Cantor manifolds in the theory of transfinite dimension

by
Wojciech Olszewski (Warszawa)

Abstract

For every countable non-limit ordinal α we construct an α-dimensional Cantor ind-manifold, i.e., a compact metrizable space Z_{α} such that ind $Z_{\alpha}=\alpha$, and no closed subset L of Z_{α} with ind L less than the predecessor of α is a partition in Z_{α}. An α-dimensional Cantor Ind-manifold can be constructed similarly.

1. Introduction. Unless otherwise stated all spaces considered are metrizable and separable. Our terminology and notation follow [2] and [4] with the exception of the boundary, closure, and interior of a subset A of a topological space X, which are denoted by $\operatorname{bd} A, \operatorname{cl} A$, and int A, respectively.

We denote by I the unit closed interval, and by I^{n} the standard n dimensional cube, i.e., the Cartesian product of n copies of I. By an arc we mean every space homeomorphic to I, and by an n-dimensional cube every space homeomorphic to I^{n}; we identify every such space with I^{n} by a "canonical" homeomorphism. This allows us to apply geometrical notions, e.g., broken line or parallelism, to spaces homeomorphic to I^{n}. In the sequel, we assume that "canonical" homeomorphisms are always defined in a natural way, and they are not described; we will simply apply geometrical notions to the cubes.

We denote by $a^{\wedge} b$ any arc with endpoints a and b, i.e., an arc J such that $h(0)=a$ and $h(1)=b$, where $h: I \rightarrow J$ is the "canonical" homeomorphism.

A partition in a space X between a pair of disjoint sets A and B is a closed set L such that $X-L=U \cup V$, where U and V are disjoint open sets with $A \subseteq U$ and $B \subseteq V$.

The small transfinite dimension ind and the large transfinite dimension Ind are the extension by transfinite induction of the classical MengerUrysohn dimension and the classical Brouwer-Čech dimension:

- ind $X=-1$ as well as Ind $X=-1$ means $X=\emptyset$,

[^0]- ind $X \leq \alpha$ (resp. Ind $X \leq \alpha$), where α is an ordinal, if and only if for every $x \in X$ and each closed set $B \subseteq X$ such that $x \notin B$ (resp. for every pair A, B of disjoint closed subsets of X), there exists a partition L between x and B (resp. a partition L between A and B) such that ind $L<\alpha$ (resp. Ind $L<\alpha$),
- ind X is the smallest ordinal α with ind $X \leq \alpha$ if such an ordinal exists, and ind $X=\infty$ otherwise,
- Ind X is the smallest ordinal α with Ind $X \leq \alpha$ if such an ordinal exists, and ind $X=\infty$ otherwise.

The transfinite dimension ind was first discussed by W. Hurewicz [6] and the transfinite dimension Ind by Yu. M. Smirnov [12]; a comprehensive survey of the topic is given by R. Engelking [3].

The small transfinite dimension of a space X at a point x does not exceed an ordinal α (written briefly $\operatorname{ind}_{x} X \leq \alpha$) if for each closed set $B \subseteq X$ not containing x there exists a partition L between x and B such that ind $L<\alpha$. The small transfinite dimension of a space X at a point x, denoted by $\operatorname{ind}_{x} X$, is the smallest ordinal α such that $\operatorname{ind}_{x} X \leq \alpha$ if such an ordinal exists, and ∞ otherwise.

If $X \neq \emptyset$, then ind X and $\operatorname{Ind} X$ are either countable ordinals or equal to infinity (see [6] and [12], or [3], Theorems 3.5 and 3.8). Obviously, ind $X \leq$ Ind X, but the reverse inequality does not hold; there exists a compact space X such that ind $X<\operatorname{Ind} X$ (see [9]).

For a long time all known compact spaces X with ind $X=\alpha \geq \omega_{0}$ had the property that $\operatorname{ind}_{x} X=\alpha$ only for some distinguished points x; B. A. Pasynkov asked whether there exist compact spaces X with $\operatorname{ind}_{x} X=$ α for every $x \in X$, or even with a stronger property that X is an α dimensional Cantor manifold (see [1]).
1.1. Definition. Let $\alpha=\beta+1$ be a non-limit ordinal. A compact metrizable space X such that ind $X=\alpha$ (resp. Ind $X=\alpha$) is an α-dimensional Cantor ind-manifold (resp. Ind-manifold) if no closed set $L \subseteq X$ with ind $L<\beta$ (resp. Ind $L<\beta$) is a partition in X between any pair of points.

For $\alpha=n<\omega_{0}$, the above notions and the classical notion of a Cantor manifold (see [2], Definition 1.9.5) are equivalent; the n-dimensional cube I^{n} is an example of an α-dimensional Cantor manifold. Of course, every α-dimensional Cantor ind-manifold has the property that $\operatorname{ind}_{x} X=\alpha$ for each $x \in X$. In [1], V. A. Chatyrko gave examples of a non-metrizable α dimensional ind-manifold and a non-metrizable α-dimensional Ind-manifold for every non-limit ordinal α such that $\omega_{0}<\alpha<\omega_{1}$; he also constructed, for every infinite $\alpha<\omega_{1}$, a compact metrizable space X_{α} with ind $X_{\alpha}<\infty$, and a compact metrizable space Y_{α} with Ind $Y_{\alpha}<\infty$ such that ind $L \geq \alpha$
for every partition L in X_{α} between any pair of points, and $\operatorname{Ind} L \geq \alpha$ for every partition L in Y_{α} between any pair of points.

In the present paper, we construct a metrizable α-dimensional Cantor ind-manifold Z_{α} for every non-limit infinite ordinal $\alpha<\omega_{1}$. Slightly modifying this construction, one can also define metrizable Cantor Ind-manifolds. However, we will restrict the discussion to the small transfinite dimension, and in the sequel "Cantor manifold" will mean "Cantor ind-manifold".

Acknowledgements. The paper contains some of the results of my Ph.D. thesis written under the supervision of Professor R. Engelking whom I wish to express my thanks for his active interest in the preparation of the thesis.
2. Henderson's spaces. Yu. M. Smirnov defined a sequence $\left\{S_{\alpha}\right.$: $\left.\alpha<\omega_{1}\right\}$ of compact metrizable spaces with the property that $\operatorname{Ind} S_{\alpha}=\alpha$ for every $\alpha<\omega_{1}$ (see [12]). Slightly modifying his construction, D. W. Henderson defined a sequence $\left\{H_{\alpha}: \alpha<\omega_{1}\right\}$ of absolute retracts with the same property (see [5]).

Let us recall the definitions of S_{α} and H_{α}.
We apply induction on α; we simultaneously distinguish a point $p_{\alpha} \in H_{\alpha}$ and, for $\alpha>0$, a covering \mathcal{C}_{α} of H_{α} by cubes of positive dimensions.

Let $S_{0}=H_{0}=\left\{p_{0}\right\}$ be the one-point space, $S_{1}=H_{1}=I, p_{1}=0$, and $\mathcal{C}_{1}=\{I\}$. Assume that $S_{\beta}, H_{\beta}, p_{\beta}$, and \mathcal{C}_{β} are defined for every $\beta<\alpha$.

If $\alpha=\beta+1$ for some β, then set $S_{\alpha}=S_{\beta} \times I, H_{\alpha}=H_{\beta} \times I, p_{\alpha}=\left(p_{\beta}, 0\right)$, $\mathcal{C}_{\alpha}=\left\{C \times I: C \in \mathcal{C}_{\beta}\right\}$.

If α is a limit ordinal, then let S_{α} be the one-point compactification of the topological sum $\bigoplus\left\{S_{\beta}: \beta<\alpha\right\}$. In order to define H_{α} take a half-open $\operatorname{arc} A_{\beta}^{\prime}$ with endpoint p_{β} such that $H_{\beta} \cap A_{\beta}^{\prime}=\left\{p_{\beta}\right\}$, and set $K_{\beta}^{\prime}=H_{\beta} \cup A_{\beta}^{\prime}$ for every $\beta<\alpha$. Let H_{α} be the one-point compactification of the topological sum $\bigoplus\left\{K_{\beta}^{\prime}: \beta<\alpha\right\}$; let p_{α} stand for the unique point of the remainder. Set $A_{\beta}=A_{\beta}^{\prime} \cup\left\{p_{\alpha}\right\}$ and $K_{\beta}=K_{\beta}^{\prime} \cup\left\{p_{\alpha}\right\}$ for $\beta<\alpha$. Let

$$
\mathcal{C}_{\alpha}=\left\{A_{\beta}: \beta<\alpha\right\} \cup \bigcup\left\{\mathcal{C}_{\beta}: 0<\beta<\alpha\right\}
$$

For simplicity of notation, we will identify the spaces $H_{n}=I^{n}$ and $H_{0} \times I^{n}$, where $H_{0}=\left\{p_{0}\right\}$.

The spaces $H_{\omega_{0}}$ and $H_{\omega_{0}+1}$ are exhibited in Fig. 2.1.
Observe that S_{α} is embeddable in H_{α} for every $\alpha<\omega_{1}$, and that if $\beta<\alpha$, then S_{β} is embeddable in S_{α} and H_{β} is embeddable in H_{α}.

Henderson's spaces play an important role in our considerations, whereas Smirnov's spaces will only be used in the proof of Theorem 2.1.

Both Henderson's and Smirnov's spaces are also a source of examples of compact metrizable spaces with given small transfinite dimension.

