamma} \cup H_{\gamma}) \times I^n - B_{\beta}$ are open subsets of $H_{\beta,k}$, the existence of a partition Y with the suitably modified property (2.5) is obvious whenever $x \in C_{\beta,k} - B_{\beta}$ or $x \in (A_{\gamma} \cup H_{\gamma}) \times I^n - B_{\beta}$ and $\gamma < \omega_0$, and it follows from the inductive assumption if $x \in (A_{\gamma} \cup H_{\gamma}) \times I^n - B_{\beta}$ and $\gamma \geq \omega_0$. Obviously, we can assume that Y is contained either in $C_{\beta,k} - B_{\beta}$ or in $(A_{\gamma} \cup H_{\gamma}) \times I^n - B_{\beta}$; thus ind $Y < \alpha$ for $\beta = \beta(\alpha)$.

Suppose now that $x \in B_{\beta}$. Assume that β is a non-limit ordinal; for limit β the proof is straightforward. Let $Q \subseteq B_{\beta}$ be an *n*-dimensional cube with faces parallel to the faces of $B_{\beta} = I^n$ such that $x \in \text{int } Q$, where int Q stands for the interior of Q in B_{β} , and $E \cap Q = \emptyset$ (see Fig. 2.4, where $\beta = \omega_0 + 1$

Fig. 2.4

and k = 1). It follows that $E \cap [(A_{\gamma} \cup H_{\gamma}) \times Q] \neq \emptyset$ only for finitely many $\gamma < \lambda$, say for $\gamma = \gamma_1, \ldots, \gamma_m$ (in Fig. 2.4, m = 2). For $i = 1, \ldots, m$, take $r_{\gamma_i} \in A_{\gamma_i}$ such that $(p_{\lambda} \wedge r_{\gamma_i} \times Q) \cap E = \emptyset$; recall that p_{λ} is an endpoint of A_{γ_i} , and $p_{\lambda} \wedge r_{\gamma_i}$ is the arc with endpoints p_{λ} and r_{γ_i} contained in A_{γ_i} .

Let

$$Y_i = \{r_{\gamma_i}\} \times Q \cup p_\lambda^{\wedge} r_{\gamma_i} \times \mathrm{bd}\, Q$$

where bd Q is the boundary of Q in B_{β} (see Fig. 2.4). Next, take $r \in I$ such that $\{(y, z) \in D \times I : y \in Q \text{ and } z \leq r\} \subseteq C_{\beta,k}$ does not meet E, and set

$$Y_{m+1} = (Q \cap D) \times \{r\} \cup (\operatorname{bd} Q \cap D) \times [0, r]$$

(see Fig. 2.4). Let

$$Y_0 = \left(\bigcup \{A_{\gamma} \cup H_{\gamma} : \gamma < \lambda \text{ and } \gamma \neq \gamma_1, \dots, \gamma_m\}\right) \times \operatorname{bd} Q$$

and $Y = \bigcup_{i=0}^{m+1} Y_i$ (see Fig. 2.4). It is easily seen that Y is a partition in $H_{\beta,k}$ between x and E with the modified property (2.5).

It remains to show that if $\beta = \beta(\alpha)$ for some α , then ind $Y < \alpha$. Let ν stand for the predecessor of $\beta = \beta(\alpha)$. Since $\operatorname{ind}(\bigcup_{i=1}^{m+1} Y_i) < \omega_0$, it remains to verify that ind $Y_0 < \alpha$ (see Theorem 2.A).

The set $\operatorname{bd} Q$ is homeomorphic either to the (n-1)-dimensional sphere or to the (n-1)-dimensional cube, and so it can be represented as the union of subspaces B_1 and B_2 homeomorphic to the (n-1)-dimensional cube such that there exists a homeomorphism f of B_1 onto B_2 with f(x) = x for every $x \in B_1 \cap B_2$. For i = 1, 2, let

$$A_i = \left(\bigcup \{ A_{\gamma} \cup H_{\gamma} : \gamma < \lambda \text{ and } \gamma \neq \gamma_1, \dots, \gamma_m \} \right) \times B_i.$$

Then $Y_0 = A_1 \cup A_2$ and there exists a homeomorphism $h: A_1 \to A_2$ such that h(x) = x for every $x \in A_1 \cap A_2$; since A_1 and A_2 are homeomorphic to a subspace of H_{ν} , by Theorem 2.A, we have

$$\operatorname{ind} Y_0 = \operatorname{ind} A_1 = \operatorname{ind} A_2 = \operatorname{ind} H_{\nu} < \beta$$

(see the definition of $\beta(\alpha)$).

2.3. LEMMA. Let J be a segment contained in an edge of the base B_{β} , and $E \subseteq H_{\beta}$ a closed set such that $E \cap J = \emptyset$; let b_1 and b_2 be the endpoints of J. Then there exist a closed set $Y \subseteq H_{\beta}$ with the property (2.5) and open sets $U, V \subseteq H_{\beta}$ such that $Y = H_{\beta} - (U \cup V), J - \{b_1, b_2\} \subseteq U, E \subseteq V, and$ for i = 1, 2, we have

$$b_i \in U$$
 if b_i is a vertex of the cube B_β ,
 $b_i \in Y$ otherwise;

furthermore, if $\beta = \beta(\alpha)$ for some α , then ind $Y < \alpha$.

