Universal spaces in the theory of transfinite dimension, II

by
Wojciech Olszewski (Warszawa)

Abstract

We construct a family of spaces with "nice" structure which is universal in the class of all compact metrizable spaces of large transfinite dimension ω_{0}, or, equivalently, of small transfinite dimension ω_{0}; that is, the family consists of compact metrizable spaces whose transfinite dimension is ω_{0}, and every compact metrizable space with transfinite dimension ω_{0} is embeddable in a space of the family. We show that the least possible cardinality of such a universal family is equal to the least possible cardinality of a dominating sequence of irrational numbers.

1. Introduction. In Part I of the paper we have proved that there is no universal space in the class of all compact metrizable spaces X with Ind $X=\omega_{0}$, or equivalently, with ind $X=\omega_{0}$ (see [3], Proposition 4.11, or Lemma 2.3 of this paper). That class will be denoted by \mathcal{D}. We have also shown that there is no universal space in the class of all separable metrizable spaces X with $\operatorname{Ind} X=\omega_{0}$, to be denoted by \mathcal{C}. In this part we introduce the notion of a universal family which is a generalization of the notion of a universal space, and we study universal families for \mathcal{C} and \mathcal{D}.
1.1. Definition. Let \mathcal{C} be a class of topological spaces. A family \mathcal{A} of spaces belonging to \mathcal{C} is said to be a universal family in \mathcal{C} if every space in \mathcal{C} is embeddable in a space belonging to \mathcal{A}.

Universal families can play a role similar to that played by universal spaces. Universal families of small cardinality consisting of spaces with "nice" structure are of particular interest.

In Sections 4 and 5 we construct a universal family \mathcal{A} in \mathcal{D} consisting of spaces with "nice" structure. Since every separable metrizable space X has a compactification Z such that $\operatorname{Ind} Z=\operatorname{Ind} X$ (see [5], and [6] for the proof), the family \mathcal{A} is also universal in \mathcal{C}. In Section 6 we estimate the least possible cardinality of a universal family in \mathcal{D}; by the above compactification theorem, it is equal to the least possible cardinality of a universal family in \mathcal{C}.

[^0]In order to formulate our result, we have to recall a few notions.
Irrational numbers can be viewed as sequences of natural numbers. We denote by $\mathbb{N}^{\omega_{0}}$ the set of irrational numbers, i.e., the set of all sequences $\sigma=(\sigma(k))_{k=0}^{\infty}$ of natural numbers. On $\mathbb{N}^{\omega_{0}}$ we consider the relation \leq^{*} defined by letting

$$
\sigma \leq^{*} \tau \text { if } \sigma(k) \leq \tau(k) \text { for all but a finite number of } k \in \mathbb{N} \text {. }
$$

A subset $D \subseteq \mathbb{N}^{\omega_{0}}$ cofinal in $\mathbb{N}^{\omega_{0}}$ is said to be dominating, i.e., D is dominating if for every $\sigma \in \mathbb{N}^{\omega_{0}}$, there exists a $\tau \in D$ such that $\sigma \leq^{*} \tau$. We set $\mathfrak{d}=\min \left\{|D|: D \subseteq \mathbb{N}^{\omega_{0}}\right.$ is a dominating sequence $\}$.

One can prove that

$$
\aleph_{1} \leq \mathfrak{d} \leq \mathfrak{c} ;
$$

one can also prove that each of the following formulae is consistent with the axioms of set theory:

$$
\begin{aligned}
& \aleph_{1}=\mathfrak{d}=\mathfrak{c}, \\
& \aleph_{1}=\mathfrak{d}<\mathfrak{c}, \\
& \aleph_{1}<\mathfrak{d}<\mathfrak{c}, \\
& \aleph_{1}<\mathfrak{d}=\mathfrak{c} .
\end{aligned}
$$

For a deeper discussion and the proofs of the above statements we refer the reader to E. K. van Douwen's survey [1].

Section 6 contains the proof of the equality

$$
\min \{|\mathcal{A}|: \mathcal{A} \text { is a universal family in } \mathcal{D}\}=\mathfrak{d},
$$

which, in particular, gives

$$
\min \{|\mathcal{A}|: \mathcal{A} \text { is a universal family in } \mathcal{C}\}=\mathfrak{d} .
$$

Acknowledgements. The paper contains some of the results of my Ph.D. thesis supervised by Professor R. Engelking whom I would like to thank for his comments and improvements. I also wish to express my thanks to Professors J. Chaber, J. Krasinkiewicz and W. Marciszewski whose comments have helped me to improve the presentation significantly.
2. Three lemmas. For a topological space and its closed subset A, we denote by X / A the quotient space obtained by identifying A to a point (see [4], Example 2.4.12); we denote this point by a, and the natural quotient mapping by q.
2.1. Lemma. Let X be a compact metrizable space, and A its closed subset. Let ε be a positive real number. If $f: X \rightarrow I^{n}$ has the property that $f \mid A$ is an ε-mapping, then there exist $m>n$ and $g: X \rightarrow I^{m-n}$ such that the diagonal $f \Delta g$ is an ε-mapping and

$$
(f \Delta g)^{-1}\left(I^{n} \times\{(0, \ldots, 0)\}\right)=A
$$

Proof. Since X / A is a compact metrizable space, there exists an embedding

$$
h=\left(h_{1}, h_{2}, \ldots\right): X / A \rightarrow I^{\aleph_{0}}=I \times I \times \ldots
$$

Let $h_{0}: X / A \rightarrow I$ be a function such that $\left(h_{0}\right)^{-1}(0)=\{a\}$; set $\phi=$ $\left(h_{0}, h_{0} \cdot h_{1}, h_{0} \cdot h_{2}, \ldots\right)$. It is easy to check that $\phi: X / A \rightarrow I \times I^{\aleph_{0}}$ is also an embedding, and therefore $f \Delta(\phi \circ q): X \rightarrow I^{n} \times I \times I^{\aleph_{0}}$ is an ε-mapping. By compactness of X, so is $f \Delta\left(p_{m-n} \circ \phi \circ q\right)$ for sufficiently large m, where $p_{m-n}: I \times I^{\aleph_{0}} \rightarrow I \times I^{m-n}$ denotes the projection, i.e., $p_{m-n}\left(\left(x_{1}, x_{2}, x_{3}, \ldots\right)\right)=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{m-n+1}\right)$ for $x_{1} \in I$ and $\left(x_{2}, x_{3}, \ldots\right) \in I^{\aleph_{0}}$. Consider an m with this property.

Set $g=p_{m-n} \circ \phi \circ q$. Then $(f \Delta g)^{-1}\left(I^{n} \times\{(0, \ldots, 0)\}\right)=g^{-1}((0, \ldots, 0))$ $=\left(h_{0} \circ q\right)^{-1}(0)=q^{-1}(a)=A$.
2.2. Lemma. Let m and n be natural numbers such that $n \geq 2 m+2$. Let X be a compact metrizable space, and A and B its closed subspaces with Ind $B \leq m$. Then there exists $f: X \rightarrow I^{n}$ such that $f \mid B-A$ is an embedding, and $f^{-1}((0, \ldots, 0))=A$.

Proof. Consider the quotient mapping $q: X \rightarrow X / A$. Since we have $\operatorname{Ind}(\{a\} \cup q(B)) \leq m$ and $n-1 \geq 2 m+1$, there exists an embedding $h:\{a\} \cup q(B) \rightarrow I^{n-1}$. Let h^{*} be an extension of h onto X / A, and g : $X / A \rightarrow I$ a function such that $g^{-1}(0)=\{a\}$. Since I^{n-1} is embeddable in the geometrical boundary bd I^{n} of I^{n}, and bd I^{n} is homogeneous, we can assume that bd I^{n} is the range of h^{*}, and $h^{*}(a)=(0, \ldots, 0)$. Let $\phi:\left(\operatorname{bd} I^{n}\right) \times I \rightarrow I^{n}$ be an embedding with $\phi(x, 0)=x$ for every $x \in \operatorname{bd} I^{n}$.

It is easy to check that $f=\phi \circ\left(h^{*} \Delta g\right) \circ q$ has the required properties.
Note that the assumption $n \geq 2 m+2$ in Lemma 2.2 can be replaced by $n \geq 2 m+1$. The proof under this weaker assumption is similar to that of Corollaries 2.5 and 2.7 in [7]. However, we will only need the lemma in the form given above.
2.3. Lemma. A compact metrizable space satisfies $\operatorname{Ind} X \leq \omega_{0}$ if and only if for every pair of distinct points $x, y \in X$ there exists a finite-dimensional partition L between x and y.

Proof. The necessity is obvious. To show the sufficiency, we first prove that for any $x \in X$ and any neighbourhood $U \subseteq X$ of x, there exists an open set $V \subseteq X$ such that $\operatorname{Ind} \operatorname{bd} V<\omega_{0}$, i.e., ind $X \leq \omega_{0}$.