Fig. 2.1
Indeed, one proves that
Ind $X \leq \omega_{0} \cdot$ ind $X \quad$ for every hereditarily normal compact space X (see [8]),

$$
\operatorname{ind}(X \times I) \leq \operatorname{ind} X+1 \quad \text { for every metrizable space } X
$$

(see [13]).
From the theorems mentioned above and the easy equality

$$
\begin{equation*}
\text { ind } H_{\lambda}=\sup \left\{\operatorname{ind} H_{\alpha}: \alpha<\lambda\right\}, \tag{2.1}
\end{equation*}
$$

where λ is any countable limit ordinal, it follows that for every ordinal $\alpha<\omega_{1}$, there exists an ordinal $\beta \geq \alpha$ such that ind $H_{\beta}=\alpha$.

The least ordinal β with ind $H_{\beta}=\alpha$ will be denoted by $\beta(\alpha)$. Note that $\beta(\alpha)>\alpha$ for some α (see [9]), and ind H_{α} is unknown for some α (see [3], Problems 2.3 and 2.4). From (2.1) it follows immediately that
if α is a non-limit ordinal, then so is $\beta(\alpha)$.
The remaining part of this section is devoted to some notions and results concerning the spaces H_{α}.

Every ordinal α can be uniquely represented as the sum $\lambda+n$ of a limit ordinal λ or $\lambda=0$ and a natural number n. From the construction of H_{α} it follows that $H_{\alpha}=H_{\lambda} \times I^{n}$. Let B_{α} denote the set $\left\{p_{\lambda}\right\} \times I^{n}$; we call it the base of H_{α}. Sometimes, we will identify the base B_{α} and the cube I^{n}; in particular, we will write $H_{\alpha}=H_{\lambda} \times B_{\alpha}$. Thus for every ordinal $\alpha<\omega_{1}$, the
base B_{α} of H_{α} is a finite-dimensional cube, and it has positive dimension whenever α is a non-limit ordinal.

In the sequel, we need the following two theorems. The first theorem for ind is a consequence of a theorem of G. H. Toulmin ([13], or [3], Theorem 5.16), and for Ind it is a consequence of a theorem obtained independently by M. Landau and A. R. Pears ([7] and [11], or [3], Theorem 5.17); the theorem for Ind also follows from a theorem of B. T. Levshenko ([8], or [3], Theorem 5.15). The second theorem was established by G. H. Toulmin ([13]).
2.A. Theorem ([13], resp. [7] and [11]). If a hereditarily normal space X can be represented as the union of closed subspaces A_{1} and A_{2} such that ind $A_{i} \leq \alpha \geq \omega_{0}$ (resp. Ind $A_{i} \leq \alpha \geq \omega_{0}$) for $i=1,2$, and $A_{1} \cap A_{2}$ is finite-dimensional, then ind $X \leq \alpha$ (resp. Ind $X \leq \alpha$).
2.B. Theorem ([13]). If a hereditarily normal space X can be represented as the union of closed subspaces A_{1} and A_{2} with the property that there is a homeomorphism $h: A_{1} \rightarrow A_{2}$ such that $f(x)=x$ for every $x \in A_{1} \cap A_{2}$, then

$$
\operatorname{ind} X=\operatorname{ind} A_{1}=\operatorname{ind} A_{2} .
$$

2.1. Theorem. Let $\alpha=\lambda+n$, where λ is 0 or a countable limit ordinal and $n \geq 1$ is a natural number. For every partition K in H_{α} between any pair of distinct points $a, b \in B_{\alpha}$, we have

$$
\text { ind } K \geq \operatorname{ind} H_{\alpha}-1 \quad \text { and } \quad \text { Ind } K \geq \lambda+(n-1) .
$$

Proof. As in the proof of Theorem 2.1 of [10] we can see that
(2.3) for every $x \in B_{\alpha}$ and each closed set $F \subseteq B_{\alpha}$ not containing x, there exists a partition L in H_{α} between x and F such that ind $L \leq$ ind K.
We first prove that

$$
\begin{equation*}
\operatorname{ind}_{x} H_{\alpha} \leq \operatorname{ind} K+1 \quad \text { for every } x \in B_{\alpha} . \tag{2.4}
\end{equation*}
$$

Let $x \in B_{\alpha}$ and let $F \subseteq H_{\alpha}$ be a closed set not containing x. Since $H_{\alpha}=B_{\alpha}$ for $\alpha<\omega_{0}$, we can assume that $\alpha \geq \omega_{0}$. Let $E=F \cap B_{\alpha}$; by (2.3), there exists a partition M in H_{α} between x and E such that ind $M \leq$ ind K. Let $U, V \subseteq H_{\alpha}$ be disjoint open sets such that $x \in U$, $E \subseteq V$, and $M=H_{\alpha}-(U \cup V)$.

By construction, we have

$$
H_{\alpha}=B_{\alpha} \cup \bigcup\left\{\left(K_{\beta}-\left\{p_{\lambda}\right\}\right) \times I^{n}: \beta<\lambda\right\} ;
$$

from the definition of H_{α} it also follows that each closed subset of H_{α} disjoint from B_{α} meets only a finite number of the sets $\left(K_{\beta}-\left\{p_{\lambda}\right\}\right) \times I^{n}$. Thus

$$
[F \cap(U \cup M)] \cap\left[\left(K_{\beta}-\left\{p_{\lambda}\right\}\right) \times I^{n}\right] \neq \emptyset
$$

only for finitely many β, say for $\beta=\beta_{1}, \ldots, \beta_{k}$.

Fig. 2.2
Let $L_{i} \subseteq A_{\beta_{i}} \times I^{n}$, for $i=1, \ldots, k$, be a partition in $K_{\beta_{i}}$ between B_{α} and $[F \cap(U \cup M)] \cap\left[\left(K_{\beta_{i}}-\left\{p_{\lambda}\right\}\right) \times I^{n}\right]$ (see Fig. 2.2, where $k=2$); since $\operatorname{ind}\left(A_{\beta_{i}} \times I^{n}\right)=n+1$, we have ind $L_{i} \leq n+1$.

It is easily seen that $M \cup \bigcup_{i=1}^{\infty} L_{i}$ contains a partition L in H_{α} between x and E (see Fig. 2.2); by Theorem 2.A and monotonicity of ind, we have ind $L \leq$ ind K.

Thus the proof of (2.4) is concluded. Applying (2.4) we prove the first inequality of our theorem by induction on α. For every $\alpha<\omega_{0}$, the hypothesis of the theorem is equivalent to (2.4). Assume, therefore, that $\alpha \geq \omega_{0}$; that is, $\alpha=\lambda+n$, where λ is a limit ordinal and n is a natural number. Obviously, ind $K \geq \omega_{0}$. Assume the inequality holds for each $\beta<\alpha$. By (2.4) it suffices to show that $\operatorname{ind}_{x} H_{\alpha} \leq \operatorname{ind} K+1$ for each $x \in H_{\alpha}-B_{\alpha}$.

Observe that K contains a partition in $H_{\beta} \times I^{n}=H_{\beta+n}$ between a pair of distinct points of the base $B_{\beta+n}$ for all but a finite number of $\beta<\lambda$. Thus, by the inductive assumption, ind $H_{\beta+n} \leq$ ind $K+1$ for those β; since ind $H_{\nu} \leq$ ind H_{μ} whenever $\nu \leq \mu$, we have ind $H_{\beta+n} \leq$ ind $K+1$ for all $\beta<\lambda$. By Theorem 2.A, every $x \in H_{\alpha}-B_{\alpha}$ has a neighbourhood U in H_{α} with ind $U \leq$ ind $K+1$, which completes the proof of the inequality ind $H_{\alpha} \leq \operatorname{ind} K+1$.

Just as the base B_{α} of H_{α}, one can define the base B_{α}^{\prime} of S_{α} (see [10]). The inequality Ind $K \geq \lambda+(n-1)$ follows from Theorem 2.1 of [10], because there exists an embedding of S_{α} in H_{α} mapping B_{α}^{\prime} onto B_{α}.
2.2. Lemma. Let $\beta>0$ be a countable ordinal. For every $x \in H_{\beta}$ and each closed set $E \subseteq H_{\beta}$ not containing x, there exists a partition Y in H_{β} between x and E such that
for every cube $C \in \mathcal{C}_{\beta}$, the set $Y \cap C$ is the union of a finite number of cubes of dimension less than that of C, each parallel to a proper face of C; furthermore, if $\beta=\beta(\alpha)$ for some α, then ind $Y<\alpha$.
Proof. For $\beta<\omega_{0}$ the lemma is obvious. Thus assume that $\beta \geq \omega_{0}$. Represent β as the sum $\lambda+n$ of a limit ordinal λ and a natural number n.

Let $H_{\beta, k}, k=0,1, \ldots, n$, be the space obtained by sticking the $(k+1)$ dimensional cube $C_{\beta, k}=I^{k+1}$ to a k-dimensional face D of the base $B_{\beta} \subseteq$ H_{β} along its k-dimensional face (see Fig. 2.3, where $\beta=\omega_{0}+1$ and $k=1$). Precisely, define $H_{\beta, k}$ to be the subspace of $H_{\beta} \times I$ consisting of all (y, z) such that either $z=0$ or $y \in D$; let $\mathcal{C}_{\beta, k}=\mathcal{C}_{\beta} \cup\left\{C_{\beta, k}\right\}$. Observe that from Theorem 2.A it follows that ind $H_{\beta, k}=$ ind H_{β}.