Proof. Let $Q \subseteq B_{\beta}$ be an *n*-dimensional cube with faces parallel to the faces of B_{β} and with the property that J is an edge of Q and $E \cap Q = \emptyset$; let bd Q stand for the boundary of Q in B_{β} . A reasoning similar to that in the proof of Lemma 2.2 shows that $E \cap [(A_{\gamma} \cup H_{\gamma}) \times Q] \neq \emptyset$ only for a finite number of $\gamma < \lambda$, say for $\gamma_1, \ldots, \gamma_m$. For $i = 1, \ldots, m$, take $r_{\gamma_i} \in A_{\gamma_i}$ such that $(p_{\lambda} \land r_{\gamma_i} \times Q) \cap E = \emptyset$. Let

$$Y_i = \{r_{\gamma_i}\} \times Q \cup p_{\lambda} \wedge r_{\gamma_i} \times \operatorname{bd} Q \quad \text{for } i = 1, \dots, m,$$

$$Y_0 = \left(\bigcup \{A_{\gamma} \cup H_{\gamma} : \gamma < \lambda \text{ and } \gamma \neq \gamma_1, \dots, \gamma_m\}\right) \times \operatorname{bd} Q,$$

and

$$Y = \bigcup_{i=0}^{m} Y_i$$

(see Fig. 2.5). Just as in the proof of Lemma 2.2 one can show that Y has the required properties.

3. Examples of Cantor ind-manifolds. For each non-limit ordinal $\alpha = \beta + 1$ such that $\omega_0 \leq \alpha < \omega_1$, we describe an α -dimensional Cantor ind-manifold Z_{α} . For the convenience of the reader some technical reasonings showing that the construction is feasible are deferred to the Appendix.

First, we define an inverse sequence $\{Z_n, r_n^{n+1}\}$ consisting of compact metrizable spaces Z_n and retractions r_n^{n+1} ; simultaneously, we define countable coverings \mathcal{D}_n of Z_n by cubes with dimension greater than 1.

Let $Z_1 = H_{\beta(\alpha)}$ and $\mathcal{D}_1 = \mathcal{C}_{\beta(\alpha)}$ (see Section 2); recall that the covering \mathcal{C}_{β} consists of cubes of positive dimension for every ordinal β , and so it consists of cubes of dimension greater than 1 whenever β is a non-limit ordinal. Suppose that we have already defined the space Z_n and its covering \mathcal{D}_n . Let ϱ_n be any metric on Z_n compatible with its topology. Assume additionally that for $k = 1, 2, \ldots$, there exists an arc $L_{n,k} \subseteq Z_n$ with the following properties:

(3.1)
$$\varrho_n(x, L_{n,k}) \leq 1/k$$
 for every $x \in Z_n$,

- (3.2) $L_{n,k}$ is contained in the union of a finite number of cubes belonging to \mathcal{D}_n ,
- (3.3) if J is a cube contained in a cube $D \in \mathcal{D}_n$ and parallel to a proper face of D, then $J \cap L_{n,k}$ is finite.

For $k = 1, 2, \ldots$, denote by $H_{n,k}$ a copy of Henderson's space $H_{\beta(\alpha)}$ and by $I_{n,k}$ an arbitrary edge of $B_{\beta(\alpha)}$ (see Section 2), and set $\mathcal{D}_{n,k} = \mathcal{C}_{\beta(\alpha)}$. Loosely speaking, in order to obtain Z_{n+1} we stick a copy $H_{n,k}$ of Henderson's space to each arc $L_{n,k}$ along the edge $I_{n,k}$ in such a way that the sets $H_{n,k} - I_{n,k}$ are pairwise disjoint, and the space so obtained is compact, i.e., $H_{n,k}$ is contained in an arbitrarily small neighbourhood of $L_{n,k}$ for sufficiently large k's (see Fig. 3.1). Strictly speaking, the space Z_{n+1} can be defined as follows.

Let γ stand for the predecessor of $\beta(\alpha)$ (see (2.2)); then $H_{\beta(\alpha)} = H_{\gamma} \times I$. Set $Z'_n = Z_n \times \{(p_{\gamma}, p_{\gamma}, \ldots)\} \subset Z_n \times (H_{\gamma})^{\aleph_0}$, where p_{γ} denotes the distinguished point of H_{γ} (see Section 2). Next, let $H'_{n,k}$ consist of all $(x, (y_m)_{m=1}^{\infty}) \in Z_n \times (H_{\gamma})^{\aleph_0}$ such that $x \in L_{n,k}$ and $y_m = p_{\gamma}$ for $m \neq k$. Put

$$Z_{n+1} = Z'_n \cup \bigcup_{k=1}^{\infty} H'_{n,k}.$$

Since $L_{n,k}$ is an arc, $H_{n,k}$ and $H'_{n,k}$ are homeomorphic; obviously, so are Z_n and Z'_n . In the sequel, we identify $H_{n,k}$ and $H'_{n,k}$ as well as Z_n and Z'_n .

Let $\mathcal{D}_{n+1} = \mathcal{D}_n \cup \bigcup_{k=1}^{\infty} \mathcal{D}_{n,k}$ and r_n^{n+1} be the retraction of Z_{n+1} onto Z_n determined by the "orthogonal projections" of the spaces $H_{n,k}$ onto the edges $I_{n,k}$ of their bases, i.e.,

$$r_n^{n+1}((x, (y_m)_{m=1}^{\infty})) = x$$
 for $(x, (y_m)_{m=1}^{\infty}) \in Z_{n+1} \subseteq Z_n \times (H_{\gamma})^{\aleph_0}$.

It is easy to see that Z_{n+1} is a closed subspace of $Z_n \times (H_\gamma)^{\aleph_0}$, and so it is a compact metrizable space, and \mathcal{D}_{n+1} is a countable covering of Z_{n+1} consisting of cubes with dimension greater than 1.

To complete our construction, we should check that for n = 1, 2, ... and any metric ρ_n on Z_n , there exist arcs $L_{n,k} \subseteq Z_n$ with properties (3.1)–(3.3); in the Appendix we show that there exist arcs $L_{1,k} \subseteq Z_{1,k}$ which have, apart from (3.1)–(3.3), some additional properties, and if we assume that there exist arcs $L_{n,k}$ with these additional properties, then there exist arcs $L_{n+1,k} \subseteq Z_{n+1}$ with these properties.

Now, assume that the inverse sequence $\{Z_n, r_n^{n+1}\}$ is defined.