For every $y \in X-U$, consider a finite-dimensional partition L_{y} between x and y; let U_{y} and V_{y} be disjoint open subsets of X such that $x \in U_{y}$, $y \in V_{y}$, and $L_{y}=X-\left(U_{y} \cup V_{y}\right)$. Then $X-U \subseteq \bigcup\left\{V_{y}: y \in X-U\right\}$; by compactness of $X-U$, there exists a finite family $\mathcal{V} \subseteq\left\{V_{y}: y \in X-U\right\}$
such that $X-U \subseteq \bigcup \mathcal{V}$. It follows immediately that

$$
V=X-\bigcup\left\{\mathrm{cl} V_{y}: V_{y} \in \mathcal{V}\right\}
$$

is an open subset of X with $x \in V \subseteq U$, and

$$
\operatorname{bd} V \subseteq \bigcup\left\{\operatorname{bd} V_{y}: V_{y} \in \mathcal{V}\right\} \subseteq \bigcup\left\{L_{y}: V_{y} \in \mathcal{V}\right\} ;
$$

since \mathcal{V} is finite,

$$
\text { Ind bd } V \leq \max \left\{\operatorname{Ind} L_{y}: V_{y} \in \mathcal{V}\right\}<\omega_{0}
$$

Now, let $A \subseteq X$ be an arbitrary closed set, and $U \subseteq X$ an open set containing A. For every $x \in A$, consider an open set $V_{x} \subseteq X$ such that $x \in V_{x} \subseteq U$ and Ind bd $V_{x}<\omega_{0}$. By compactness of A, there exists a finite family $\mathcal{V} \subseteq\left\{V_{x}: x \in A\right\}$ such that $A \subseteq \bigcup \mathcal{V}$. Then $V=\bigcup \mathcal{V}$ is an open subset of X such that $A \subseteq V \subseteq U$ and $\operatorname{bd} V \subseteq \bigcup\left\{\operatorname{bd} V_{x}: V_{x} \in \mathcal{V}\right\}$; since \mathcal{V} is finite,

$$
\text { Ind bd } V \leq \max \left\{\operatorname{Ind} \text { bd } V_{x}: V_{x} \in \mathcal{V}\right\}<\omega_{0} .
$$

3. The structure of spaces X with Ind $X \leq \omega_{0}$. In this section we shall prove that compact metrizable spaces of a certain structure have large transfinite dimension not greater than ω_{0} (see Theorem 3.2); actually, it turns out (see Theorem 5.1) that each compact metrizable space X with Ind $X \leq \omega_{0}$ has that structure.

Let $\left\{M_{k}, r_{j}^{k}\right\}$ be an inverse sequence; then M denotes the inverse limit of $\left\{M_{k}, r_{j}^{k}\right\}$, and $r_{k}: M \rightarrow M_{k}$, for $k \in \mathbb{N}$, denotes the projection. Each family $\left\{M_{k}, r_{k}^{k+1}\right\}$, where $r_{k}^{k+1}: M_{k+1} \rightarrow M_{k}$, determines an inverse sequence $\left\{M_{k}, r_{j}^{k}\right\}$; to wit, it suffices to set $r_{j}^{k}=r_{j}^{j+1} \circ \ldots \circ r_{k-1}^{k}$ for $k>j$ and r_{k}^{k} equal to the identity mapping of M_{k}. For simplicity, we shall also call each such family $\left\{M_{k}, r_{k}^{k+1}\right\}$ an inverse sequence.

The next lemma is a technical one and will only be used in the proofs of Theorem 3.2 and Lemma 6.1.
3.1. Lemma. Let n be a fixed natural number, and let $x, y \in M$ be distinct. Suppose there is a $j \in \mathbb{N}$ such that for every $k \geq j$, there exist pairwise disjoint subsets U_{k}, V_{k} and L_{k} of M_{k}, where U_{k}, V_{k} are open and L_{k} is closed, which satisfy the following conditions:

$$
\begin{equation*}
M_{k}=U_{k} \cup V_{k} \cup L_{k}, \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\text { Ind } L_{k} \leq n, \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
r_{j}(x) \in U_{j} \text { and } r_{j}(y) \in V_{j}, \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\left(r_{k}^{k+1}\right)^{-1}\left(U_{k}\right) \subseteq U_{k+1} \text { and }\left(r_{k}^{k+1}\right)^{-1}\left(V_{k}\right) \subseteq V_{k+1} \tag{3.4}
\end{equation*}
$$

Then there exists an at most n-dimensional partition in M between x and y.
Proof. Define

$$
L=\bigcap_{k=j}^{\infty} r_{k}^{-1}\left(L_{k}\right), \quad U=\bigcup_{k=j}^{\infty} r_{k}^{-1}\left(U_{k}\right), \quad \text { and } \quad V=\bigcup_{k=j}^{\infty} r_{k}^{-1}\left(V_{k}\right)
$$

From (3.1) it follows directly that $M=U \cup V \cup L$. Clearly, U, V are open and L is closed in M. Since $U_{k} \cap V_{k}=\emptyset$, we have $U \cap V=\emptyset$ by (3.4), and since $U_{k} \cap L_{k}=\emptyset=L_{k} \cap V_{k}$, we also have $U \cap L=\emptyset=L \cap V$. By (3.3), $x \in U$ and $y \in V$, and thus L is a partition in M between x and y.

Since $L_{k+1} \cap U_{k+1}=\emptyset=V_{k+1} \cap L_{k+1}$, by (3.1) and (3.4), $r_{k}^{k+1}\left(L_{k+1}\right) \subseteq$ L_{k}, so we can regard $r_{k}^{k+1} \mid L_{k+1}$ as a mapping to L_{k}; thus L coincides with $\lim _{\lfloor }\left\{L_{k}, r_{k}^{k+1} \mid L_{k+1}\right\}$, and so Ind $L \leq n$ by the theorem on the dimension of the limit of an inverse sequence (see [2], Theorem 1.13.4) and (3.2).
3.2. Theorem. Let $\left\{M_{k}, r_{k}^{k+1}\right\}$ be an inverse sequence of finite-dimensional compact metrizable spaces M_{k} in which all bonding mappings r_{k}^{k+1} are retractions. Suppose that for every $k \in \mathbb{N}$, there exist a covering \mathcal{A}_{k} of M_{k} and a metric ϱ_{k} on M_{k} with the following properties:
(3.5) the sets $A_{k+1}-M_{k}$, where $A_{k+1} \in \mathcal{A}_{k+1}$, are open in M_{k+1} and pairwise disjoint,
for every $A_{k+1} \in \mathcal{A}_{k+1}$, there exists an $A_{k} \in \mathcal{A}_{k}$ such that $r_{k}^{k+1}\left(A_{k+1}\right)$ $\subseteq A_{k}$,
(3.7) for every $i \in \mathbb{N}$, the sequence of real numbers $\left(\sup \left\{\operatorname{diam}_{\varrho_{i}} r_{i}^{k}\left(A_{k}\right)\right.\right.$: $\left.\left.A_{k} \in \mathcal{A}_{k}\right\}\right)_{k=i+1}^{\infty}$ converges to 0 .
Then $\operatorname{Ind} M \leq \omega_{0}$.
Proof. First for every $A_{k} \in \mathcal{A}_{k}$, we define $A_{k}^{(j)} \in \mathcal{A}_{j}$ for $j \leq k$ in such a way that

$$
\begin{align*}
& r_{j}^{k}\left(A_{k}\right) \subseteq A_{k}^{(j)} \tag{3.8}\\
& \left(A_{k}^{(i)}\right)^{(j)}=A_{k}^{(j)} \text { whenever } j \leq i \leq k \tag{3.9}
\end{align*}
$$

For instance, one can define $A_{k}^{(k-1)}$ to be an arbitrary member A_{k-1} of \mathcal{A}_{k-1} such that $r_{k-1}^{k}\left(A_{k}\right) \subseteq A_{k-1}$ for $A_{k} \in \mathcal{A}_{k}$ (its existence is guaranteed by (3.6)), and then set by induction $A_{k}^{(j)}=\left(A_{k}^{(j+1)}\right)^{(j)}$. Of course, we put $A_{k}^{(k)}=A_{k}$.

We can now begin the proof of $\operatorname{Ind} M \leq \omega_{0}$. Since M, as the inverse limit of a sequence of compact spaces, is compact, it suffices to find a
finite-dimensional partition between any two distinct points $x, y \in M$ (see Lemma 2.3). To this end, we shall apply Lemma 3.1.