We apply induction on β. Since $H_{\beta} \subseteq H_{\beta, k}$ and $\mathcal{C}_{\beta} \subseteq \mathcal{C}_{\beta, k}$, it is sufficient to prove the counterpart of the lemma for each $H_{\beta, k}, k=0,1, \ldots, n$, and its covering $\mathcal{C}_{\beta, k}$.

Assume that $\lambda=\omega_{0}$ or $\lambda>\omega_{0}$ and the modified lemma holds for every ordinal $\beta^{\prime}=\lambda^{\prime}+n^{\prime}$ such that $\lambda^{\prime}<\lambda$. Fix $k \in\{1, \ldots, n\}$. Then

$$
\begin{aligned}
H_{\beta, k} & =H_{\beta} \cup C_{\beta, k}=\left(H_{\lambda} \times I^{n}\right) \cup C_{\beta, k} \\
& =\left(\bigcup\left\{\left(A_{\gamma} \cup H_{\gamma}\right) \times I^{n}: \gamma<\lambda\right\}\right) \cup C_{\beta, k}, \\
C_{\beta, k} & \cap \bigcup\left\{\left(A_{\gamma} \cup H_{\gamma}\right) \times I^{n}: \gamma<\lambda\right\}=D,
\end{aligned}
$$

Fig. 2.3
and

$$
\left[\left(A_{\gamma} \cup H_{\gamma}\right) \times I^{n}\right] \cap\left[\left(A_{\delta} \cup H_{\delta}\right) \times I^{n}\right]=B_{\beta}
$$

for distinct $\gamma, \delta<\lambda$ (see Fig. 2.3).
Let $x \in H_{\beta, k}$ and let $E \subseteq H_{\beta, k}$ be a closed set not containing x. If $x \notin B_{\beta}$, then $x \in C_{\beta, k}-B_{\beta}$ or $x \in\left(A_{\gamma} \cup H_{\gamma}\right) \times I^{n}-B_{\beta}$ for some $\gamma<\lambda$. Since $C_{\beta, k}-B_{\beta}$ and $\left(A_{\gamma} \cup H_{\gamma}\right) \times I^{n}-B_{\beta}$ are open subsets of $H_{\beta, k}$, the existence of a partition Y with the suitably modified property (2.5) is obvious whenever $x \in C_{\beta, k}-B_{\beta}$ or $x \in\left(A_{\gamma} \cup H_{\gamma}\right) \times I^{n}-B_{\beta}$ and $\gamma<\omega_{0}$, and it follows from the inductive assumption if $x \in\left(A_{\gamma} \cup H_{\gamma}\right) \times I^{n}-B_{\beta}$ and $\gamma \geq \omega_{0}$. Obviously, we can assume that Y is contained either in $C_{\beta, k}-B_{\beta}$ or in $\left(A_{\gamma} \cup H_{\gamma}\right) \times I^{n}-B_{\beta}$; thus ind $Y<\alpha$ for $\beta=\beta(\alpha)$.

Suppose now that $x \in B_{\beta}$. Assume that β is a non-limit ordinal; for limit β the proof is straightforward. Let $Q \subseteq B_{\beta}$ be an n-dimensional cube with faces parallel to the faces of $B_{\beta}=I^{n}$ such that $x \in \operatorname{int} Q$, where int Q stands for the interior of Q in B_{β}, and $E \cap Q=\emptyset$ (see Fig. 2.4, where $\beta=\omega_{0}+1$

Fig. 2.4
and $k=1)$. It follows that $E \cap\left[\left(A_{\gamma} \cup H_{\gamma}\right) \times Q\right] \neq \emptyset$ only for finitely many $\gamma<\lambda$, say for $\gamma=\gamma_{1}, \ldots, \gamma_{m}$ (in Fig. 2.4, $m=2$). For $i=1, \ldots, m$, take $r_{\gamma_{i}} \in A_{\gamma_{i}}$ such that $\left(p_{\lambda} \wedge r_{\gamma_{i}} \times Q\right) \cap E=\emptyset$; recall that p_{λ} is an endpoint of $A_{\gamma_{i}}$, and $p_{\lambda} \wedge r_{\gamma_{i}}$ is the arc with endpoints p_{λ} and $r_{\gamma_{i}}$ contained in $A_{\gamma_{i}}$.

Let

$$
Y_{i}=\left\{r_{\gamma_{i}}\right\} \times Q \cup p_{\lambda} \wedge r_{\gamma_{i}} \times \operatorname{bd} Q
$$

where $\operatorname{bd} Q$ is the boundary of Q in B_{β} (see Fig. 2.4). Next, take $r \in I$ such that $\{(y, z) \in D \times I: y \in Q$ and $z \leq r\} \subseteq C_{\beta, k}$ does not meet E, and set

$$
Y_{m+1}=(Q \cap D) \times\{r\} \cup(\operatorname{bd} Q \cap D) \times[0, r]
$$

(see Fig. 2.4). Let

$$
Y_{0}=\left(\bigcup\left\{A_{\gamma} \cup H_{\gamma}: \gamma<\lambda \text { and } \gamma \neq \gamma_{1}, \ldots, \gamma_{m}\right\}\right) \times \operatorname{bd} Q
$$

and $Y=\bigcup_{i=0}^{m+1} Y_{i}$ (see Fig. 2.4).
It is easily seen that Y is a partition in $H_{\beta, k}$ between x and E with the modified property (2.5).

It remains to show that if $\beta=\beta(\alpha)$ for some α, then ind $Y<\alpha$. Let ν stand for the predecessor of $\beta=\beta(\alpha)$. Since ind $\left(\bigcup_{i=1}^{m+1} Y_{i}\right)<\omega_{0}$, it remains to verify that ind $Y_{0}<\alpha$ (see Theorem 2.A).

The set $\operatorname{bd} Q$ is homeomorphic either to the $(n-1)$-dimensional sphere or to the $(n-1)$-dimensional cube, and so it can be represented as the union of subspaces B_{1} and B_{2} homeomorphic to the $(n-1)$-dimensional cube such that there exists a homeomorphism f of B_{1} onto B_{2} with $f(x)=x$ for every $x \in B_{1} \cap B_{2}$. For $i=1,2$, let

$$
A_{i}=\left(\bigcup\left\{A_{\gamma} \cup H_{\gamma}: \gamma<\lambda \text { and } \gamma \neq \gamma_{1}, \ldots, \gamma_{m}\right\}\right) \times B_{i}
$$

Then $Y_{0}=A_{1} \cup A_{2}$ and there exists a homeomorphism $h: A_{1} \rightarrow A_{2}$ such that $h(x)=x$ for every $x \in A_{1} \cap A_{2}$; since A_{1} and A_{2} are homeomorphic to a subspace of H_{ν}, by Theorem 2.A, we have

$$
\operatorname{ind} Y_{0}=\operatorname{ind} A_{1}=\operatorname{ind} A_{2}=\operatorname{ind} H_{\nu}<\beta
$$

(see the definition of $\beta(\alpha)$).
2.3. Lemma. Let J be a segment contained in an edge of the base B_{β}, and $E \subseteq H_{\beta}$ a closed set such that $E \cap J=\emptyset$; let b_{1} and b_{2} be the endpoints of J. Then there exist a closed set $Y \subseteq H_{\beta}$ with the property (2.5) and open sets $U, V \subseteq H_{\beta}$ such that $Y=H_{\beta}-(U \cup V), J-\left\{b_{1}, b_{2}\right\} \subseteq U, E \subseteq V$, and for $i=1,2$, we have

$$
\begin{array}{ll}
b_{i} \in U & \text { if } b_{i} \text { is a vertex of the cube } B_{\beta} \\
b_{i} \in Y & \text { otherwise }
\end{array}
$$

furthermore, if $\beta=\beta(\alpha)$ for some α, then ind $Y<\alpha$.
Proof. Let $Q \subseteq B_{\beta}$ be an n-dimensional cube with faces parallel to the faces of B_{β} and with the property that J is an edge of Q and $E \cap Q=\emptyset$; let $\operatorname{bd} Q$ stand for the boundary of Q in B_{β}. A reasoning similar to that in the proof of Lemma 2.2 shows that $E \cap\left[\left(A_{\gamma} \cup H_{\gamma}\right) \times Q\right] \neq \emptyset$ only for a finite
number of $\gamma<\lambda$, say for $\gamma_{1}, \ldots, \gamma_{m}$. For $i=1, \ldots, m$, take $r_{\gamma_{i}} \in A_{\gamma_{i}}$ such that $\left(p_{\lambda}{ }^{\wedge} r_{\gamma_{i}} \times Q\right) \cap E=\emptyset$. Let

$$
\begin{aligned}
& Y_{i}=\left\{r_{\gamma_{i}}\right\} \times Q \cup p_{\lambda} \wedge r_{\gamma_{i}} \times \operatorname{bd} Q \quad \text { for } i=1, \ldots, m \\
& Y_{0}=\left(\bigcup\left\{A_{\gamma} \cup H_{\gamma}: \gamma<\lambda \text { and } \gamma \neq \gamma_{1}, \ldots, \gamma_{m}\right\}\right) \times \operatorname{bd} Q
\end{aligned}
$$

and

$$
Y=\bigcup_{i=0}^{m} Y_{i}
$$

(see Fig. 2.5). Just as in the proof of Lemma 2.2 one can show that Y has the required properties.