Let $Z_{\alpha} = \varprojlim \{Z_n, r_n^{n+1}\}$; denote by r_n the projection of Z_{α} onto Z_n . Obviously, Z_{α} is a compact metrizable space. Since each bonding mapping r_n^{n+1} is a retraction, we can assume that $Z_n \subseteq Z_{\alpha}$ and r_n is a retraction for every $n = 1, 2, \ldots$

We now show that

(3.4) if K is a partition in Z_{α} between any pair of distinct points, then ind K is not less than the predecessor of α .

Let $U, V \subseteq Z_{\alpha}$ be disjoint open sets with $K = Z_{\alpha} - (U \cup V)$. Take an n such that

$$Z_n \cap U \neq \emptyset \neq Z_n \cap V$$

then, by (3.1), $L_{n,k} \cap U \neq \emptyset \neq L_{n,k} \cap V$ for a $k \in \mathbb{N}$, and thus $K \cap H_{n,k}$ is a partition in $H_{n,k}$ between a pair of distinct points from $I_{n,k}$. By Theorem 2.1, $\operatorname{ind}(K \cap H_{n,k})$ is not less than the predecessor of α and so is $\operatorname{ind} K$.

It remains to prove that

$$(3.5) \qquad \qquad \text{ind} \, Z_{\alpha} \le \alpha$$

To this end, we need the following technical lemma; the situation concerned by the lemma is illustrated in Fig. 3.2.

3.1. LEMMA. Let $\{Z_n, r_n^{n+1}\}$ be a sequence of compact spaces such that $Z_n \subseteq Z_{n+1}$ and r_n^{n+1} is a retraction for every $n \in \mathbb{N}$. Suppose $Y_n \subseteq Z_n, n = 1, 2, \ldots$, are closed subspaces with

(3.6)
$$Y_{n+1} = Y_n \cup \bigcup \{A_s : s \in S_n\},$$

where

$$(3.7) A_s is closed and A_s - Y_n is open in Y_{n+1},$$

$$(3.8) A_s \cap A_t \subseteq Y_n \text{ for distinct } s, t \in S_n,$$

and there is a natural number m such that:

(3.9) $|A_s \cap Y_n| < \aleph_0 \text{ for every } s \in S_n, \text{ and } |A_s \cap Y_n| > 1 \text{ only for a finite}$ number of $s \in S_n$ provided n < m, W. Olszewski

Fig. 3.2

 $(3.10) \quad |A_s \cap Y_n| = 1 \text{ for every } s \in S_n \text{ provided } n \ge m,$

(3.11) $r_n^{n+1}(A_s) = A_s \cap Y_n \text{ for any } n \in \mathbb{N} \text{ and } s \in S_n \text{ such that } |A_s \cap Y_n| = 1.$ Let $Y = \varprojlim \{Y_n, r_n^{n+1} | Y_{n+1}, n \geq m\}$. If $\operatorname{ind} Y_1 \leq \gamma$ and $\operatorname{ind} A_s \leq \gamma$ for every $s \in \bigcup_{n=1}^{\infty} S_n$, then $\operatorname{ind} Y \leq \gamma$.

Proof. We first show by induction that

(3.12) $\operatorname{ind} Y_n \leq \gamma \quad \text{for every } n \in \mathbb{N}.$

For n = 1, this is one of our assumptions. Assume (3.12) holds for an n; we will prove it for n + 1. Let $y \in Y_{n+1}$, and let $F \subseteq Y_{n+1}$ be any closed set not containing y.

If $y \in A_s - Y_n$ for some $s \in S_n$, then the existence of a partition between y and F with small transfinite dimension less than γ follows from (3.7) and the inequality ind $A_s \leq \gamma$. Assume therefore that $y \in Y_n$ (see (3.6)).

Set $Z = \bigcup \{A_s \cap Y_n : s \in S_n \text{ and } |A_s \cap Y_n| > 1\} - \{y\}$ (see Fig. 3.3); then Z is finite by (3.9) and (3.10) ($Z = \emptyset$ whenever $n \ge m$). By the inductive assumption, there exists a partition K_0 in Y_n between y and $(F \cap Y_n) \cup Z$ such that ind $K_0 < \gamma$ (see Fig. 3.3); let $U, V \subseteq Y_n$ be disjoint open sets with $y \in U$, $(F \cap Y_n) \cup Z \subseteq V$, and $K_0 = Y_n - (U \cup V)$.

Let s_1, \ldots, s_j be all $s \in S_n$ such that $y \in A_s$ and $|A_s \cap Y_n| > 1$ (see (3.9)). For $i = 1, \ldots, j$, ind $A_{s_i} \leq \gamma$, and so there exists a partition K_i in A_{s_i} between y and $(F \cap A_{s_i}) \cup (A_{s_i} \cap Y_n - \{y\})$ such that ind $K_i < \gamma$ (see Fig. 3.3, where j = 2).

We now show that

$$T = \{s \in S_n : |A_s \cap Y_n| = 1, \ A_s \cap Y_n \subseteq U, \text{ and } F \cap A_s \neq \emptyset\}$$

is finite.

Indeed, suppose that T is infinite. For every $s \in T$, choose $x_s \in F \cap A_s$; since $F \cap U = \emptyset$, we have $x_s \in A_s - Y_n$. Let x be an accumulation point of

 $\{x_s: s \in T\}$. From (3.6)–(3.8) it follows that $x \in Y_n \cap F \subseteq V$; on the other hand, since $r_n^{n+1}(x_s) \in U$ for every $s \in T$ (see (3.11)) and r_n^{n+1} is a retraction onto Y_n , we have $r_n^{n+1}(x) = x \in U \cup K_0$, contrary to $V \cap (U \cup K_0) = \emptyset$.

Let s_{j+1}, \ldots, s_p be all elements of T. For every $i = j + 1, \ldots, p$, we have ind $A_{s_i} \leq \gamma$, and so there exists a partition K_i in A_{s_i} between $A_{s_i} \cap Y_n$ and $F \cap A_{s_i}$ such that ind $K_i < \gamma$ (see Fig. 3.3, where p = 3).