Take the smallest $i \in \mathbb{N}$ such that $r_{i}(x) \neq r_{i}(y)$ and define $\varepsilon=$ $\varrho_{i}\left(r_{i}(x), r_{i}(y)\right)$. By (3.7), there exists a $j>i$ such that

$$
\begin{equation*}
\operatorname{diam}_{\varrho_{i}} r_{i}^{j}\left(A_{j}\right)<\varepsilon / 3 \quad \text { for each } A_{j} \in \mathcal{A}_{j} \tag{3.10}
\end{equation*}
$$

Let

$$
\begin{aligned}
U_{i} & =\left\{z \in M_{i}: \varrho_{i}\left(z, r_{i}(x)\right)<\varepsilon / 3\right\} \\
V_{i} & =\left\{z \in M_{i}: \varrho_{i}\left(z, r_{i}(x)\right)>2 \varepsilon / 3\right\} \\
L_{i} & =\left\{z \in M_{i}: \varepsilon / 3 \leq \varrho_{i}\left(z, r_{i}(x)\right) \leq 2 \varepsilon / 3\right\}
\end{aligned}
$$

and $U_{j}=\left(r_{i}^{j}\right)^{-1}\left(U_{i}\right), V_{j}=\left(r_{i}^{j}\right)^{-1}\left(V_{i}\right), L_{j}=\left(r_{i}^{j}\right)^{-1}\left(L_{i}\right)$.
Put
$\mathcal{U}_{k}=\left\{A_{k} \in \mathcal{A}_{k}: A_{k}^{(j)} \cap V_{j}=\emptyset\right\}, \quad \mathcal{V}_{k}=\left\{A_{k} \in \mathcal{A}_{k}: A_{k}^{(j)} \cap V_{j} \neq \emptyset\right\}$
for $k \geq j$, and

$$
U_{k}=\left(\bigcup \mathcal{U}_{k}\right)-L_{j}, \quad V_{k}=\left(\bigcup \mathcal{V}_{k}\right)-L_{j}, \quad L_{k}=L_{j}
$$

for $k>j$; since the bonding mappings are retractions, L_{j} is a subset of M_{k} for $k>j$.

We first check that

$$
\begin{equation*}
U_{k}, V_{k} \text { and } L_{k} \text { are pairwise disjoint. } \tag{3.11}
\end{equation*}
$$

Obviously, $U_{j} \cap V_{j}=\emptyset$. Suppose, on the contrary, that $U_{k} \cap V_{k} \neq \emptyset$ for a $k>j$. Then there exists a $z \in\left(A_{k} \cap B_{k}\right)-L_{j}$ for some $A_{k} \in \mathcal{U}_{k}$ and $B_{k} \in \mathcal{V}_{k}$. By (3.5), we have $z \in M_{k-1}$ and since r_{k-1}^{k} is a retraction, we conclude, using (3.8), that

$$
z \in A_{k} \cap B_{k} \cap M_{k-1} \subseteq A_{k}^{(k-1)} \cap B_{k}^{(k-1)}
$$

Observe that $A_{k}^{(k-1)} \in \mathcal{U}_{k-1}$ and $B_{k}^{(k-1)} \in \mathcal{V}_{k-1}$; indeed, as $A_{k} \in \mathcal{U}_{k}\left(B_{k} \in\right.$ \mathcal{V}_{k}) we have $A_{k}^{(j)} \cap V_{j}=\emptyset\left(B_{k}^{(j)} \cap V_{j} \neq \emptyset\right)$; hence by (3.9), $\left(A_{k}^{(k-1)}\right)^{(j)} \cap V_{j}=$ $A_{k}^{(j)} \cap V_{j}=\emptyset\left(\left(B_{k}^{(k-1)}\right)^{(j)} \cap V_{j}=B_{k}^{(j)} \cap V_{j} \neq \emptyset\right)$, and so $A_{k}^{(k-1)} \in \mathcal{U}_{k-1}$ $\left(B_{k}^{(k-1)} \in \mathcal{V}_{k-1}\right)$. In the same manner we can show by induction that $z \in$ $A_{k}^{(j)} \cap B_{k}^{(j)}$ and $A_{k}^{(j)} \in \mathcal{U}_{j}, B_{k}^{(j)} \in \mathcal{V}_{j}$.

Consequently, $A_{k}^{(j)} \cap V_{j}=\emptyset$ and $z \notin V_{j}$; however, $z \notin L_{j}$, and so, by the definition of U_{j}, V_{j}, L_{j}, we conclude that $z \in U_{j}$; thus $B_{k}^{(j)} \cap U_{j} \neq \emptyset$. On the other hand, $B_{k}^{(j)} \cap V_{j} \neq \emptyset$ (since $B_{k}^{(j)} \in \mathcal{V}_{j}$).

This shows that

$$
\varrho_{i}\left(r_{i}^{j}\left(z_{1}\right), r_{i}(x)\right)<\varepsilon / 3 \quad \text { and } \quad \varrho_{i}\left(r_{i}^{j}\left(z_{2}\right), r_{i}(x)\right)>2 \varepsilon / 3
$$

for some $z_{1}, z_{2} \in B_{k}^{(j)}$, contrary to (3.10). Thus $U_{k} \cap V_{k}=\emptyset$. That $U_{k} \cap L_{k}=$ $\emptyset=L_{k} \cap V_{k}$ follows directly from the definition of U_{k}, V_{k}, L_{k}.

We now show that for $n=\operatorname{Ind} M_{j}$,
(3.12) U_{k}, V_{k} and L_{k} satisfy conditions (3.1)-(3.4) of Lemma 3.1.

Condition (3.1) is obvious for $k=j$. Take $k>j$. Since

$$
\begin{aligned}
M_{k} & \supseteq U_{k} \cup V_{k} \cup L_{k}=\left[\left(\bigcup \mathcal{U}_{k}\right)-L_{j}\right] \cup\left[\left(\bigcup \mathcal{V}_{k}\right)-L_{j}\right] \cup L_{j} \\
& \supseteq\left(\bigcup \mathcal{U}_{k}\right) \cup\left(\bigcup \mathcal{V}_{k}\right)=\bigcup \mathcal{A}_{k}=M_{k}
\end{aligned}
$$

(3.1) also holds for $k>j$.

Conditions (3.2) and (3.3) follow immediately from the definitions of U_{k}, V_{k} and L_{k}.

Let $z \in M_{k+1}$ and $r_{k}^{k+1}(z) \in U_{k}$. Take an $A_{k+1} \in \mathcal{A}_{k+1}$ such that $z \in A_{k+1}$ and suppose that $A_{k+1} \in \mathcal{V}_{k+1}$.

Then $A_{k+1}^{(j)} \cap V_{j} \neq \emptyset$, so $\left(A_{k+1}^{(k)}\right)^{(j)} \cap V_{j} \neq \emptyset($ see $(3.9))$ and $A_{k+1}^{(k)} \in \mathcal{V}_{k}$. If $k=j$, then, by $(3.8), r_{k}^{k+1}(z) \in A_{k+1}^{(j)}$, therefore also $A_{k+1}^{(j)} \cap U_{j} \neq \emptyset$, contrary to (3.10). If $k>j$, then $A_{k+1}^{(k)} \subseteq V_{k} \cup L_{k}$ and, by (3.8), $r_{k}^{k+1}(z) \in V_{k} \cup L_{k}$; but we know (see (3.11)) that $\left(V_{k} \cup L_{k}\right) \cap U_{k}=\emptyset$, and therefore $r_{k}^{k+1}(z) \notin U_{k}$, a contradiction. Thus $A_{k+1} \in \mathcal{U}_{k+1}$.

This clearly forces $A_{k+1} \subseteq U_{k+1} \cup L_{k+1}$. We have $z \notin L_{k+1}$, because otherwise $z \in L_{k+1}=L_{k}$, and hence $r_{k}^{k+1}(z)=z \in L_{k} \cap U_{k}=\emptyset$ (see (3.11)). Thus $z \in A_{k+1}-L_{k+1} \subseteq U_{k+1}$, and the first part of (3.4) is proved.

The second part of (3.4) can be shown similarly, and thus the proof of (3.12) is complete.

We see at once that

$$
\begin{equation*}
L_{k} \text { is a closed subset of } M_{k} \tag{3.13}
\end{equation*}
$$

In order to check that the assumptions of Lemma 3.1 are satisfied, it remains to show that

$$
\begin{equation*}
U_{k} \text { and } V_{k} \text { are open subsets of } M_{k} \tag{3.14}
\end{equation*}
$$

We prove this for U_{k} by induction on k; the same argument works for V_{k}.
For $k=j,(3.14)$ is evident. Assume that (3.14) holds for numbers less than some $k>j$.