Fig. 2.5
3. Examples of Cantor ind-manifolds. For each non-limit ordinal $\alpha=\beta+1$ such that $\omega_{0} \leq \alpha<\omega_{1}$, we describe an α-dimensional Cantor ind-manifold Z_{α}. For the convenience of the reader some technical reasonings showing that the construction is feasible are deferred to the Appendix.

First, we define an inverse sequence $\left\{Z_{n}, r_{n}^{n+1}\right\}$ consisting of compact metrizable spaces Z_{n} and retractions r_{n}^{n+1}; simultaneously, we define countable coverings \mathcal{D}_{n} of Z_{n} by cubes with dimension greater than 1.

Let $Z_{1}=H_{\beta(\alpha)}$ and $\mathcal{D}_{1}=\mathcal{C}_{\beta(\alpha)}$ (see Section 2); recall that the covering \mathcal{C}_{β} consists of cubes of positive dimension for every ordinal β, and so it consists of cubes of dimension greater than 1 whenever β is a non-limit ordinal. Suppose that we have already defined the space Z_{n} and its covering \mathcal{D}_{n}. Let ϱ_{n} be any metric on Z_{n} compatible with its topology. Assume additionally that for $k=1,2, \ldots$, there exists an $\operatorname{arc} L_{n, k} \subseteq Z_{n}$ with the following properties:

$$
\begin{equation*}
\varrho_{n}\left(x, L_{n, k}\right) \leq 1 / k \text { for every } x \in Z_{n} \tag{3.1}
\end{equation*}
$$

Fig. 3.1
(3.2) $L_{n, k}$ is contained in the union of a finite number of cubes belonging to \mathcal{D}_{n},
(3.3) if J is a cube contained in a cube $D \in \mathcal{D}_{n}$ and parallel to a proper face of D, then $J \cap L_{n, k}$ is finite.
For $k=1,2, \ldots$, denote by $H_{n, k}$ a copy of Henderson's space $H_{\beta(\alpha)}$ and by $I_{n, k}$ an arbitrary edge of $B_{\beta(\alpha)}$ (see Section 2), and set $\mathcal{D}_{n, k}=$ $\mathcal{C}_{\beta(\alpha)}$. Loosely speaking, in order to obtain Z_{n+1} we stick a copy $H_{n, k}$ of Henderson's space to each arc $L_{n, k}$ along the edge $I_{n, k}$ in such a way that the sets $H_{n, k}-I_{n, k}$ are pairwise disjoint, and the space so obtained is compact, i.e., $H_{n, k}$ is contained in an arbitrarily small neighbourhood of $L_{n, k}$ for sufficiently large k 's (see Fig. 3.1). Strictly speaking, the space Z_{n+1} can be defined as follows.

Let γ stand for the predecessor of $\beta(\alpha)$ (see (2.2)); then $H_{\beta(\alpha)}=H_{\gamma} \times$ I. Set $Z_{n}^{\prime}=Z_{n} \times\left\{\left(p_{\gamma}, p_{\gamma}, \ldots\right)\right\} \subset Z_{n} \times\left(H_{\gamma}\right)^{\aleph_{0}}$, where p_{γ} denotes the distinguished point of H_{γ} (see Section 2). Next, let $H_{n, k}^{\prime}$ consist of all $\left(x,\left(y_{m}\right)_{m=1}^{\infty}\right) \in Z_{n} \times\left(H_{\gamma}\right)^{\aleph_{0}}$ such that $x \in L_{n, k}$ and $y_{m}=p_{\gamma}$ for $m \neq k$. Put

$$
Z_{n+1}=Z_{n}^{\prime} \cup \bigcup_{k=1}^{\infty} H_{n, k}^{\prime}
$$

Since $L_{n, k}$ is an arc, $H_{n, k}$ and $H_{n, k}^{\prime}$ are homeomorphic; obviously, so are Z_{n} and Z_{n}^{\prime}. In the sequel, we identify $H_{n, k}$ and $H_{n, k}^{\prime}$ as well as Z_{n} and Z_{n}^{\prime}.

Let $\mathcal{D}_{n+1}=\mathcal{D}_{n} \cup \bigcup_{k=1}^{\infty} \mathcal{D}_{n, k}$ and r_{n}^{n+1} be the retraction of Z_{n+1} onto Z_{n} determined by the "orthogonal projections" of the spaces $H_{n, k}$ onto the edges $I_{n, k}$ of their bases, i.e.,

$$
r_{n}^{n+1}\left(\left(x,\left(y_{m}\right)_{m=1}^{\infty}\right)\right)=x \quad \text { for }\left(x,\left(y_{m}\right)_{m=1}^{\infty}\right) \in Z_{n+1} \subseteq Z_{n} \times\left(H_{\gamma}\right)^{\aleph_{0}} .
$$

It is easy to see that Z_{n+1} is a closed subspace of $Z_{n} \times\left(H_{\gamma}\right)^{\aleph_{0}}$, and so it is a compact metrizable space, and \mathcal{D}_{n+1} is a countable covering of Z_{n+1} consisting of cubes with dimension greater than 1.

To complete our construction, we should check that for $n=1,2, \ldots$ and any metric ϱ_{n} on Z_{n}, there exist $\operatorname{arcs} L_{n, k} \subseteq Z_{n}$ with properties (3.1)-(3.3); in the Appendix we show that there exist arcs $L_{1, k} \subseteq Z_{1, k}$ which have, apart from (3.1)-(3.3), some additional properties, and if we assume that there exist arcs $L_{n, k}$ with these additional properties, then there exist arcs $L_{n+1, k} \subseteq Z_{n+1}$ with these properties.

Now, assume that the inverse sequence $\left\{Z_{n}, r_{n}^{n+1}\right\}$ is defined.
Let $Z_{\alpha}=\underset{\rightleftarrows}{\lim }\left\{Z_{n}, r_{n}^{n+1}\right\}$; denote by r_{n} the projection of Z_{α} onto Z_{n}. Obviously, Z_{α} is a compact metrizable space. Since each bonding mapping r_{n}^{n+1} is a retraction, we can assume that $Z_{n} \subseteq Z_{\alpha}$ and r_{n} is a retraction for every $n=1,2, \ldots$

We now show that
(3.4) if K is a partition in Z_{α} between any pair of distinct points, then ind K is not less than the predecessor of α.

Let $U, V \subseteq Z_{\alpha}$ be disjoint open sets with $K=Z_{\alpha}-(U \cup V)$. Take an n such that

$$
Z_{n} \cap U \neq \emptyset \neq Z_{n} \cap V
$$

then, by (3.1), $L_{n, k} \cap U \neq \emptyset \neq L_{n, k} \cap V$ for a $k \in \mathbb{N}$, and thus $K \cap H_{n, k}$ is a partition in $H_{n, k}$ between a pair of distinct points from $I_{n, k}$. By Theorem 2.1, $\operatorname{ind}\left(K \cap H_{n, k}\right)$ is not less than the predecessor of α and so is ind K.

It remains to prove that

$$
\begin{equation*}
\text { ind } Z_{\alpha} \leq \alpha \tag{3.5}
\end{equation*}
$$

To this end, we need the following technical lemma; the situation concerned by the lemma is illustrated in Fig. 3.2.
3.1. Lemma. Let $\left\{Z_{n}, r_{n}^{n+1}\right\}$ be a sequence of compact spaces such that $Z_{n} \subseteq Z_{n+1}$ and r_{n}^{n+1} is a retraction for every $n \in \mathbb{N}$. Suppose $Y_{n} \subseteq Z_{n}, n=$ $1,2, \ldots$, are closed subspaces with

$$
\begin{equation*}
Y_{n+1}=Y_{n} \cup \bigcup\left\{A_{s}: s \in S_{n}\right\} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{s} \text { is closed and } A_{s}-Y_{n} \text { is open in } Y_{n+1} \tag{3.7}
\end{equation*}
$$ $A_{s} \cap A_{t} \subseteq Y_{n}$ for distinct $s, t \in S_{n}$,

and there is a natural number m such that:
$\left|A_{s} \cap Y_{n}\right|<\aleph_{0}$ for every $s \in S_{n}$, and $\left|A_{s} \cap Y_{n}\right|>1$ only for a finite number of $s \in S_{n}$ provided $n<m$,

Fig. 3.2
(3.10) $\left|A_{s} \cap Y_{n}\right|=1$ for every $s \in S_{n}$ provided $n \geq m$,
(3.11) $\quad r_{n}^{n+1}\left(A_{s}\right)=A_{s} \cap Y_{n}$ for any $n \in \mathbb{N}$ and $s \in S_{n}$ such that $\left|A_{s} \cap Y_{n}\right|=1$.

Let $Y=\lim _{\leftrightarrows}\left\{Y_{n}, r_{n}^{n+1} \mid Y_{n+1}, n \geq m\right\}$. If ind $Y_{1} \leq \gamma$ and ind $A_{s} \leq \gamma$ for every $s \in \bigcup_{n=1}^{\infty} S_{n}$, then ind $Y \leq \gamma$.

Proof. We first show by induction that

$$
\begin{equation*}
\text { ind } Y_{n} \leq \gamma \quad \text { for every } n \in \mathbb{N} \text {. } \tag{3.12}
\end{equation*}
$$

For $n=1$, this is one of our assumptions. Assume (3.12) holds for an n; we will prove it for $n+1$. Let $y \in Y_{n+1}$, and let $F \subseteq Y_{n+1}$ be any closed set not containing y.