It is easy to check that $K = \bigcup_{i=0}^{p} K_i$ is a partition in Y_{n+1} between y and F. The sets K_i , $i = 0, 1, \ldots, p$, are compact; since $K_0 \subseteq Y_n$ and $K_i \subseteq A_{s_i} - Y_n$ for $i = 1, \ldots, p$, they are pairwise disjoint (see (3.8)). Thus

ind $K \leq \max\{ \text{ind } K_i : i = 0, 1, \dots, p \} < \gamma$.

Therefore the proof of (3.12) is concluded. We are now in a position to show that $\operatorname{ind} Y \leq \gamma$. Denote by r_n the projection of Y onto Y_n . Let $y \in Y$, and $F \subseteq Y$ a closed set not containing y. Take $n \geq m$ such that $r_n(y) \notin r_n(F)$.

Since ind $Y_n \leq \gamma$ (see (3.12)), there exists a partition K_n in Y_n between $r_n(y)$ and $r_n(F)$ with ind $K_n < \gamma$; consider disjoint open sets $U_n, V_n \subseteq Y_n$ such that $r_n(y) \in U_n, r_n(F) \subseteq V_n$, and $K_n = Y_n - (U_n \cup V_n)$. Set

$$K = K_n, \quad U = r_n^{-1}(U_n), \quad V = r_n^{-1}(V_n \cup K_n) - K_n$$

We prove that K is a partition in Y between y and F. Obviously, $y \in U$, $F \subseteq V$, U is open and K is closed in Y, and $U \cap K = \emptyset = V \cap K$, $U \cap V = \emptyset$. We only need to show that V is open in Y.

Take $z \in V$. If $r_n(z) \in V_n$, then $r_n^{-1}(V_n)$ is a neighbourhood of z containing in V. Thus assume that $r_n(z) \in K_n$. Since $z \notin K_n$, we have $z \notin Y_n$. If $r_{k+1}(z)$ belonged to Y_k for every $k \ge n$, then z would belong to Y_n .

Indeed, suppose that $r_{k+1}(z) \in Y_k$ for $k \ge n$. Then, in particular, $r_{n+1}(z) \in Y_n$. Assuming that $r_{k+1}(z) \in Y_n$ for some $k \ge n$, we obtain (recall that r_{k+1}^{k+2} is a retraction) $r_{k+2}(z) = r_{k+1}^{k+2}(r_{k+2}(z)) = r_{k+1}(z) \in Y_n$. Hence, by induction, $r_k(z)$ is in Y_n for every $k \ge n$, and so is z.

Thus $r_{k+1}(z) \notin Y_k$ for some $k \geq n$. Then by (3.6), $r_{k+1}(z) \in A_s - Y_k$ for some $s \in S_k$, and by (3.7), $r_{k+1}^{-1}(A_s - Y_k)$ is open. We now show that $r_{k+1}^{-1}(A_s - Y_k) \subseteq V$.

Indeed, since $k \ge n \ge m, r_k^{k+1}(A_s)$ is a one-point set (see (3.10) and (3.11)); thus

$$r_k^{k+1}(A_s) = \{r_k^{k+1}(r_{k+1}(z))\} = \{r_k(z)\} \subseteq K_n.$$

Obviously, $r_{k+1}^{-1}(A_s - Y_k) \cap K_n = \emptyset$, and so $r_{k+1}^{-1}(A_s - Y_k) \subseteq V$.

Having proved the lemma, we can turn to the proof of inequality (3.5); recall that β stands for the predecessor of α . Let $z \in Z_{\alpha}$, and $F \subseteq Z_{\alpha}$ a closed set not containing z. We prove that there exists a partition in Z_{α} between z and F of dimension not greater than β .

Take *m* such that $r_m(z) \notin r_m(F)$, and $p \leq m$ such that $r_m(z) \in Z_p - Z_{p-1}$; we assume that $Z_0 = \emptyset$, that is, if $r_m(z) \in Z_1$, then p = 1. We shall define by induction for $n = p, p + 1, \ldots, m$ a partition Y_n in Z_n between $r_m(z)$ and $r_m(F) \cap Z_n$ with the following property:

(3.13) for every cube $D \in \mathcal{D}_n$ the set $D \cap Y_n$ is the union of a finite number of cubes of dimension less than that of D, each parallel to a proper face of D;

moreover, we will require ind $Y_p \leq \beta$. Simultaneously, we shall define sets S_n and A_s for $s \in S_n$ and $n = p, p + 1, \ldots, m - 1$ satisfying (3.6)–(3.9), (3.11) and

(3.14)
$$\operatorname{ind} A_s \leq \beta \quad \text{for every } s \in S_n \,.$$

Since $Z_p - Z_{p-1}$ is a neighbourhood of $r_m(z)$ homeomorphic to an open subset of $H_{\beta(\alpha)}$, the existence of a partition Y_p with the required properties follows from Lemma 2.2. Assume that we have defined a partition Y_n with the required properties for an n < m.

Let $U_n, V_n \subseteq Z_n$ be open sets such that $r_m(z) \in U_n, r_m(F) \cap Z_n \subseteq V_n$ and $Y_n = Z_n - (U_n \cup V_n)$. Set

$$Y'_{n+1} = (r_n^{n+1})^{-1}(Y_n), \quad U'_{n+1} = (r_n^{n+1})^{-1}(U_n), \quad V'_{n+1} = (r_n^{n+1})^{-1}(V_n).$$

Then Y'_{n+1} is a partition in Z_{n+1} between $r_m(z)$ and $r_m(F) \cap Z_n$. Since $L_{n,k}$ has properties (3.2)–(3.3) and Y_n satisfies (3.13),

(3.15)
$$Y_n \cap L_{n,k}$$
 is finite for every $k = 1, 2, \dots$

Hence $Y'_{n+1} \cap H_{n,k}$ is the union of a finite number of pairwise disjoint sets homeomorphic to H_{ν} , where $\beta(\alpha) = \nu + 1$, for every k = 1, 2, ... Denote these sets by $A_s, s \in T_k$ (see Fig. 3.4). Observe that $A_s \cap Y_n$ is a one-point set for every $s \in T_k$ and k = 1, 2, ...