First, we verify that

$$
\begin{equation*}
U_{k} \cap M_{k-1}=U_{k-1} \tag{3.15}
\end{equation*}
$$

Indeed,

$$
U_{k-1} \subseteq M_{k-1} \cap\left(r_{k-1}^{k}\right)^{-1}\left(U_{k-1}\right) \subseteq M_{k-1} \cap U_{k}
$$

(see (3.12) and (3.4); recall that r_{k-1}^{k} is a retraction). On the other hand, if
there were $z \in\left(U_{k} \cap M_{k-1}\right)-U_{k-1}$, we would have

$$
\begin{aligned}
z \in\left(M_{k-1}-U_{k-1}\right) \cap U_{k} & \subseteq\left(L_{k-1} \cup V_{k-1}\right)-\left(L_{k} \cup V_{k}\right) \\
& \subseteq\left(L_{k} \cup V_{k-1}\right)-\left(L_{k} \cup V_{k-1}\right)=\emptyset
\end{aligned}
$$

(recall that $L_{k}=L_{k-1}$ and $V_{k-1} \subseteq V_{k}$; see (3.12) and (3.4)).
We now return to the inductive proof. Take a $z \in U_{k}$. If $z \in M_{k-1}$, then $z \in U_{k-1}$ by (3.15); then $\left(r_{k-1}^{k}\right)^{-1}\left(U_{k-1}\right)$ is a neighbourhood of z by the inductive assumption, and it follows from (3.12) and (3.4) that $\left(r_{k-1}^{k}\right)^{-1}\left(U_{k-1}\right) \subseteq U_{k}$. If $z \notin M_{k-1}$, then $z \in A_{k}-M_{k-1}$ for some $A_{k} \in \mathcal{U}_{k}$; by (3.5), $A_{k}-M_{k-1}$ is a neighbourhood of z, and since $L_{k} \subseteq M_{k-1}$, this neighbourhood is contained in U_{k}.

We have thus verified that the assumptions of Lemma 3.1 are satisfied. Consequently, there exists a finite-dimensional partition (more precisely, a partition of dimension not greater than $n=\operatorname{Ind} M_{j}$) between x and y in the space M.
4. The spaces I_{a}^{σ}. In this section, for any increasing sequence $\sigma=$ $(\sigma(k))_{k=0}^{\infty}$ of positive integers, and any sequence $a=(a(k))_{k=1}^{\infty}$ of real numbers such that $1 / 2<a(k)<1$ for every k and $\prod_{k=1}^{\infty} a(k)=0$ we construct a compact metrizable space I_{a}^{σ} with $\operatorname{Ind} I_{a}^{\sigma}=\omega_{0}$. For our purposes it suffices to restrict attention to any fixed sequence $a=(a(k))_{k=1}^{\infty}$ which has the above properties, except for Section 6 , where we will additionally need the condition

$$
\begin{equation*}
\prod_{k=1}^{\infty} 2 a(k)<\infty . \tag{*}
\end{equation*}
$$

Thus the reader can assume that $a=\left(1 / 2+1 / 2^{k+1}\right)_{k=1}^{\infty}$; it is easy to see that this sequence has all the required properties.

From now on, σ stands for an increasing sequence of positive integers, and a for a sequence of real numbers such that $1 / 2<a(k)<1$ and $\prod_{k=1}^{\infty} a(k)=$ 0 ; for a given σ, we denote by $\sigma \mid k$ the sequence $\sigma(0), \sigma(1), \ldots, \sigma(k-1)$; in particular, $\sigma \mid 0$ is the empty sequence. We denote by $S_{\sigma(k)}^{a}$ the set of all sequences

$$
\gamma:\{1,2, \ldots, \sigma(k)\} \rightarrow\{0,1-a(k+1)\},
$$

i.e., the set of all sequences of $\sigma(k)$ elements equal to either 0 or $1-a(k+1)$; S_{0} consists of the empty sequence. Let

$$
S_{\sigma \mid 0}^{a}=S_{0}, \quad S_{\sigma \mid k}^{a}=S_{\sigma(0)}^{a} \times S_{\sigma(1)}^{a} \times \ldots \times S_{\sigma(k-1)}^{a}, \quad S_{\sigma}^{a}=\bigcup_{k=0}^{\infty} S_{\sigma \mid k}^{a} .
$$

For every sequence $s=\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}\right) \in S_{\sigma \mid k}^{a}$ and $m<k$, let $s \mid m$ stand for the sequence $\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{m-1}\right) \in S_{\sigma \mid m}^{a}$.

Fix σ and a. First, we construct by induction an inverse sequence $\left\{I_{a}^{\sigma \mid k}, r_{a}^{\sigma \mid k+1}\right\}$, where $r_{a}^{\sigma \mid k+1}: I_{a}^{\sigma \mid k+1} \rightarrow I_{a}^{\sigma \mid k}$; simultaneously, we define a covering $\left\{I_{s}: s \in S_{\sigma \mid k}^{a}\right\}$ of $I_{a}^{\sigma \mid k}$ by $\sigma(k)$-dimensional cubes for $k=0,1, \ldots$

Let $I_{a}^{\sigma \mid 0}$ be the $\sigma(0)$-dimensional cube $I^{\sigma(0)}$ and $I_{s}=I^{\sigma(0)}$ for the unique $s \in S_{\sigma \mid 0}^{a}$. Assume that we have already defined $I_{a}^{\sigma \mid k}$ and its covering $\left\{I_{s}\right.$: $\left.s \in S_{\sigma \mid k}^{a}\right\}$.

For every $s \in S_{\sigma \mid k}^{a}$, we identify I_{s} and the standard $\sigma(k)$-dimensional cube $I^{\sigma(k)}$. For $t=(s, \gamma) \in S_{\sigma \mid k+1}^{a}$, set $I_{t}^{\prime}=\left\{\left(x_{1}, \ldots, x_{\sigma(k)}\right) \in I_{s}: \gamma(i) \leq\right.$ $x_{i} \leq \gamma(i)+a(k+1)$ for $\left.i \leq \sigma(k)\right\}$; that is, I_{t}^{\prime} is a smaller cube placed in a corner of I_{s} such that the length ratio of their edges is $a(k+1)$.

Roughly speaking, we glue a $\sigma(k+1)$-dimensional cube, denoted here by I_{t}, along its $\sigma(k)$-dimensional face, which is identified with I_{t}^{\prime}, to every cube $I_{t}^{\prime} \subseteq I_{a}^{\sigma \mid k}$, where $t \in S_{\sigma \mid k+1}^{a}$, in such a way that the sets $I_{t}-I_{t}^{\prime}$ are pairwise disjoint. Our $I_{a}^{\sigma \mid k+1}$ is the space so obtained.

Precisely, the space $I_{a}^{\sigma \mid k+1}$ can be defined as follows. Let Q_{t}, where $t \in$ $S_{\sigma \mid k+1}^{a}$, be a copy of the $(\sigma(k+1)-\sigma(k))$-dimensional cube $I^{\sigma(k+1)-\sigma(k)}$. Set

$$
\begin{aligned}
I_{t}=\left\{\left(y,\left\{y_{s}: s \in S_{\sigma \mid k+1}^{a}\right\}\right) \in I_{a}^{\sigma \mid k}\right. & \times \mathbb{P}\left\{Q_{s}: s \in S_{\sigma \mid k+1}^{a}\right\}: \\
& \left.y \in I_{t}^{\prime} \text { and } y_{s}=(0, \ldots, 0) \text { for } s \neq t\right\}
\end{aligned}
$$

for $t \in S_{\sigma \mid k+1}^{a}$, and

$$
I_{a}^{\sigma \mid k+1}=\bigcup\left\{I_{t}: t \in S_{\sigma \mid k+1}^{a}\right\} .
$$

It is easily seen that the covering $\left\{I_{s}: s \in S_{\sigma \mid k+1}^{a}\right\}$ consists of $\sigma(k+1)$ dimensional cubes.

The orthogonal projections of the $\sigma(k+1)$-dimensional cubes I_{s} onto their $\sigma(k)$-dimensional faces I_{s}^{\prime}, where $s \in S_{\sigma \mid k+1}^{a}$, determine a retraction of $I_{a}^{\sigma \mid k+1}$ onto $I_{a}^{\sigma \mid k}$; denote it by $r_{a}^{\sigma \mid k+1}$. More precisely,

$$
r_{a}^{\sigma \mid k+1}\left(\left(y,\left\{y_{s}: s \in S_{\sigma \mid k+1}^{a}\right\}\right)\right)=\left(y,\left\{z_{s}: s \in S_{\sigma \mid k+1}^{a}\right\}\right),
$$

where $z_{s}=(0, \ldots, 0)$ for $s \in S_{\sigma \mid k+1}^{a}$, for every ($y,\left\{y_{s}: s \in S_{\sigma \mid k+1}^{a}\right\}$).
Thus, the inductive construction of $\left\{I_{a}^{\sigma \mid k}, r_{a}^{\sigma \mid k+1}\right\}$ is complete.
In Fig. 4.1 the first steps in constructing $\left\{I_{a}^{\sigma \mid k}, r_{a}^{\sigma \mid k+1}\right\}$, where $\sigma(k)=$ $k+1$ for $k=0,1, \ldots$, and $a(k)=1 / 2+1 / 2^{k+1}$ for $k=1,2, \ldots$, are exhibited.