If $y \in A_{s}-Y_{n}$ for some $s \in S_{n}$, then the existence of a partition between y and F with small transfinite dimension less than γ follows from (3.7) and the inequality ind $A_{s} \leq \gamma$. Assume therefore that $y \in Y_{n}$ (see (3.6)).

Set $Z=\bigcup\left\{A_{s} \cap Y_{n}: s \in S_{n}\right.$ and $\left.\left|A_{s} \cap Y_{n}\right|>1\right\}-\{y\}$ (see Fig. 3.3); then Z is finite by (3.9) and (3.10) $(Z=\emptyset$ whenever $n \geq m)$. By the inductive assumption, there exists a partition K_{0} in Y_{n} between y and $\left(F \cap Y_{n}\right) \cup Z$ such that ind $K_{0}<\gamma$ (see Fig. 3.3); let $U, V \subseteq Y_{n}$ be disjoint open sets with $y \in U,\left(F \cap Y_{n}\right) \cup Z \subseteq V$, and $K_{0}=Y_{n}-(U \cup V)$.

Let s_{1}, \ldots, s_{j} be all $s \in S_{n}$ such that $y \in A_{s}$ and $\left|A_{s} \cap Y_{n}\right|>1$ (see (3.9)). For $i=1, \ldots, j$, ind $A_{s_{i}} \leq \gamma$, and so there exists a partition K_{i} in $A_{s_{i}}$ between y and $\left(F \cap A_{s_{i}}\right) \cup\left(A_{s_{i}} \cap Y_{n}-\{y\}\right)$ such that ind $K_{i}<\gamma$ (see Fig. 3.3, where $j=2$).

We now show that

$$
T=\left\{s \in S_{n}:\left|A_{s} \cap Y_{n}\right|=1, A_{s} \cap Y_{n} \subseteq U, \text { and } F \cap A_{s} \neq \emptyset\right\}
$$

is finite.
Indeed, suppose that T is infinite. For every $s \in T$, choose $x_{s} \in F \cap A_{s}$; since $F \cap U=\emptyset$, we have $x_{s} \in A_{s}-Y_{n}$. Let x be an accumulation point of

Fig. 3.3
$\left\{x_{s}: s \in T\right\}$. From (3.6)-(3.8) it follows that $x \in Y_{n} \cap F \subseteq V$; on the other hand, since $r_{n}^{n+1}\left(x_{s}\right) \in U$ for every $s \in T$ (see (3.11)) and r_{n}^{n+1} is a retraction onto Y_{n}, we have $r_{n}^{n+1}(x)=x \in U \cup K_{0}$, contrary to $V \cap\left(U \cup K_{0}\right)=\emptyset$.

Let s_{j+1}, \ldots, s_{p} be all elements of T. For every $i=j+1, \ldots, p$, we have ind $A_{s_{i}} \leq \gamma$, and so there exists a partition K_{i} in $A_{s_{i}}$ between $A_{s_{i}} \cap Y_{n}$ and $F \cap A_{s_{i}}$ such that ind $K_{i}<\gamma$ (see Fig. 3.3, where $p=3$).

It is easy to check that $K=\bigcup_{i=0}^{p} K_{i}$ is a partition in Y_{n+1} between y and F. The sets $K_{i}, i=0,1, \ldots, p$, are compact; since $K_{0} \subseteq Y_{n}$ and $K_{i} \subseteq A_{s_{i}}-Y_{n}$ for $i=1, \ldots, p$, they are pairwise disjoint (see (3.8)). Thus

$$
\text { ind } K \leq \max \left\{\operatorname{ind} K_{i}: i=0,1, \ldots, p\right\}<\gamma
$$

Therefore the proof of (3.12) is concluded. We are now in a position to show that ind $Y \leq \gamma$. Denote by r_{n} the projection of Y onto Y_{n}. Let $y \in Y$, and $F \subseteq Y$ a closed set not containing y. Take $n \geq m$ such that $r_{n}(y) \notin r_{n}(F)$.

Since ind $Y_{n} \leq \gamma($ see $(3.12))$, there exists a partition K_{n} in Y_{n} between $r_{n}(y)$ and $r_{n}(F)$ with ind $K_{n}<\gamma$; consider disjoint open sets $U_{n}, V_{n} \subseteq Y_{n}$ such that $r_{n}(y) \in U_{n}, r_{n}(F) \subseteq V_{n}$, and $K_{n}=Y_{n}-\left(U_{n} \cup V_{n}\right)$. Set

$$
K=K_{n}, \quad U=r_{n}^{-1}\left(U_{n}\right), \quad V=r_{n}^{-1}\left(V_{n} \cup K_{n}\right)-K_{n} .
$$

We prove that K is a partition in Y between y and F. Obviously, $y \in U$, $F \subseteq V, U$ is open and K is closed in Y, and $U \cap K=\emptyset=V \cap K, U \cap V=\emptyset$. We only need to show that V is open in Y.

Take $z \in V$. If $r_{n}(z) \in V_{n}$, then $r_{n}^{-1}\left(V_{n}\right)$ is a neighbourhood of z containing in V. Thus assume that $r_{n}(z) \in K_{n}$. Since $z \notin K_{n}$, we have $z \notin Y_{n}$. If $r_{k+1}(z)$ belonged to Y_{k} for every $k \geq n$, then z would belong to Y_{n}.

Indeed, suppose that $r_{k+1}(z) \in Y_{k}$ for $k \geq n$. Then, in particular, $r_{n+1}(z) \in Y_{n}$. Assuming that $r_{k+1}(z) \in Y_{n}$ for some $k \geq n$, we obtain (recall that r_{k+1}^{k+2} is a retraction) $r_{k+2}(z)=r_{k+1}^{k+2}\left(r_{k+2}(z)\right)=r_{k+1}(z) \in Y_{n}$. Hence, by induction, $r_{k}(z)$ is in Y_{n} for every $k \geq n$, and so is z.

Thus $r_{k+1}(z) \notin Y_{k}$ for some $k \geq n$. Then by (3.6), $r_{k+1}(z) \in A_{s}-Y_{k}$ for some $s \in S_{k}$, and by (3.7), $r_{k+1}^{-1}\left(A_{s}-Y_{k}\right)$ is open. We now show that $r_{k+1}^{-1}\left(A_{s}-Y_{k}\right) \subseteq V$.

Indeed, since $k \geq n \geq m, r_{k}^{k+1}\left(A_{s}\right)$ is a one-point set (see (3.10) and (3.11)); thus

$$
r_{k}^{k+1}\left(A_{s}\right)=\left\{r_{k}^{k+1}\left(r_{k+1}(z)\right)\right\}=\left\{r_{k}(z)\right\} \subseteq K_{n}
$$

Obviously, $r_{k+1}^{-1}\left(A_{s}-Y_{k}\right) \cap K_{n}=\emptyset$, and so $r_{k+1}^{-1}\left(A_{s}-Y_{k}\right) \subseteq V$.
Having proved the lemma, we can turn to the proof of inequality (3.5); recall that β stands for the predecessor of α. Let $z \in Z_{\alpha}$, and $F \subseteq Z_{\alpha}$ a closed set not containing z. We prove that there exists a partition in Z_{α} between z and F of dimension not greater than β.

Take m such that $r_{m}(z) \notin r_{m}(F)$, and $p \leq m$ such that $r_{m}(z) \in$ $Z_{p}-Z_{p-1}$; we assume that $Z_{0}=\emptyset$, that is, if $r_{m}(z) \in Z_{1}$, then $p=1$. We shall define by induction for $n=p, p+1, \ldots, m$ a partition Y_{n} in Z_{n} between $r_{m}(z)$ and $r_{m}(F) \cap Z_{n}$ with the following property:
for every cube $D \in \mathcal{D}_{n}$ the set $D \cap Y_{n}$ is the union of a finite number of cubes of dimension less than that of D, each parallel to a proper face of D;
moreover, we will require ind $Y_{p} \leq \beta$. Simultaneously, we shall define sets S_{n} and A_{s} for $s \in S_{n}$ and $n=p, p+1, \ldots, m-1$ satisfying (3.6)-(3.9), (3.11) and

$$
\begin{equation*}
\text { ind } A_{s} \leq \beta \quad \text { for every } s \in S_{n} \tag{3.14}
\end{equation*}
$$

Since $Z_{p}-Z_{p-1}$ is a neighbourhood of $r_{m}(z)$ homeomorphic to an open subset of $H_{\beta(\alpha)}$, the existence of a partition Y_{p} with the required properties follows from Lemma 2.2. Assume that we have defined a partition Y_{n} with the required properties for an $n<m$.