Since $r_m(F) \cap (U_n \cup Y_n) = \emptyset$, it follows that $r_m(F) \cap (U'_{n+1} \cup Y'_{n+1}) \subseteq \bigcup \{H_{n,k} - L_{n,k} : k \in \mathbb{N}\}$; furthermore, since the sets $H_{n,k} - L_{n,k}$ are pairwise disjoint and $r_m(F) \cap (U'_{n+1} \cup Y'_{n+1})$ is compact, there exists $l \in \mathbb{N}$ such that $r_m(F) \cap (U'_{n+1} \cup Y'_{n+1}) \subseteq \bigcup \{H_{n,k} - L_{n,k} : k = 1, \dots, l\}$.

Fix $k \leq l$, and an orientation of $L_{n,k}$. Then $L_{n,k} = \bigcup_{i=1}^{j} a_{i-1} a_i$, where a_0, a_1, \ldots, a_j are ordered consistently with the orientation, and either

$$a_{i-1} \wedge a_i \subseteq U_n \cup Y_n$$
, whereas $a_i \wedge a_{i+1} \subseteq V_n \cup Y_n$,

or

$$a_{i-1} a_i \subseteq V_n \cup Y_n$$
, whereas $a_i a_{i+1} \subseteq U_n \cup Y_n$

for i = 1, ..., j - 1, that is, $\{a_1, ..., a_{j-1}\}$ is the set of all points at which $L_{n,k}$ goes across Y_n ; of course, a_0 and a_j are the endpoints of $L_{n,k}$ (see Fig. 3.4).

Let $T'_k = \{(i,k) : i = 1, \ldots, j \text{ and } a_{i-1} \land a_i \subseteq U_n \cup Y_n\}$. For every $s = (i,k) \in T'_k$, the arc $a_{i-1} \land a_i$ is identified with a segment contained in the edge $I_{n,k}$ of the base of $H_{n,k} = H_{\beta(\alpha)}$. Let A_s, U_s, V_s stand for sets Y, U, V with the properties described in Lemma 2.3 for $J = a_{i-1} \land a_i$ and $E = r_m(F) \cap H_{n,k}$ (see Fig. 3.4).

The set

$$Y_{n+1} = \left(Y'_{n+1} - \bigcup\{H_{n,k} - L_{n,k} : k \le l\}\right) \cup \bigcup\{A_s : k \le l \text{ and } s \in T'_k\}$$
$$= Y_n \cup \bigcup\{A_s : k > l \text{ and } s \in T_k\} \cup \bigcup\{A_s : k \le l \text{ and } s \in T'_k\}$$

is a partition in Z_{n+1} between $r_m(z)$ and $r_m(F) \cap Z_{n+1}$; indeed,

$$U_{n+1} = \left(U'_{n+1} - \bigcup\{H_{n,k} - L_{n,k} : k \le l\}\right) \cup \bigcup\{U_s : k \le l \text{ and } s \in T'_k\}$$

and

$$V_{n+1} = \left(V'_{n+1} - \bigcup\{H_{n,k} - L_{n,k} : k \le l\}\right) \cup \bigcup\{V_s : k \le l \text{ and } s \in T'_k\}$$

are open sets in Z_{n+1} such that $r_m(z) \in U_{n+1}, r_m(F) \cap Z_{n+1} \subseteq V_{n+1}, U_{n+1} \cap V_{n+1} = \emptyset$ and $Y_{n+1} = Z_{n+1} - (U_{n+1} \cup V_{n+1}).$

Let $S_{n+1} = \bigcup \{T'_k : k \leq l\} \cup \bigcup \{T_k : k > l\}$. It is easy to check that our sets have the required properties. Thus we have constructed inductively the sets $Y_p, Y_{p+1}, \ldots, Y_m$ and the sets S_n and $A_s, s \in S_n$, for $n = p, p+1, \ldots, m-1$.

Fig. 3.4

We define Y_n for n = m + 1, m + 2, ... by induction setting $Y_{n+1} = (r_n^{n+1})^{-1}(Y_n)$ (see Fig. 3.5).

Let $S_{n,k} = (L_{n,k} \cap Y_n) \times \{k\}$ for n = m, m + 1, ... and k = 1, 2, ..., and

Fig. 3.5

next
$$S_n = \bigcup_{k=1}^{\infty} S_{n,k}$$
; let
 $A_s = (r_n^{n+1})^{-1}(x) \cap H_{n,k}$ for $s = (x, s) \in S_{n,k}$ (see Fig. 3.5).

One can check by induction that Y_n satisfies (3.13) for n = m, $m + 1, \ldots$, and hence $Y_n \cap L_{n,k}$ is finite for $k = 1, 2, \ldots$ (see (3.2) and (3.3)). By construction and the above observation, it follows that (3.6)– (3.8), (3.10)–(3.11) are also satisfied for $n \ge m$; since each A_s , $s \in S_n$, is homeomorphic to Henderson's space H_{ν} , where ν is the predecessor of $\beta(\alpha)$, condition (3.14) is also satisfied (recall that ind $H_{\mu} < \alpha$ for every $\mu < \beta(\alpha)$, see Section 2).

Since Y_m is a partition in Z_m between $r_m(z)$ and $r_m(F)$, it follows that $r_m^{-1}(Y_m)$ is a partition in Z_α between z and F. It is easily seen that $r_m^{-1}(Y_m)$ is homeomorphic to $\varprojlim \{Y_n, r_n^{n+1} | Y_{n+1}, n \ge m\}$; thus ind $r_m^{-1}(Y_m) \le \beta$ by Lemma 3.1.

4. Appendix. We complete the description of the construction of $\{Z_n, r_n^{n+1}\}$. To wit, we show that there exist arcs $L_{1,k}$ in Z_1 satisfying (3.1)–(3.3), and having some additional properties: each $L_{1,k}$ is a \mathcal{D}_1 -broken line (see Definition 4.1). We also show that if each $L_{n,k} \subseteq Z_n$ is a \mathcal{D}_n -broken line, then there exist \mathcal{D}_{n+1} -broken lines $L_{n+1,k} \subseteq Z_{n+1}$ with properties (3.1)–(3.3).