Let

$$
I_{a}^{\sigma}=\varliminf_{\leftrightarrows}\left\{I_{a}^{\sigma \mid k}, r_{a}^{\sigma \mid k+1}\right\} .
$$

We list several properties of the space I_{a}^{σ}.

$I_{(1 / 4,(3 / 8,3 / 8))}$

Fig. 4.1

It is easy to check that for $k=0,1, \ldots, I_{a}^{\sigma \mid k+1}$ is a closed subspace of $I_{a}^{\sigma \mid k} \times \mathbb{P}\left\{Q_{s}: s \in S_{\sigma \mid k+1}^{a}\right\}$; thus the spaces $I_{a}^{\sigma \mid k}$ are compact and metrizable, and so is I_{a}^{σ}. Since $a(k+1)>1 / 2$, we have $I_{s}=\bigcup\left\{I_{t}^{\prime}: t \in S_{\sigma \mid k+1}^{a}\right.$ and $t \mid k=s\}$ for every $s \in S_{\sigma \mid k}^{a}$; in particular, $I_{a}^{\sigma \mid k}=\bigcup\left\{I_{t}^{\prime}: t \in S_{\sigma \mid k+1}^{a}\right\}$. Hence

$$
\begin{gather*}
I_{s} \subseteq \bigcup\left\{I_{t}: t \in S_{\sigma \mid k+1}^{a} \text { and } t \mid k=s\right\} \quad \text { for every } s \in S_{\sigma \mid k}^{a} \tag{4.1}\\
I_{a}^{\sigma \mid k} \subseteq I_{a}^{\sigma \mid k+1} \quad \text { for } k=0,1, \ldots \tag{4.2}
\end{gather*}
$$

Since $a(k+1)>1 / 2$, we also have

$$
\begin{equation*}
\bigcap\left\{I_{t}: t \in S_{\sigma \mid k+1}^{a} \text { and } t \mid k=s\right\} \neq \emptyset \quad \text { for every } s \in S_{\sigma \mid k}^{a} \tag{4.3}
\end{equation*}
$$

It follows immediately from the definition that the bonding mappings $r_{a}^{\sigma \mid k+1}$ are retractions; thus we can assume that

$$
\begin{equation*}
I_{a}^{\sigma \mid k} \subseteq I_{a}^{\sigma} \quad \text { for } k=0,1, \ldots \tag{4.4}
\end{equation*}
$$

From the definition it also follows that

$$
\begin{equation*}
r_{a}^{\sigma \mid k+1}\left(I_{s}\right)=I_{s}^{\prime} \subseteq I_{s \mid k} \quad \text { for every } s \in S_{\sigma \mid k+1}^{a} . \tag{4.5}
\end{equation*}
$$

For $k=0,1, \ldots$, there exists a metric $\varrho_{\sigma, k}^{a}$ on $I_{a}^{\sigma \mid k}$ with the property that

$$
\begin{align*}
& \operatorname{diam}_{\varrho_{\sigma, k}^{a}} r_{a}^{\sigma \mid m} \circ r_{a}^{\sigma \mid m-1} \circ \ldots \circ r_{a}^{\sigma \mid k+1}\left(I_{s}\right) \tag{4.6}\\
& \quad \leq\left(\prod_{l=k+1}^{m} a(l)\right) \operatorname{diam}_{\varrho_{\sigma, k}^{a}} I_{a}^{\sigma \mid k} \quad \text { for any } m>k \text { and } s \in S_{\sigma \mid m}^{a} .
\end{align*}
$$

The metrics $\varrho_{\sigma, k}^{a}$ can be defined by induction in the following way: $\varrho_{\sigma, 0}^{a}$ is the standard Euclidean metric on $I_{a}^{\sigma \mid 0}=I^{\sigma(0)}$, and $\varrho_{\sigma, k+1}^{a}$ is the restriction to $I_{a}^{\sigma \mid k+1}$ of the Cartesian product metric of $I_{a}^{\sigma \mid k} \times \mathbb{P}\left\{Q_{s}\right.$: $\left.s \in S_{\sigma \mid k+1}^{a}\right\}$, where $I_{a}^{\sigma \mid k}$ is equipped with the metric $\varrho_{\sigma \mid k}^{a}$ and every Q_{s} is equipped with the standard Euclidean metric.

We now prove that for each increasing sequence σ of natural numbers, Ind $I_{a}^{\sigma}=\omega_{0}$.

Since $I_{a}^{\sigma \mid k}$, and hence I_{a}^{σ}, contains a $\sigma(k)$-dimensional cube and $\sigma(k) \rightarrow$ ∞ as $k \rightarrow \infty$, we have Ind $I_{a}^{\sigma} \geq \omega_{0}$.

The opposite inequality follows from Theorem 3.2 applied to $M_{k}=I_{a}^{\sigma \mid k}$ for $k \in \mathbb{N}$; we take $\left\{I_{s}: s \in S_{\sigma \mid k}^{a}\right\}$ for \mathcal{A}_{k}. It is clear that (3.5) is satisfied; (3.6) follows from (4.5), and (3.7) follows from (4.6) and the equality $\prod_{k=1}^{\infty} a(k)=0$.
5. Every space X with Ind $X \leq \omega_{0}$ is embeddable in some I_{a}^{σ}. Let $a=(a(k))_{k=1}^{\infty}$ be an arbitrary sequence of real numbers such that $1 / 2<$ $a(k)<1$ for each $k \in \mathbb{N}$ and $\prod_{k=1}^{\infty} a(k)=0$.
5.1. Theorem. Every compact metrizable space X with $\operatorname{Ind} X \leq \omega_{0}$ is embeddable in I_{a}^{σ} for some increasing sequence σ of natural numbers.

Proof. Fix a metric on X. We shall define inductively an increasing sequence $\sigma=(\sigma(k))_{k=0}^{\infty}$ of natural numbers and a sequence $\left(h_{k}\right)_{k=0}^{\infty}$ of mappings, where $h_{k}: X \rightarrow I_{a}^{\sigma \mid k}$, such that

$$
\begin{equation*}
r_{a}^{\sigma \mid k} \circ h_{k}=h_{k-1} \tag{5.1}
\end{equation*}
$$

for every $k>0$ and

$$
\begin{equation*}
h_{k} \text { is a } 1 /(k+1) \text {-mapping. } \tag{5.2}
\end{equation*}
$$

Simultaneously, we shall define families $\left\{G_{s}: s \in S_{\sigma \mid k+1}^{a}\right\}$ of pairwise disjoint open subsets of X (for the definition of $S_{\sigma \mid k+1}^{a}$, see Section 4) satisfying the following conditions:

$$
\begin{gather*}
h_{k}\left(G_{s}\right) \subseteq I_{s}^{\prime} \quad \text { for every } s \in S_{\sigma \mid k+1}^{a} \tag{5.3}\\
h_{k} \mid X-\bigcup\left\{G_{s}: s \in S_{\sigma \mid k+1}^{a}\right\} \text { is an embedding. }
\end{gather*}
$$

By Lemma 2.1, there exist an $m \in \mathbb{N}$ and a 1-mapping $g_{0}: X \rightarrow I^{m}$. Since Ind $X \leq \omega_{0}$, there exists a finite-dimensional partition L_{i} in X between

$$
E_{0}^{i}=g_{0}^{-1}\left(\left\{\left(z_{1}, \ldots, z_{m}\right) \in I^{m}: z_{i} \leq 1-a(1)\right\}\right)
$$

and

$$
E_{1-a(1)}^{i}=g_{0}^{-1}\left(\left\{\left(z_{1}, \ldots, z_{m}\right) \in I^{m}: z_{i} \geq a(1)\right\}\right)
$$

for $i=1, \ldots, m$; let G_{0}^{i} and $G_{1-a(1)}^{i}$ be disjoint open subsets of X such that

$$
E_{0}^{i} \subseteq G_{0}^{i}, \quad E_{1-a(1)}^{i} \subseteq G_{1-a(1)}^{i}, \quad \text { and } \quad X-L_{i}=G_{0}^{i} \cup G_{1-a(1)}^{i}
$$

Let

$$
\sigma(0)=\max \left\{2\left(\operatorname{Ind} L_{i}\right)+1: i=1, \ldots, m\right\}+m
$$

Consider a mapping $f_{0}: X \rightarrow I^{\sigma(0)-m}$ such that $f_{0} \mid \bigcup_{i=1}^{m} L_{i}$ is an embedding and

$$
\begin{aligned}
f_{0}(X) \subseteq\left\{\left(z_{m+1}, z_{m+2}, \ldots,\right.\right. & \left.z_{\sigma(0)}\right) \in I^{\sigma(0)-m} \\
& \left.z_{i} \leq a(1) \text { for } i=m+1, m+2, \ldots, \sigma(0)\right\}
\end{aligned}
$$

and set $h_{0}=g_{0} \Delta f_{0}$; obviously, $h_{0}: X \rightarrow I^{\sigma(0)}=I_{a}^{\sigma(0)}$. The family $\left\{G_{s}: s \in S_{\sigma \mid 1}^{a}\right\}$ is defined by letting

$$
G_{s}=G_{\gamma(1)}^{1} \cap G_{\gamma(2)}^{2} \cap \ldots \cap G_{\gamma(m)}^{m}
$$

for $s=\gamma=(\gamma(i))_{i=0}^{\sigma(0)} \in S_{\sigma \mid 1}^{a}$ such that $\gamma(i)=0$ for $i>m$, and $G_{s}=\emptyset$ for other $s \in S_{\sigma \mid 1}^{a}$; observe that this family consists of pairwise disjoint open subsets of X.