Let $U_{n}, V_{n} \subseteq Z_{n}$ be open sets such that $r_{m}(z) \in U_{n}, r_{m}(F) \cap Z_{n} \subseteq V_{n}$ and $Y_{n}=Z_{n}-\left(U_{n} \cup V_{n}\right)$. Set

$$
Y_{n+1}^{\prime}=\left(r_{n}^{n+1}\right)^{-1}\left(Y_{n}\right), \quad U_{n+1}^{\prime}=\left(r_{n}^{n+1}\right)^{-1}\left(U_{n}\right), \quad V_{n+1}^{\prime}=\left(r_{n}^{n+1}\right)^{-1}\left(V_{n}\right)
$$

Then Y_{n+1}^{\prime} is a partition in Z_{n+1} between $r_{m}(z)$ and $r_{m}(F) \cap Z_{n}$.
Since $L_{n, k}$ has properties (3.2)-(3.3) and Y_{n} satisfies (3.13),

$$
\begin{equation*}
Y_{n} \cap L_{n, k} \text { is finite for every } k=1,2, \ldots \tag{3.15}
\end{equation*}
$$

Hence $Y_{n+1}^{\prime} \cap H_{n, k}$ is the union of a finite number of pairwise disjoint sets homeomorphic to H_{ν}, where $\beta(\alpha)=\nu+1$, for every $k=1,2, \ldots$ Denote these sets by $A_{s}, s \in T_{k}$ (see Fig. 3.4). Observe that $A_{s} \cap Y_{n}$ is a one-point set for every $s \in T_{k}$ and $k=1,2, \ldots$

Since $r_{m}(F) \cap\left(U_{n} \cup Y_{n}\right)=\emptyset$, it follows that $r_{m}(F) \cap\left(U_{n+1}^{\prime} \cup Y_{n+1}^{\prime}\right) \subseteq$ $\bigcup\left\{H_{n, k}-L_{n, k}: k \in \mathbb{N}\right\}$; furthermore, since the sets $H_{n, k}-L_{n, k}$ are pairwise disjoint and $r_{m}(F) \cap\left(U_{n+1}^{\prime} \cup Y_{n+1}^{\prime}\right)$ is compact, there exists $l \in \mathbb{N}$ such that $r_{m}(F) \cap\left(U_{n+1}^{\prime} \cup Y_{n+1}^{\prime}\right) \subseteq \bigcup\left\{H_{n, k}-L_{n, k}: k=1, \ldots, l\right\}$.

Fix $k \leq l$, and an orientation of $L_{n, k}$. Then $L_{n, k}=\bigcup_{i=1}^{j} a_{i-1} \wedge a_{i}$, where $a_{0}, a_{1}, \ldots, a_{j}$ are ordered consistently with the orientation, and either

$$
a_{i-1}{ }^{\wedge} a_{i} \subseteq U_{n} \cup Y_{n}, \quad \text { whereas } \quad a_{i} \wedge a_{i+1} \subseteq V_{n} \cup Y_{n},
$$

or

$$
a_{i-1} \wedge a_{i} \subseteq V_{n} \cup Y_{n}, \quad \text { whereas } \quad a_{i} \wedge a_{i+1} \subseteq U_{n} \cup Y_{n}
$$

for $i=1, \ldots, j-1$, that is, $\left\{a_{1}, \ldots, a_{j-1}\right\}$ is the set of all points at which $L_{n, k}$ goes across Y_{n}; of course, a_{0} and a_{j} are the endpoints of $L_{n, k}$ (see Fig. 3.4).

Let $T_{k}^{\prime}=\left\{(i, k): i=1, \ldots, j\right.$ and $\left.a_{i-1} \wedge a_{i} \subseteq U_{n} \cup Y_{n}\right\}$. For every $s=(i, k) \in T_{k}^{\prime}$, the arc $a_{i-1} \wedge a_{i}$ is identified with a segment contained in the edge $I_{n, k}$ of the base of $H_{n, k}=H_{\beta(\alpha)}$. Let A_{s}, U_{s}, V_{s} stand for sets Y, U, V with the properties described in Lemma 2.3 for $J=a_{i-1} \wedge a_{i}$ and $E=r_{m}(F) \cap H_{n, k}$ (see Fig. 3.4).

The set

$$
\begin{aligned}
Y_{n+1} & =\left(Y_{n+1}^{\prime}-\bigcup\left\{H_{n, k}-L_{n, k}: k \leq l\right\}\right) \cup \bigcup\left\{A_{s}: k \leq l \text { and } s \in T_{k}^{\prime}\right\} \\
& =Y_{n} \cup \bigcup\left\{A_{s}: k>l \text { and } s \in T_{k}\right\} \cup \bigcup\left\{A_{s}: k \leq l \text { and } s \in T_{k}^{\prime}\right\}
\end{aligned}
$$

is a partition in Z_{n+1} between $r_{m}(z)$ and $r_{m}(F) \cap Z_{n+1}$; indeed,

$$
U_{n+1}=\left(U_{n+1}^{\prime}-\bigcup\left\{H_{n, k}-L_{n, k}: k \leq l\right\}\right) \cup \bigcup\left\{U_{s}: k \leq l \text { and } s \in T_{k}^{\prime}\right\}
$$

and

$$
V_{n+1}=\left(V_{n+1}^{\prime}-\bigcup\left\{H_{n, k}-L_{n, k}: k \leq l\right\}\right) \cup \bigcup\left\{V_{s}: k \leq l \text { and } s \in T_{k}^{\prime}\right\}
$$

are open sets in Z_{n+1} such that $r_{m}(z) \in U_{n+1}, r_{m}(F) \cap Z_{n+1} \subseteq V_{n+1}$, $U_{n+1} \cap V_{n+1}=\emptyset$ and $Y_{n+1}=Z_{n+1}-\left(U_{n+1} \cup V_{n+1}\right)$.

Let $S_{n+1}=\bigcup\left\{T_{k}^{\prime}: k \leq l\right\} \cup \bigcup\left\{T_{k}: k>l\right\}$. It is easy to check that our sets have the required properties. Thus we have constructed inductively the sets $Y_{p}, Y_{p+1}, \ldots, Y_{m}$ and the sets S_{n} and $A_{s}, s \in S_{n}$, for $n=p, p+1, \ldots, m-1$.

Fig. 3.4

We define Y_{n} for $n=m+1, m+2, \ldots$ by induction setting $Y_{n+1}=$ $\left(r_{n}^{n+1}\right)^{-1}\left(Y_{n}\right)$ (see Fig. 3.5).

Let $S_{n, k}=\left(L_{n, k} \cap Y_{n}\right) \times\{k\}$ for $n=m, m+1, \ldots$ and $k=1,2, \ldots$, and

Fig. 3.5
next $S_{n}=\bigcup_{k=1}^{\infty} S_{n, k}$; let

$$
A_{s}=\left(r_{n}^{n+1}\right)^{-1}(x) \cap H_{n, k} \quad \text { for } s=(x, s) \in S_{n, k} \text { (see Fig. 3.5). }
$$

One can check by induction that Y_{n} satisfies (3.13) for $n=m$, $m+1, \ldots$, and hence $Y_{n} \cap L_{n, k}$ is finite for $k=1,2, \ldots$ (see (3.2) and (3.3)). By construction and the above observation, it follows that (3.6)(3.8), (3.10)-(3.11) are also satisfied for $n \geq m$; since each $A_{s}, s \in S_{n}$, is homeomorphic to Henderson's space H_{ν}, where ν is the predecessor of $\beta(\alpha)$, condition (3.14) is also satisfied (recall that ind $H_{\mu}<\alpha$ for every $\mu<\beta(\alpha)$, see Section 2).

Since Y_{m} is a partition in Z_{m} between $r_{m}(z)$ and $r_{m}(F)$, it follows that $r_{m}^{-1}\left(Y_{m}\right)$ is a partition in Z_{α} between z and F. It is easily seen that $r_{m}^{-1}\left(Y_{m}\right)$ is homeomorphic to $\lim _{\rightleftarrows}\left\{Y_{n}, r_{n}^{n+1} \mid Y_{n+1}, n \geq m\right\}$; thus ind $r_{m}^{-1}\left(Y_{m}\right) \leq \beta$ by Lemma 3.1.
4. Appendix. We complete the description of the construction of $\left\{Z_{n}, r_{n}^{n+1}\right\}$. To wit, we show that there exist $\operatorname{arcs} L_{1, k}$ in Z_{1} satisfying (3.1)(3.3), and having some additional properties: each $L_{1, k}$ is a \mathcal{D}_{1}-broken line (see Definition 4.1). We also show that if each $L_{n, k} \subseteq Z_{n}$ is a \mathcal{D}_{n}-broken line, then there exist \mathcal{D}_{n+1}-broken lines $L_{n+1, k} \subseteq Z_{n+1}$ with properties (3.1)-(3.3).

First, we have to prepare an auxiliary apparatus.
4.1. Definition. Let \mathcal{D} be a countable covering of a topological space X by cubes. An arc L is said to be a \mathcal{D}-broken line in X if it is contained in
the union of a finite number of cubes belonging to \mathcal{D}, and for every $D \in \mathcal{D}$, $L \cap D$ is the union of a finite number of segments and one-point sets.
4.2. Definition. Let \mathcal{D} be a countable covering of a topological space X by cubes of dimension greater than 1 . We say that \mathcal{D} has property $(*)$ if the following conditions are satisfied:
(4.1) for every pair of distinct cubes $C, D \in \mathcal{D}, C \cap D$ is either a proper face of C and a proper face of D, or is the union of a finite number of segments and one-point sets contained either in a proper face of C or in a proper face of D,
(4.2) for every pair of cubes $C, D \in \mathcal{D}$, there exists a sequence of cubes $D_{1}, \ldots, D_{n} \in \mathcal{D}$ such that $C=D_{1}, D=D_{n}$, and $\left|D_{i} \cap D_{i+1}\right| \geq \aleph_{0}$ for $i=1, \ldots, n-1$.
Note that (4.1) does not exclude that $C \cap D=\emptyset$ for some $C, D \in \mathcal{D}$, and it implies that if $|C \cap D| \geq \aleph_{0}$, then $C \cap D$ contains a segment.
4.3. Lemma. For every countable non-limit ordinal $\alpha>1$, the covering \mathcal{C}_{α} of H_{α} has property (*).