First, we have to prepare an auxiliary apparatus.

4.1. DEFINITION. Let \mathcal{D} be a countable covering of a topological space X by cubes. An arc L is said to be a \mathcal{D} -broken line in X if it is contained in

the union of a finite number of cubes belonging to \mathcal{D} , and for every $D \in \mathcal{D}$, $L \cap D$ is the union of a finite number of segments and one-point sets.

4.2. DEFINITION. Let \mathcal{D} be a countable covering of a topological space X by cubes of dimension greater than 1. We say that \mathcal{D} has *property* (*) if the following conditions are satisfied:

- (4.1) for every pair of distinct cubes $C, D \in \mathcal{D}, C \cap D$ is either a proper face of C and a proper face of D, or is the union of a finite number of segments and one-point sets contained either in a proper face of C or in a proper face of D,
- (4.2) for every pair of cubes $C, D \in \mathcal{D}$, there exists a sequence of cubes $D_1, \ldots, D_n \in \mathcal{D}$ such that $C = D_1, D = D_n$, and $|D_i \cap D_{i+1}| \ge \aleph_0$ for $i = 1, \ldots, n-1$.

Note that (4.1) does not exclude that $C \cap D = \emptyset$ for some $C, D \in \mathcal{D}$, and it implies that if $|C \cap D| \ge \aleph_0$, then $C \cap D$ contains a segment.

4.3. LEMMA. For every countable non-limit ordinal $\alpha > 1$, the covering C_{α} of H_{α} has property (*).

The proof is by induction on α .

4.4. LEMMA. Let Y be a topological space. For $k = 0, 1, ..., let X_k$ be a subspace of Y, \mathcal{E}_k a covering of X_k by cubes with property (*), and $(L_k)_{k=1}^{\infty}$ a sequence of \mathcal{E}_0 -broken lines in X_0 . Furthermore, suppose that

(4.3) $X_0 \cap X_k = L_k$, and $X_k \cap X_m = L_k \cap L_m$ for distinct $k, m = 1, 2, \dots$,

(4.4) for every cube $D \in \mathcal{E}_k$, $L_k \cap D$ is the union of a finite number of segments and one-point sets contained in a proper face of D.

Then $\mathcal{E} = \bigcup_{k=0}^{\infty} \mathcal{E}_k$ is a covering of $X = \bigcup_{k=0}^{\infty} X_k$ by cubes with property (*).

Proof. Obviously, \mathcal{E} is a countable covering of X by cubes of dimension greater than 1. It is a simple matter to check that (4.1) is satisfied. We now show that (4.2) is also satisfied.

Let $C, D \in \mathcal{E}$. If $C, D \in \mathcal{E}_k$ for some $k = 0, 1, \ldots$, then the existence of a sequence D_1, \ldots, D_n with the required properties follows from the assumption that \mathcal{E}_k has property (*); thus suppose that $C \in \mathcal{E}_k$ and $D \in \mathcal{E}_m$, where $k \neq m$. We only consider the case when k, m > 0; if k = 0 or m = 0, the reasoning is similar.

Since $X_0 \cap X_k = L_k$, and \mathcal{E}_0 and \mathcal{E}_k are countable, $|C' \cap C''| \ge \aleph_0$ for some $C' \in \mathcal{E}_0$ and $C'' \in \mathcal{E}_k$; by a similar argument, there exist $D' \in \mathcal{E}_0$ and $D'' \in \mathcal{E}_m$ such that $|D' \cap D''| \ge \aleph_0$. Let

• $D_1, \ldots, D_j \in \mathcal{E}_k$ be such that $D_1 = C$, $D_j = C''$, and $|D_i \cap D_{i+1}| \ge \aleph_0$ for $i = 1, \ldots, j - 1$,

- $D_{j+1}, \ldots, D_l \in \mathcal{E}_0$ be such that $D_{j+1} = C', D_l = D'$, and $|D_i \cap D_{i+1}| \ge \aleph_0$ for $i = j + 1, \ldots, l - 1$, and
- $D_{l+1}, \ldots, D_n \in \mathcal{E}_m$ be such that $D_{l+1} = D'', D_n = D$, and $|D_i \cap D_{i+1}| \ge \aleph_0$ for $i = l+1, \ldots, n$.

Then the sequence D_1, \ldots, D_n has the required properties.

4.5. LEMMA. Let (X, ϱ) be a totally bounded metric space, and \mathcal{D} its covering by cubes with property (*). Then for every $\varepsilon > 0$, there exists a \mathcal{D} -broken line L in X with the following properties:

- (4.5) for every $x \in X$, the distance between x and L is not greater than ε ,
- (4.6) if J is a cube contained in a cube $D \in \mathcal{D}$, the dimension of J is less than that of D, and J is parallel to a proper face of D, then $L \cap D$ is finite.

The proof of Lemma 4.5 will be preceded by two preliminary lemmas, both concerning the situation described in Lemma 4.5.

4.6. LEMMA. Let $C \in \mathcal{D}$; suppose $T \subseteq C$ is finite and $x, y \in C - T$. Then for every $\delta > 0$, there exists a broken line $K \subseteq C - T$ satisfying (4.6) with endpoints x and y and such that

(4.7)
$$\varrho(z,K) \le \delta \quad \text{for every } z \in C.$$

Proof. Since the dimension of C is not less than 2, it is a simple matter to find a broken line $K \subseteq C - T$ satisfying (4.7) with endpoints x and y (see Fig. 4.1).

Since \mathcal{D} is countable and satisfies (4.1), $C \cap [\bigcup (\mathcal{D} - \{C\})]$ is the union of a number of faces of C, a countable number of segments (say F_1, F_2, \ldots),

and a countable number of one-point sets. In order to show that (4.6) is also satisfied, it suffices to ensure that K is the union of segments K_1, \ldots, K_m none of which is parallel either to one of F_1, F_2, \ldots or to a proper face of C.