It is a simple matter to verify that conditions $(5.2)_{k}-(5.4)_{k}$ are satisfied.

Assume that the numbers $\sigma(0)<\sigma(1)<\ldots<\sigma(k)$, the mappings h_{k}, and the families $\left\{G_{s}: s \in S_{\sigma \mid k+1}^{a}\right\}$ of pairwise disjoint subsets of X are defined and satisfy $(5.1)_{k}-(5.4)_{k}$.

Fix an $s \in S_{\sigma \mid k+1}^{a}$. The set $I_{s}^{\prime} \subseteq I_{a}^{\sigma \mid k}$ is closed, and so $h_{k}\left(\operatorname{cl} G_{s}\right) \subseteq I_{s}^{\prime}$ by $(5.3)_{k}$. Since the sets G_{s} are open and pairwise disjoint, bd $G_{s} \subseteq X-\bigcup\left\{G_{t}\right.$: $\left.t \in S_{\sigma \mid k+1}^{a}\right\}$. Hence, by $(5.4)_{k}, h_{k} \mid \mathrm{bd} G_{s}$ is an embedding of $\mathrm{bd} G_{s}$ in I_{s}^{\prime}.

By Lemma 2.1 applied to the space $\mathrm{cl} G_{s}$ and to its closed subset bd G_{s}, there exist a natural number $m>\operatorname{Ind} I_{s}^{\prime}=\sigma(k)$ and a mapping $g_{s}: \operatorname{cl} G_{s} \rightarrow$ $I^{m-\sigma(k)}$ such that

$$
\begin{gather*}
\left(h_{k} \mid \operatorname{cl} G_{s}\right) \Delta g_{s} \text { is a } 1 /(k+2) \text {-mapping, } \tag{5.5}\\
\left(\left(h_{k} \mid \operatorname{cl} G_{s}\right) \Delta g_{s}\right)^{-1}\left(I_{s}^{\prime} \times\{(0, \ldots, 0)\}\right)=\operatorname{bd} G_{s} . \tag{5.6}
\end{gather*}
$$

Since $S_{\sigma \mid k+1}^{a}$ is finite, one can assume that m does not depend on s.
Let

$$
\begin{aligned}
& E_{s, 0}^{i}=\left(\left(h_{k} \mid \operatorname{cl} G_{s}\right) \Delta g_{s}\right)^{-1}\left(\left\{\left(z_{1}, \ldots, z_{m}\right) \in I_{s}^{\prime} \times I^{m-\sigma(k)}: z_{i} \leq 1-a(k+2)\right\}\right), \\
& E_{s, 1-a(k+2)}^{i} \\
&=\left(\left(h_{k} \mid \mathrm{cl} G_{s}\right) \Delta g_{s}\right)^{-1}\left(\left\{\left(z_{1}, \ldots, z_{m}\right) \in I_{s}^{\prime} \times I^{m-\sigma(k)}: z_{i} \geq a(k+2)\right\}\right) .
\end{aligned}
$$

Since Ind $\mathrm{cl} G_{s} \leq \operatorname{Ind} X \leq \omega_{0}$, there exists a finite-dimensional partition L_{s}^{i} in the space $\mathrm{cl} G_{s}$ between $E_{s, 0}^{i}$ and $E_{s, 1-a(k+2)}^{i} ;$ let $G_{s, 0}^{i}$ and $G_{s, 1-a(k+2)}^{i}$ be disjoint open subsets of $\mathrm{cl} G_{s}$ such that $E_{s, 0}^{i} \subseteq G_{s, 0}^{i}, E_{s, 1-a(k+2)}^{i} \subseteq$ $G_{s, 1-a(k+2)}^{i}$, and $\operatorname{cl} G_{s}-L_{s}^{i}=G_{s, 0}^{i} \cup G_{s, 1-a(k+2)}^{i}$.

Set $\sigma(k+1)=\max \left\{2\left(\operatorname{Ind} L_{s}^{i}\right)+2: i=1, \ldots, m\right.$ and $\left.s \in S_{\sigma \mid k+1}^{a}\right\}+m$.
By Lemma 2.2 applied to the space $\mathrm{cl} G_{s}$ and its closed subsets $A=\operatorname{bd} G_{s}$ and $B=\bigcup_{i=1}^{m} L_{s}^{i}$, there exists a mapping $f_{s}: \operatorname{cl} G_{s} \rightarrow I^{\sigma(k+1)-m}$ such that

$$
\begin{gather*}
f_{s} \mid \bigcup_{i=1}^{m} L_{s}^{i}-\operatorname{bd} G_{s} \text { is an embedding, } \tag{5.7}\\
f_{s}^{-1}((0, \ldots, 0))=\operatorname{bd} G_{s} \tag{5.8}
\end{gather*}
$$

obviously, one can additionally assume that

$$
\begin{align*}
& f_{s}\left(\mathrm{cl} G_{s}\right) \subseteq\left\{\left(z_{m+1}, z_{m+2}, \ldots, z_{\sigma(k+1)}\right) \in I^{\sigma(k+1)-m}:\right. \tag{5.9}\\
& \left.\quad z_{i} \leq a(k+2) \text { for } i=m+1, m+2, \ldots, \sigma(k+1)\right\} .
\end{align*}
$$

Let $h_{s}=\left(h_{k} \mid \mathrm{cl} G_{s}\right) \Delta g_{s} \Delta f_{s}$; then

$$
h_{s}: \operatorname{cl} G_{s} \rightarrow I_{s}^{\prime} \times I^{m-\sigma(k)} \times I^{\sigma(k+1)-m}=I_{s}^{\prime} \times I^{\sigma(k+1)-\sigma(k)} .
$$

Identifying in the natural way $I_{s}^{\prime} \times I^{\sigma(k+1)-\sigma(k)}$ and I_{s}, we can assume that I_{s} is the range of h_{s}.

By (5.6) and (5.8), we have $h_{s}(x)=h_{k}(x)$ for every $x \in \operatorname{bd} G_{s}$ and $s \in$ $S_{\sigma \mid k+1}^{a}$; thus the mappings $h_{s}, s \in S_{\sigma \mid k+1}^{a}$, and $h_{k} \mid X-\bigcup\left\{G_{s}: s \in S_{\sigma \mid k+1}^{a}\right\}$ are
compatible. Denote by h_{k+1} the combination $\left(\nabla\left\{h_{s}: s \in S_{\sigma \mid k+1}^{a}\right\}\right) \nabla\left(h_{k} \mid X-\right.$ $\bigcup\left\{G_{s}: s \in S_{\sigma \mid k+1}^{a}\right\}$); obviously, $h_{k+1}: X \rightarrow I_{a}^{\sigma \mid k+1}$.

Since the sets $I_{s}-I_{s}^{\prime}$ are pairwise disjoint, we have

$$
\begin{equation*}
h_{k+1}^{-1}\left(I_{s}-I_{s}^{\prime}\right)=G_{s} \quad \text { for every } s \in S_{\sigma \mid k+1}^{a} \tag{5.10}
\end{equation*}
$$

(see (5.6) and (5.8)).
We now show that h_{k+1} satisfies $(5.1)_{k+1}$ and $(5.2)_{k+1}$.
From the definition of h_{k+1} it follows immediately that $h_{k+1}(x)=h_{k}(x)$ for $x \in X-\bigcup\left\{G_{s}: s \in S_{\sigma \mid k+1}^{a}\right\}$; since $r_{a}^{\sigma \mid k+1}$ is a retraction, $r_{a}^{\sigma \mid k+1}\left(h_{k+1}(x)\right)$ $=h_{k}(x)$ for these points. On the other hand, if $x \in G_{s}$ for some $s \in S_{\sigma \mid k+1}^{a}$, then $r_{a}^{\sigma \mid k+1}\left(h_{k+1}(x)\right)=r_{a}^{\sigma \mid k+1}\left(h_{s}(x)\right)=r_{a}^{\sigma \mid k+1}\left(\left(\left(h_{k} \mid \operatorname{cl} G_{s}\right) \Delta g_{s} \Delta f_{s}\right)(x)\right)$ $=\left(h_{k} \mid \operatorname{cl} G_{s}\right)(x)=h_{k}(x)$. Thus we have shown that $(5.1)_{k+1}$ is satisfied.