The proof is by induction on α.
4.4. Lemma. Let Y be a topological space. For $k=0,1, \ldots$, let X_{k} be a subspace of Y, \mathcal{E}_{k} a covering of X_{k} by cubes with property $(*)$, and $\left(L_{k}\right)_{k=1}^{\infty}$ a sequence of \mathcal{E}_{0}-broken lines in X_{0}. Furthermore, suppose that

$$
\begin{equation*}
X_{0} \cap X_{k}=L_{k}, \text { and } X_{k} \cap X_{m}=L_{k} \cap L_{m} \text { for distinct } k, m=1,2, \ldots, \tag{4.3}
\end{equation*}
$$

for every cube $D \in \mathcal{E}_{k}, L_{k} \cap D$ is the union of a finite number of segments and one-point sets contained in a proper face of D.
Then $\mathcal{E}=\bigcup_{k=0}^{\infty} \mathcal{E}_{k}$ is a covering of $X=\bigcup_{k=0}^{\infty} X_{k}$ by cubes with property ($*$).
Proof. Obviously, \mathcal{E} is a countable covering of X by cubes of dimension greater than 1 . It is a simple matter to check that (4.1) is satisfied. We now show that (4.2) is also satisfied.

Let $C, D \in \mathcal{E}$. If $C, D \in \mathcal{E}_{k}$ for some $k=0,1, \ldots$, then the existence of a sequence D_{1}, \ldots, D_{n} with the required properties follows from the assumption that \mathcal{E}_{k} has property ($*$); thus suppose that $C \in \mathcal{E}_{k}$ and $D \in \mathcal{E}_{m}$, where $k \neq m$. We only consider the case when $k, m>0$; if $k=0$ or $m=0$, the reasoning is similar.

Since $X_{0} \cap X_{k}=L_{k}$, and \mathcal{E}_{0} and \mathcal{E}_{k} are countable, $\left|C^{\prime} \cap C^{\prime \prime}\right| \geq \aleph_{0}$ for some $C^{\prime} \in \mathcal{E}_{0}$ and $C^{\prime \prime} \in \mathcal{E}_{k}$; by a similar argument, there exist $D^{\prime} \in \mathcal{E}_{0}$ and $D^{\prime \prime} \in \mathcal{E}_{m}$ such that $\left|D^{\prime} \cap D^{\prime \prime}\right| \geq \aleph_{0}$. Let

- $D_{1}, \ldots, D_{j} \in \mathcal{E}_{k}$ be such that $D_{1}=C, D_{j}=C^{\prime \prime}$, and $\left|D_{i} \cap D_{i+1}\right| \geq \aleph_{0}$ for $i=1, \ldots, j-1$,
- $D_{j+1}, \ldots, D_{l} \in \mathcal{E}_{0}$ be such that $D_{j+1}=C^{\prime}, D_{l}=D^{\prime}$, and $\left|D_{i} \cap D_{i+1}\right| \geq \aleph_{0}$ for $i=j+1, \ldots, l-1$, and
- $D_{l+1}, \ldots, D_{n} \in \mathcal{E}_{m}$ be such that $D_{l+1}=D^{\prime \prime}, D_{n}=D$, and $\left|D_{i} \cap D_{i+1}\right| \geq$ \aleph_{0} for $i=l+1, \ldots, n$.

Then the sequence D_{1}, \ldots, D_{n} has the required properties.
4.5. Lemma. Let (X, ϱ) be a totally bounded metric space, and \mathcal{D} its covering by cubes with property (*). Then for every $\varepsilon>0$, there exists a \mathcal{D}-broken line L in X with the following properties:
(4.5) for every $x \in X$, the distance between x and L is not greater than ε, (4.6) if J is a cube contained in a cube $D \in \mathcal{D}$, the dimension of J is less than that of D, and J is parallel to a proper face of D, then $L \cap D$ is finite.
The proof of Lemma 4.5 will be preceded by two preliminary lemmas, both concerning the situation described in Lemma 4.5.
4.6. Lemma. Let $C \in \mathcal{D}$; suppose $T \subseteq C$ is finite and $x, y \in C-T$. Then for every $\delta>0$, there exists a broken line $K \subseteq C-T$ satisfying (4.6) with endpoints x and y and such that

$$
\begin{equation*}
\varrho(z, K) \leq \delta \quad \text { for every } z \in C . \tag{4.7}
\end{equation*}
$$

Proof. Since the dimension of C is not less than 2, it is a simple matter to find a broken line $K \subseteq C-T$ satisfying (4.7) with endpoints x and y (see Fig. 4.1).

Fig. 4.1
Since \mathcal{D} is countable and satisfies (4.1), $C \cap[\bigcup(\mathcal{D}-\{C\})]$ is the union of a number of faces of C, a countable number of segments (say F_{1}, F_{2}, \ldots),
and a countable number of one-point sets. In order to show that (4.6) is also satisfied, it suffices to ensure that K is the union of segments K_{1}, \ldots, K_{m} none of which is parallel either to one of F_{1}, F_{2}, \ldots or to a proper face of C.

Indeed, for every cube $J \subseteq C$ with dimension less than that of C and parallel to a proper face of C, and each $i=1, \ldots, m$, the set $K_{i} \cap J$ consists of at most one point; for every cube $D \neq C$, the set $C \cap D$ is, by (4.1), either a proper face of C or the union of a finite number of the segments F_{1}, F_{2}, \ldots and a finite number of one-point sets, and thus $D \cap K_{i}$ is finite for each $i=1, \ldots, m$.
4.7. Lemma. Let $C \in \mathcal{D}$; suppose U is a connected open subset of C and $K_{1}, K_{2} \subseteq C$ are disjoint broken lines such that $K_{i} \cap U \neq \emptyset$ for $i=1,2$. Then there exist disjoint broken lines $M_{1}, M_{2} \subseteq U$ both with property (4.6) and such that
$M_{j} \cap K_{1}=\left\{c_{j}\right\}$ and $M_{j} \cap K_{2}=\left\{d_{j}\right\}$, where c_{j} and d_{j} are the endpoints of M_{j}, for $j=1,2$.
Proof. Since U is a connected subset of a cube, there exists an arc $J \subseteq U$ such that $J \cap K_{i} \neq \emptyset$ for $i=1,2$; without loss of generality we can assume that $J \cap K_{1}=\{x\}$ and $J \cap K_{2}=\{y\}$, where x and y stand

Fig. 4.2
for the endpoints of J. Let $J \subseteq V \subseteq U$ with $V=\bigcup_{i=1}^{m} B_{i}$, where each B_{i} is an open ball and $K_{1} \cap V \subseteq B_{1}-\bigcup_{k=2}^{m} B_{k}, K_{2} \cap V \subseteq B_{m}-\bigcup_{k=1}^{m-1} B_{k}$, and $B_{k} \cap B_{l}=\emptyset$ whenever $|k-l| \geq 2$ (see Fig. 4.2). Since C is a cube of dimension not less than 2 , it is a simple matter to find disjoint broken lines $M_{1}, M_{2} \subseteq V$ satisfying (4.8) (see Fig. 4.2).

Just as in the proof of Lemma 4.6 we can ensure that M_{1} and M_{2} satisfy (4.6).

Proof of Lemma 4.5. Let $S \subseteq X$ be a finite $\varepsilon / 2$-dense set. Since \mathcal{D} is a countable covering of X and satisfies (4.2), there exist $D_{1}, \ldots, D_{m} \in \mathcal{D}$, not necessarily distinct, such that $S \subseteq \bigcup_{i=1}^{m} D_{i}$ and $\left|D_{i} \cap D_{i+1}\right| \geq \aleph_{0}$ for $i=1, \ldots, m-1$; let $Y=\bigcup_{i=1}^{m} D_{i}$. Then

$$
\begin{equation*}
\varrho(x, Y) \leq \varepsilon / 2 \quad \text { for every } x \in X . \tag{4.9}
\end{equation*}
$$

We now show that for $n=1, \ldots, m$, there exists a \mathcal{D}-broken line $L_{n} \subseteq$ $\bigcup_{i=1}^{n} D_{i}$ satisfying (4.6) and such that

$$
\begin{equation*}
\varrho\left(z, L_{n}\right) \leq \varepsilon / 2^{m-n+1} \text { for every } z \in \bigcup_{i=1}^{n} D_{i}, \tag{4.10}
\end{equation*}
$$

$$
\begin{equation*}
L_{n} \text { intersects the geometrical interior of } D_{i} \text { for } i=1, \ldots, n \text {. } \tag{4.11}
\end{equation*}
$$

We apply induction on n. The existence of an $\varepsilon / 2^{m}$-dense \mathcal{D}-broken line $L_{1} \subseteq D_{1}$ satisfying (4.6) follows from Lemma 4.6, because \mathcal{D} satisfies (4.1), and thus each broken line contained in a cube of \mathcal{D} is \mathcal{D}-broken; since L_{1} cannot be contained in the geometrical boundary of D_{1} by (4.6), it follows that (4.11) is satisfied. Assume that there exists a \mathcal{D}-broken line L_{n} with the required properties.