Indeed, for every cube $J \subseteq C$ with dimension less than that of C and parallel to a proper face of C, and each $i = 1, \ldots, m$, the set $K_i \cap J$ consists of at most one point; for every cube $D \neq C$, the set $C \cap D$ is, by (4.1), either a proper face of C or the union of a finite number of the segments F_1, F_2, \ldots and a finite number of one-point sets, and thus $D \cap K_i$ is finite for each $i = 1, \ldots, m$.

4.7. LEMMA. Let $C \in \mathcal{D}$; suppose U is a connected open subset of C and $K_1, K_2 \subseteq C$ are disjoint broken lines such that $K_i \cap U \neq \emptyset$ for i = 1, 2. Then there exist disjoint broken lines $M_1, M_2 \subseteq U$ both with property (4.6) and such that

(4.8) $M_j \cap K_1 = \{c_j\}$ and $M_j \cap K_2 = \{d_j\}$, where c_j and d_j are the endpoints of M_j , for j = 1, 2.

Proof. Since U is a connected subset of a cube, there exists an arc $J \subseteq U$ such that $J \cap K_i \neq \emptyset$ for i = 1, 2; without loss of generality we can assume that $J \cap K_1 = \{x\}$ and $J \cap K_2 = \{y\}$, where x and y stand

Fig. 4.2

for the endpoints of J. Let $J \subseteq V \subseteq U$ with $V = \bigcup_{i=1}^{m} B_i$, where each B_i is an open ball and $K_1 \cap V \subseteq B_1 - \bigcup_{k=2}^{m} B_k$, $K_2 \cap V \subseteq B_m - \bigcup_{k=1}^{m-1} B_k$, and $B_k \cap B_l = \emptyset$ whenever $|k - l| \ge 2$ (see Fig. 4.2). Since C is a cube of dimension not less than 2, it is a simple matter to find disjoint broken lines $M_1, M_2 \subseteq V$ satisfying (4.8) (see Fig. 4.2).

Just as in the proof of Lemma 4.6 we can ensure that M_1 and M_2 satisfy (4.6).

Proof of Lemma 4.5. Let $S \subseteq X$ be a finite $\varepsilon/2$ -dense set. Since \mathcal{D} is a countable covering of X and satisfies (4.2), there exist $D_1, \ldots, D_m \in \mathcal{D}$, not necessarily distinct, such that $S \subseteq \bigcup_{i=1}^m D_i$ and $|D_i \cap D_{i+1}| \ge \aleph_0$ for $i = 1, \ldots, m-1$; let $Y = \bigcup_{i=1}^m D_i$. Then

(4.9)
$$\varrho(x,Y) \le \varepsilon/2$$
 for every $x \in X$.

We now show that for n = 1, ..., m, there exists a \mathcal{D} -broken line $L_n \subseteq \bigcup_{i=1}^n D_i$ satisfying (4.6) and such that

(4.10)
$$\varrho(z, L_n) \le \varepsilon/2^{m-n+1}$$
 for every $z \in \bigcup_{i=1}^n D_i$,

(4.11) L_n intersects the geometrical interior of D_i for i = 1, ..., n.

We apply induction on n. The existence of an $\varepsilon/2^m$ -dense \mathcal{D} -broken line $L_1 \subseteq D_1$ satisfying (4.6) follows from Lemma 4.6, because \mathcal{D} satisfies (4.1), and thus each broken line contained in a cube of \mathcal{D} is \mathcal{D} -broken; since L_1 cannot be contained in the geometrical boundary of D_1 by (4.6), it follows that (4.11) is satisfied. Assume that there exists a \mathcal{D} -broken line L_n with the required properties.

If $D_{n+1} = D_i$ for some i = 1, ..., n, then $L_{n+1} = L_n$ has the required properties. Thus suppose that $D_{n+1} \neq D_i$ for i = 1, ..., n.

Since $|D_n \cap D_{n+1}| \ge \aleph_0$, there exists a closed segment $K_1 \subseteq D_n \cap D_{n+1}$ (see the remark following (4.2)). Without loss of generality we can assume that $K_1 \cap L_n = \emptyset$ (see Fig. 4.3). Indeed, $D_n \cap D_{n+1}$ is contained either in a proper face of D_n or in a proper face of D_{n+1} (see (4.1)); thus $K_1 \cap L_n$ is finite (see (4.6)), and we can consider a segment contained in K_1 with the required property instead of K_1 .

Take y in the intersection of L_n and the geometrical interior of D_n (see (4.11)), and $x \in K_1$. Consider an arc J joining x and y; without loss of generality we can assume that $J \cap L_n = \{y\}$. Let K_2 be a broken line containing y, contained in the intersection of L_n and the geometrical interior of D_n , such that $L_n - K_2$ intersects the geometrical interior of D_n and

(4.12)
$$\operatorname{diam} K_2 \le \varepsilon/2^{m-n+1}$$

(see Fig. 4.3). Consider a connected open set $U \subseteq D_n$ containing J and such that $U \cap L_n \subseteq K_2$.

Fig. 4.3

By Lemma 4.7, there exist disjoint broken lines $M_1, M_2 \subseteq U$ with properties (4.6) and (4.8) (see Fig. 4.3); since \mathcal{D} satisfies (4.1), M_1 and M_2 are \mathcal{D} -broken lines.

Let $T' = (L_n \cup M_1 \cup M_2) \cap D_{n+1}$; since $D_{n+1} \cap D_i$ is contained either in a proper face of D_{n+1} or in a proper face of D_i for $i = 1, \ldots, n$ (see (4.1)) and each of the \mathcal{D} -broken lines $L_n, M_1, M_2 \subseteq \bigcup_{i=1}^n D_i$ has property (4.6), the set T' is finite. Let $T = T' - \{c_1, c_2\}$, where c_1 and c_2 are the endpoints of M_1 and M_2 , respectively, belonging to K_1 .