In order to show $(5.2)_{k+1}$ take an arbitrary point $z \in I_{a}^{\sigma \mid k+1}$. If $z \in$ $I_{a}^{\sigma \mid k} \subseteq I_{a}^{\sigma \mid k+1}$, then $h_{k+1}^{-1}(z) \subseteq X-\bigcup\left\{G_{s}: s \in S_{\sigma \mid k+1}^{a}\right\}$ by (5.10); since $h_{k}(x)=h_{k+1}(x)$ for every $x \in X-\bigcup\left\{G_{s}: s \in S_{\sigma \mid k+1}^{a}\right\}$, by $(5.2)_{k}, h_{k+1}^{-1}(z)$ is either empty or a one-point set. If $z \notin I_{a}^{\sigma \mid k}$, then $z \in I_{s}-I_{s}^{\prime}$ for some $s \in S_{\sigma \mid k+1}^{a}$, and so $h_{k+1}^{-1}(z) \subseteq G_{s}$ by (5.10); thus

$$
h_{k+1}^{-1}(z)=h_{s}^{-1}(z)=\left(\left(h_{k} \mid \operatorname{cl} G_{s}\right) \Delta g_{s} \Delta f_{s}\right)^{-1}(z),
$$

and so $\operatorname{diam} h_{k+1}^{-1}(z) \leq 1 /(k+2)$ by (5.5). We have shown that $(5.2)_{k+1}$ is satisfied.

Define the family $\left\{G_{t}: t \in S_{\sigma \mid k+2}^{a}\right\}$ by letting

$$
G_{t}=G_{s} \cap G_{s, \gamma(1)}^{1} \cap G_{s, \gamma(2)}^{2} \cap \ldots \cap G_{s, \gamma(m)}^{m}
$$

for $t=(s, \gamma) \in S_{\sigma \mid k+2}^{a}$ such that $\gamma(i)=0$ for $i=m+1, m+2, \ldots, \sigma(k+1)$, and $G_{t}=\emptyset$ for other $t \in S_{\sigma \mid k+2}^{a}$.

It is easily seen that the sets G_{t} are open, pairwise disjoint, and

$$
\begin{align*}
X-\bigcup\left\{G_{t}: t \in S_{\sigma \mid k+2}^{a}\right\}= & \left(X-\bigcup\left\{G_{s}: s \in S_{\sigma \mid k+1}^{a}\right\}\right) \tag{5.11}\\
& \cup \bigcup\left\{L_{s}^{i}: i=1, \ldots, m \text { and } s \in S_{\sigma \mid k+1}^{a}\right\} .
\end{align*}
$$

We now show $(5.3)_{k+1}-(5.4)_{k+1}$. Take a $t=(s, \gamma) \in S_{\sigma \mid k+2}^{a}$. If $\gamma(i)=$ $1-a(k+2)$ for some $i>m$, then $G_{t}=\emptyset$, and so $(5.3)_{k+1}$ is satisfied. Assume therefore that $\gamma(i)=0$ for $i=m+1, m+2, \ldots, \sigma(k+1)$. Since $G_{s, \gamma(i)}^{i} \cap E_{s, 1-a(k+2)-\gamma(i)}^{i}=\emptyset$ for $i=1, \ldots, m$, we have

$$
\begin{aligned}
\left(\left(h_{k} \mid \operatorname{cl} G_{s}\right) \Delta g_{s}\right)\left(G_{t}\right) \subseteq & \left\{\left(z_{1}, \ldots, z_{n}\right) \in I_{s}^{\prime} \times I^{m-\sigma(k)}:\right. \\
& \left.\gamma(i) \leq z_{i} \leq \gamma(i)+a(k+2) \text { for } i=1, \ldots, m\right\}
\end{aligned}
$$

hence, by (5.9),

$$
h_{k+1}\left(G_{t}\right)=\left(\left(h_{k} \mid \operatorname{cl} G_{s}\right) \Delta g_{s} \Delta f_{s}\right)\left(G_{t}\right) \subseteq I_{t}^{\prime}
$$

and therefore $(5.3)_{k+1}$ is satisfied for every $s \in S_{\sigma \mid k+2}^{a}$.
In order to prove $(5.4)_{k+1}$ it suffices to show that $h_{k+1} \mid X-\bigcup\left\{G_{s}\right.$: $\left.s \in S_{\sigma \mid k+2}^{a}\right\}$ is 1-1. Put

$$
\begin{aligned}
& C=X-\bigcup\left\{G_{s}: s \in S_{\sigma \mid k+1}^{a}\right\} \\
& D=\left(\bigcup\left\{L_{s}^{i}: s \in S_{\sigma \mid k+1}^{a}, i=1, \ldots, m\right\}\right) \cap\left(\bigcup\left\{G_{s}: s \in S_{\sigma \mid k+1}^{a}\right\}\right)
\end{aligned}
$$

observe that $X-\bigcup\left\{G_{t}: t \in S_{\sigma \mid k+2}^{a}\right\}=C \cup D($ see (5.11)).
Consider a pair of distinct points $x, y \in X-\bigcup\left\{G_{t}: t \in S_{\sigma \mid k+2}^{a}\right\}$. If one of them, say x, belongs to C, and the other to D, then $h_{k+1}(x)=h_{k}(x) \in I_{a}^{\sigma \mid k}$, whereas $h_{k+1}(y) \notin I_{a}^{\sigma \mid k}$ (see (5.10)); if $x, y \in C$, then $h_{k+1}(x)=h_{k}(x) \neq$ $h_{k}(y)=h_{k+1}(y)$ by $(5.4)_{k}$. If $x, y \in\left(\bigcup_{i=1}^{m} L_{s}^{i}\right) \cap G_{s}$ for some $s \in S_{\sigma \mid k+1}^{a}$, then $h_{k+1}(x)=h_{s}(x) \neq h_{s}(y)=h_{k+1}(y)$ by (5.7). If $x \in G_{s}$ and $y \in G_{t}$ for some distinct $s, t \in S_{\sigma \mid k+1}^{a}$, then $h_{k+1}(x) \in I_{s}-I_{s}^{\prime}$ and $h_{k+1}(y) \in I_{t}-I_{t}^{\prime}$ (see (5.10)); since $\left(I_{s}-I_{s}^{\prime}\right) \cap\left(I_{t}-I_{t}^{\prime}\right)=\emptyset$, we have $h_{k+1}(x) \neq h_{k+1}(y)$. Thus $(5.4)_{k+1}$ is satisfied.

The inductive construction of the mappings h_{0}, h_{1}, \ldots is complete.
Since the sequence $\left(h_{k}\right)_{k=0}^{\infty}$ satisfies $(5.1)_{k}$ for $k=1,2, \ldots$, it determines a mapping $h: X \rightarrow I_{a}^{\sigma}$; from $(5.2)_{k}, k=0,1, \ldots$, it follows that h is $1-1$, and so it is a homeomorphic embedding by compactness of X.
5.2. Corollary. For every sequence $a=(a(k))_{k=1}^{\infty}$ such that $1 / 2<$ $a(k)<1$ for each $k \in \mathbb{N}$ and $\prod_{k=1}^{\infty} a(k)=0$ the family $\left\{I_{a}^{\sigma}: \sigma\right.$ is an increasing sequence of natural numbers $\}$ is universal in the class of all compact metrizable spaces X with $\operatorname{Ind} X=\omega_{0}$.
6. Cardinalities of universal families. Denote by \mathcal{D} the class of all compact metrizable spaces X with ind $X=\omega_{0}$; let

$$
\mathfrak{m}=\min \{|\mathcal{A}|: \mathcal{A} \text { is a universal family in } \mathcal{D}\} .
$$

In this section we show that

$$
\begin{equation*}
\mathfrak{m}=\mathfrak{d} \tag{6.1}
\end{equation*}
$$

The proof will be preceded by two lemmas. We denote by st (Y) the star of a set $Y \subseteq I_{a}^{\sigma \mid j}$ with respect to the covering $\left\{I_{t}: t \in S_{\sigma \mid j}^{a}\right\}$, that is,

$$
\operatorname{st}(Y)=\bigcup\left\{I_{t}: t \in S_{\sigma \mid j}^{a} \text { and } Y \cap I_{t} \neq \emptyset\right\} .
$$

6.1. Lemma. Let j be a natural number, and let A be a subspace of I_{a}^{σ}. If the image of A under the projection of I_{a}^{σ} onto $I_{a}^{\sigma \mid j}$ is not contained in
any $\operatorname{st}\left(I_{s}\right)$, where $s \in S_{\sigma \mid j}^{a}$, then for some $x, y \in A$, there exists an at most $\sigma(j)$-dimensional partition in A between x and y.