If $D_{n+1}=D_{i}$ for some $i=1, \ldots, n$, then $L_{n+1}=L_{n}$ has the required properties. Thus suppose that $D_{n+1} \neq D_{i}$ for $i=1, \ldots, n$.

Since $\left|D_{n} \cap D_{n+1}\right| \geq \aleph_{0}$, there exists a closed segment $K_{1} \subseteq D_{n} \cap D_{n+1}$ (see the remark following (4.2)). Without loss of generality we can assume that $K_{1} \cap L_{n}=\emptyset$ (see Fig. 4.3). Indeed, $D_{n} \cap D_{n+1}$ is contained either in a proper face of D_{n} or in a proper face of D_{n+1} (see (4.1)); thus $K_{1} \cap L_{n}$ is finite (see (4.6)), and we can consider a segment contained in K_{1} with the required property instead of K_{1}.

Take y in the intersection of L_{n} and the geometrical interior of D_{n} (see (4.11)), and $x \in K_{1}$. Consider an arc J joining x and y; without loss of generality we can assume that $J \cap L_{n}=\{y\}$. Let K_{2} be a broken line containing y, contained in the intersection of L_{n} and the geometrical interior of D_{n}, such that $L_{n}-K_{2}$ intersects the geometrical interior of D_{n} and

$$
\begin{equation*}
\operatorname{diam} K_{2} \leq \varepsilon / 2^{m-n+1} \tag{4.12}
\end{equation*}
$$

(see Fig. 4.3). Consider a connected open set $U \subseteq D_{n}$ containing J and such that $U \cap L_{n} \subseteq K_{2}$.

Fig. 4.3
By Lemma 4.7, there exist disjoint broken lines $M_{1}, M_{2} \subseteq U$ with properties (4.6) and (4.8) (see Fig. 4.3); since \mathcal{D} satisfies (4.1), M_{1} and M_{2} are \mathcal{D}-broken lines.

Let $T^{\prime}=\left(L_{n} \cup M_{1} \cup M_{2}\right) \cap D_{n+1}$; since $D_{n+1} \cap D_{i}$ is contained either in a proper face of D_{n+1} or in a proper face of D_{i} for $i=1, \ldots, n$ (see (4.1)) and each of the \mathcal{D}-broken lines $L_{n}, M_{1}, M_{2} \subseteq \bigcup_{i=1}^{n} D_{i}$ has property (4.6), the set T^{\prime} is finite. Let $T=T^{\prime}-\left\{c_{1}, c_{2}\right\}$, where c_{1} and c_{2} are the endpoints of M_{1} and M_{2}, respectively, belonging to K_{1}.

By Lemma 4.6, there exists a broken line $K \subseteq D_{n+1}-T$ with endpoints c_{1} and c_{2} such that

$$
\begin{equation*}
\varrho(z, K) \leq \varepsilon / 2^{m-n} \quad \text { for every } z \in D_{n+1} \tag{4.13}
\end{equation*}
$$

(see Fig. 4.3); since \mathcal{D} satisfies (4.1), K is a \mathcal{D}-broken line.
Let $L_{n+1}=\left[L_{n}-\left(d_{1} \wedge d_{2}-\left\{d_{1}, d_{2}\right\}\right)\right] \cup M_{1} \cup M_{2} \cup K$, where d_{1} and d_{2} are the endpoints of M_{1} and M_{2}, respectively, belonging to $K_{2} \subseteq L_{n}$.

Obviously, $L_{n+1} \subseteq \bigcup_{i=1}^{n+1} D_{i}$. Since

$$
\begin{aligned}
\left\{d_{1}, d_{2}\right\} & \subseteq\left[L_{n}-\left(d_{1} \wedge d_{2}-\left\{d_{1}, d_{2}\right\}\right)\right] \cap\left(M_{1} \cup M_{2}\right) \\
& \subseteq L_{n} \cap\left(M_{1} \cup M_{2}\right) \cap U \subseteq K_{2} \cap\left(M_{1} \cup M_{2}\right)=\left\{d_{1}, d_{2}\right\}, \\
\left\{c_{1}, c_{2}\right\} & \subseteq K \cap\left(\left[L_{n}-\left(d_{1} \wedge d_{2}-\left\{d_{1}, d_{2}\right\}\right)\right] \cup M_{1} \cup M_{2}\right) \\
& \subseteq K \cap D_{n+1} \cap\left(L_{n} \cup M_{1} \cup M_{2}\right) \subseteq K \cap T^{\prime}=\left\{c_{1}, c_{2}\right\}
\end{aligned}
$$

(see (4.8)), and M_{1}, M_{2} are disjoint, it follows that L_{n+1} is a \mathcal{D}-broken line.
By the inductive assumption, L_{n} has property (4.10); hence by (4.12) and (4.13), so does L_{n+1}. Moreover, L_{n+1} satisfies (4.6) since M_{1}, M_{2}, L_{n}, and K do. It remains to show that L_{n+1} has property (4.11).

The set $L_{n}-K_{2}$ meets the geometrical interior of D_{n}, and so does $L_{n}-\left(d_{1} \wedge d_{2}-\left\{d_{1}, d_{2}\right\}\right) \subseteq L_{n+1}$; since K has property (4.6), it meets the
geometrical interior of D_{n+1}, and so does L_{n+1}. Consider the cube D_{i}, where $i \in\{1, \ldots, n-1\}$, and assume that $D_{i} \neq D_{n}$. By the inductive assumption, L_{n} meets the geometrical interior of D_{i}. From (4.1) it follows that the geometrical interiors of distinct cubes of a covering with property $(*)$ are disjoint. Since K_{2} is contained in the geometrical interior of D_{n} and so is $d_{1} \wedge d_{2} \subseteq K_{2}, d_{1} \wedge d_{2}$ does not intersect the geometrical interior of D_{i}. Thus $L_{n}-\left(d_{1} \wedge d_{2}-\left\{d_{1}, d_{2}\right\}\right) \subseteq L_{n+1}$ meets the geometrical interior of D_{i}.

This completes the inductive proof of the existence of the \mathcal{D}-broken lines L_{1}, \ldots, L_{m}. Obviously, $L=L_{m}$ satisfies (4.5) and (4.6).

Now, we can complete the description of the construction of the sequence $\left\{Z_{n}, r_{n}^{n+1}\right\}$. By Lemmas 4.3 and 4.5 , there exist \mathcal{D}_{1}-broken lines $L_{1, k}$ in Z_{1} with properties (3.1)-(3.3). Assume that the arcs $L_{n, k} \subseteq Z_{n}$ which appear in the construction are \mathcal{D}-broken lines. Then by Lemmas 4.4 and 4.5 applied to $Y=Z_{n} \times\left(H_{\gamma}\right)^{\aleph_{0}}, X_{0}=Z_{n}, \mathcal{E}_{0}=\mathcal{D}_{n}$, and $X_{k}=H_{n, k}, \mathcal{E}_{k}=\mathcal{D}_{n, k}, L_{k}=L_{n, k}$ for $k=1,2, \ldots$, there exist \mathcal{E}-broken lines with properties (4.5) and (4.6) in the space X described in Lemma 4.4. Since $X=Z_{n+1}$ and $\mathcal{E}=\mathcal{D}_{n+1}$, there exist \mathcal{D}_{n+1}-broken lines $L_{n+1, k}$ in Z_{n+1} with properties (3.1)-(3.3).

References

[1] V. A. Chatyrko, Counterparts of Cantor manifolds for transfinite dimensions, Mat. Zametki 42 (1987), 115-119 (in Russian).
[2] R. Engelking, Dimension Theory, PWN, Warszawa, 1978.
[3] -, Transfinite dimension, in: Surveys in General Topology, G. M. Reed (ed.), Academic Press, 1980, 131-161.
[4] -, General Topology, Heldermann, Berlin, 1989.
[5] D. W. Henderson, A lower bound for transfinite dimension, Fund. Math. 63 (1968), 167-173.
[6] W. Hurewicz, Ueber unendlich-dimensionale Punktmengen, Proc. Akad. Amsterdam 31 (1928), 916-922.
[7] M. Landau, Strong transfinite ordinal dimension, Bull. Amer. Math. Soc. 21 (1969), 591-596.
[8] B. T. Levšenko [B. T. Levshenko], Spaces of transfinite dimensionality, Mat. Sb. 67 (1965), 255-266 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 72 (1968), 135-148.
[9] L. A. Luxemburg, On compact spaces with non-coinciding transfinite dimensions, Dokl. Akad. Nauk SSSR 212 (1973), 1297-1300 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 1593-1597.
[10] W. Olszewski, Universal spaces in the theory of transfinite dimension, I, Fund. Math. 144 (1994), 243-258.
[11] A. R. Pears, A note on transfinite dimension, ibid. 71 (1971), 215-221.
[12] Yu. M. Smirnov, On universal spaces for certain classes of infinite dimensional spaces, Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 185-196 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 21 (1962), 21-33.
[13] G. H. Toulmin, Shuffing ordinals and transfinite dimension, Proc. London Math. Soc. 4 (1954), 177-195.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WARSAW
BANACHA 2
02-097 WARSZAWA, POLAND

Received 24 February 1993; in revised form 24 June 1993

[^0]: 1991 Mathematics Subject Classification: Primary 54F45.