By Lemma 4.6, there exists a broken line $K \subseteq D_{n+1} - T$ with endpoints c_1 and c_2 such that

(4.13)
$$\varrho(z,K) \le \varepsilon/2^{m-n}$$
 for every $z \in D_{n+1}$

(see Fig. 4.3); since \mathcal{D} satisfies (4.1), K is a \mathcal{D} -broken line.

Let $L_{n+1} = [L_n - (d_1 \wedge d_2 - \{d_1, d_2\})] \cup M_1 \cup M_2 \cup K$, where d_1 and d_2 are the endpoints of M_1 and M_2 , respectively, belonging to $K_2 \subseteq L_n$.

Obviously, $L_{n+1} \subseteq \bigcup_{i=1}^{n+1} D_i$. Since

$$\{d_1, d_2\} \subseteq [L_n - (d_1^{\wedge} d_2 - \{d_1, d_2\})] \cap (M_1 \cup M_2) \subseteq L_n \cap (M_1 \cup M_2) \cap U \subseteq K_2 \cap (M_1 \cup M_2) = \{d_1, d_2\}, \{c_1, c_2\} \subseteq K \cap ([L_n - (d_1^{\wedge} d_2 - \{d_1, d_2\})] \cup M_1 \cup M_2) \subseteq K \cap D_{n+1} \cap (L_n \cup M_1 \cup M_2) \subseteq K \cap T' = \{c_1, c_2\}$$

(see (4.8)), and M_1, M_2 are disjoint, it follows that L_{n+1} is a \mathcal{D} -broken line.

By the inductive assumption, L_n has property (4.10); hence by (4.12) and (4.13), so does L_{n+1} . Moreover, L_{n+1} satisfies (4.6) since M_1 , M_2 , L_n , and K do. It remains to show that L_{n+1} has property (4.11).

The set $L_n - K_2$ meets the geometrical interior of D_n , and so does $L_n - (d_1^{\wedge} d_2 - \{d_1, d_2\}) \subseteq L_{n+1}$; since K has property (4.6), it meets the

geometrical interior of D_{n+1} , and so does L_{n+1} . Consider the cube D_i , where $i \in \{1, \ldots, n-1\}$, and assume that $D_i \neq D_n$. By the inductive assumption, L_n meets the geometrical interior of D_i . From (4.1) it follows that the geometrical interiors of distinct cubes of a covering with property (*) are disjoint. Since K_2 is contained in the geometrical interior of D_n and so is $d_1^{\wedge}d_2 \subseteq K_2, d_1^{\wedge}d_2$ does not intersect the geometrical interior of D_i . Thus $L_n - (d_1^{\wedge}d_2 - \{d_1, d_2\}) \subseteq L_{n+1}$ meets the geometrical interior of D_i .

This completes the inductive proof of the existence of the \mathcal{D} -broken lines L_1, \ldots, L_m . Obviously, $L = L_m$ satisfies (4.5) and (4.6).

Now, we can complete the description of the construction of the sequence $\{Z_n, r_n^{n+1}\}$. By Lemmas 4.3 and 4.5, there exist \mathcal{D}_1 -broken lines $L_{1,k}$ in Z_1 with properties (3.1)–(3.3). Assume that the arcs $L_{n,k} \subseteq Z_n$ which appear in the construction are \mathcal{D} -broken lines. Then by Lemmas 4.4 and 4.5 applied to $Y = Z_n \times (H_\gamma)^{\aleph_0}$, $X_0 = Z_n$, $\mathcal{E}_0 = \mathcal{D}_n$, and $X_k = H_{n,k}$, $\mathcal{E}_k = \mathcal{D}_{n,k}$, $L_k = L_{n,k}$ for $k = 1, 2, \ldots$, there exist \mathcal{E} -broken lines with properties (4.5) and (4.6) in the space X described in Lemma 4.4. Since $X = Z_{n+1}$ and $\mathcal{E} = \mathcal{D}_{n+1}$, there exist \mathcal{D}_{n+1} -broken lines $L_{n+1,k}$ in Z_{n+1} with properties (3.1)–(3.3).

References

- V. A. Chatyrko, Counterparts of Cantor manifolds for transfinite dimensions, Mat. Zametki 42 (1987), 115–119 (in Russian).
- [2] R. Engelking, *Dimension Theory*, PWN, Warszawa, 1978.
- [3] —, Transfinite dimension, in: Surveys in General Topology, G. M. Reed (ed.), Academic Press, 1980, 131–161.
- [4] —, General Topology, Heldermann, Berlin, 1989.
- [5] D. W. Henderson, A lower bound for transfinite dimension, Fund. Math. 63 (1968), 167–173.
- [6] W. Hurewicz, Ueber unendlich-dimensionale Punktmengen, Proc. Akad. Amsterdam 31 (1928), 916–922.
- [7] M. Landau, Strong transfinite ordinal dimension, Bull. Amer. Math. Soc. 21 (1969), 591-596.
- [8] B. T. Levšenko [B. T. Levshenko], Spaces of transfinite dimensionality, Mat. Sb. 67 (1965), 255–266 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 72 (1968), 135–148.
- L. A. Luxemburg, On compact spaces with non-coinciding transfinite dimensions, Dokl. Akad. Nauk SSSR 212 (1973), 1297–1300 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 1593–1597.
- [10] W. Olszewski, Universal spaces in the theory of transfinite dimension, I, Fund. Math. 144 (1994), 243–258.
- [11] A. R. Pears, A note on transfinite dimension, ibid. 71 (1971), 215-221.
- [12] Yu. M. Smirnov, On universal spaces for certain classes of infinite dimensional spaces, Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 185–196 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 21 (1962), 21–33.

W. Olszewski

[13] G. H. Toulmin, Shuffling ordinals and transfinite dimension, Proc. London Math. Soc. 4 (1954), 177–195.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF WARSAW BANACHA 2 02-097 WARSZAWA, POLAND

> Received 24 February 1993; in revised form 24 June 1993

64