Proof. Denote by A_{j} the image of A under the projection of I_{a}^{σ} onto $I_{a}^{\sigma \mid j}$. Since $A \neq \emptyset$ and $I_{a}^{\sigma \mid j}=\bigcup\left\{I_{s}: s \in S_{\sigma \mid j}^{a}\right\}$, it follows that $A_{j} \cap I_{s} \neq \emptyset$ for some $s \in S_{\sigma \mid j}^{a}$; take an $x \in A$ whose image under the above projection-to be denoted by x_{j}-belongs to I_{s}. By assumption, there exists a $y \in A$ whose image, say y_{j}, belongs to $I_{a}^{\sigma \mid j}-\operatorname{st}\left(I_{s}\right)$. Let

$$
\begin{aligned}
& U_{j}=I_{a}^{\sigma \mid j}-\bigcup\left\{I_{t}: t \in S_{\sigma \mid j}^{a} \text { and } I_{t} \cap I_{s}=\emptyset\right\}, \\
& V_{j}=I_{a}^{\sigma \mid j}-\operatorname{st}\left(I_{s}\right) \quad \text { and } \quad L_{j}=I_{a}^{\sigma \mid j}-\left(U_{j} \cup V_{j}\right) .
\end{aligned}
$$

The sets U_{j} and V_{j} are open, and $x_{j} \in U_{j}, y_{j} \in V_{j}$; hence L_{j} is a partition in $I_{a}^{\sigma \mid j}$ between x_{j} and y_{j}. Of course,

$$
\operatorname{Ind} L_{j} \leq \operatorname{Ind} I_{a}^{\sigma \mid j} \leq \sigma(j)
$$

From the definitions it follows immediately that none of the sets I_{t}, where $t \in S_{\sigma \mid j}^{a}$, intersects U_{j} and V_{j} simultaneously.

Set

$$
\begin{aligned}
& \mathcal{U}_{k}=\left\{I_{t}: t \in S_{\sigma \mid k}^{a} \text { and } I_{t \mid j} \cap I_{s} \neq \emptyset\right\}, \\
& \mathcal{V}_{k}=\left\{I_{t}: t \in S_{\sigma \mid k}^{a} \text { and } I_{t \mid j} \cap I_{s}=\emptyset\right\} \quad \text { for } k \geq j,
\end{aligned}
$$

and

$$
U_{k}=\left(\bigcup \mathcal{U}_{k}\right)-L_{j}, \quad V_{k}=\left(\bigcup \mathcal{V}_{k}\right)-L_{j}, \quad \text { and } \quad L_{k}=L_{j} \quad \text { for } k>j .
$$

A reasoning similar to that in the proof of Theorem 3.2 shows that the sets U_{k}, V_{k}, L_{k} satisfy the assumptions of Lemma 3.1 for $n=\operatorname{Ind} L_{j} \leq \sigma(j)$; therefore there exists an at most $\sigma(j)$-dimensional partition L in I_{a}^{σ} between x and y.

The set $A \cap L$ is a partition in A between x and y, and $\operatorname{Ind}(A \cap L) \leq$ Ind $L \leq \sigma(j)$.

From now on, we will only be concerned with sequences $a=(a(k))_{k=1}^{\infty}$ which additionally satisfy the following condition:

$$
\begin{equation*}
\prod_{k=1}^{\infty} 2 a(k)<\infty \tag{*}
\end{equation*}
$$

(see the beginning of Section 4).
6.2. Lemma. Let σ and τ be increasing sequences of natural numbers; let $n_{k}=\min \{i=0,1, \ldots: \tau(k) \leq \sigma(k+i)\}$ for $k \in \mathbb{N}$. Then I_{a}^{τ} is embeddable in I_{a}^{σ} if and only if the sequence $\left(n_{k}\right)_{k=1}^{\infty}$ is bounded.

Proof. Assume that there exists an $n \in \mathbb{N}$ such that $n_{k} \leq n$ for every k. Define σ_{n} by letting

$$
\sigma_{n}(k)=\sigma(k+n) \quad \text { for } k=0,1, \ldots ;
$$

then $\tau(k) \leq \sigma_{n}(k)$ for every k.
From the definitions of $I_{a}^{\tau}, I_{a}^{\sigma_{n}}$, and I_{a}^{σ} (see Section 4) it follows that I_{a}^{τ} is embeddable in $I_{a}^{\sigma_{n}}$, and for every $s \in S_{\tau \mid n}^{a}, I_{a}^{\sigma_{n}}$ is homeomorphic to the subspace of I_{a}^{σ} consisting of all points which are mapped into $\bigcup\left\{I_{t}: t \in S_{\sigma \mid i}^{a}\right.$ and $t \mid n=s\}$ under the projection of I_{a}^{σ} onto $I_{a}^{\sigma \mid i}$ for $i \geq n$. Thus I_{a}^{τ} is embeddable in I_{a}^{σ}.

Suppose now, on the contrary, that there exists an embedding $h: I_{a}^{\tau} \rightarrow$ I_{a}^{σ} and the sequence $\left(n_{k}\right)_{k=1}^{\infty}$ is not bounded.

Fix an $m \in\{0,1, \ldots\}$; let $\varrho=\varrho_{\sigma, m}^{a}$ be a metric on $I_{a}^{\sigma \mid m}$ satisfying (4.6). Take $k>m+2$ and $s \in S_{\tau \mid k}^{a}$. Since $h\left(I_{s}\right)$ is a $\tau(k)$-dimensional cube, the dimension of every partition in $h\left(I_{s}\right)$ is not less than $\tau(k)-1$.

By Lemma 6.1 and the inequality $\sigma\left(k+n_{k}-2\right)<\tau(k)-1$, the image of $h\left(I_{s}\right)$ under the projection of I_{a}^{σ} onto $I_{a}^{\sigma \mid k+n_{k}-2}$ is contained in $\operatorname{st}\left(I_{t}\right)$ for some $t \in S_{\sigma \mid k+n_{k}-2}^{a}$; thus the diameter of the image of $h\left(I_{s}\right)$ under the projection of I_{a}^{σ} onto $I_{a}^{\sigma \mid m}$ is not greater than

$$
3 \cdot\left(\prod_{i=m+1}^{k+n_{k}-2} a(i)\right) \cdot \operatorname{diam}_{\varrho} I_{a}^{\sigma \mid m}
$$

(see (4.6)). Since the above estimate holds for every $s \in S_{\tau \mid k}^{a}$, we conclude, by (4.1) and (4.3), that the diameter of every $h\left(I_{t}\right)$, where $t \in S_{\tau \mid k-1}^{a}$, under the projection of I_{a}^{σ} onto $I_{a}^{\sigma \mid m}$ is not greater than

$$
3 \cdot 2 \cdot\left(\prod_{i=m+1}^{k+n_{k}-2} a(i)\right) \cdot \operatorname{diam}_{\varrho} I_{a}^{\sigma \mid m}
$$

We continue in this fashion to deduce that the diameter of the image of $h\left(I_{a}^{\tau \mid 0}\right)=h\left(I_{s}\right)$, where s is the unique element of $S_{\tau \mid 0}^{a}$, under the projection of I_{a}^{σ} onto $I_{a}^{\sigma \mid m}$ is not greater than

$$
\begin{aligned}
3 \cdot 2^{k} \cdot\left(\prod_{i=m+1}^{k+n_{k}-2} a(i)\right) \cdot \operatorname{diam}_{\varrho} I_{a}^{\sigma \mid m} & =3 \cdot 2^{m-n_{k}+2} \cdot \prod_{i=m+1}^{k+n_{k}-2} 2 a(i) \\
& \leq 3 \cdot 2^{m-n_{k}+2} \cdot \prod_{i=1}^{\infty} 2 a(i) .
\end{aligned}
$$

Since $\prod_{i=1}^{\infty} 2 a(i)<\infty($ see $(*))$ and $\left(n_{k}\right)_{k=1}^{\infty}$ is not bounded, the image of $h\left(I_{a}^{\tau \mid 0}\right)$ under the projection of I_{a}^{σ} to $I_{a}^{\sigma \mid m}$ has to be a one-point set.

As m is an arbitrary natural number we conclude that $h\left(I_{a}^{\tau \mid 0}\right)$ is also a one-point set, which contradicts the assumption that h is an embedding.

We can now prove (6.1). Let $D \subseteq \mathbb{N}^{\omega_{0}}$ be a dominating set of cardinality \mathfrak{d}; obviously, we can assume that each element of D is an increasing sequence. Set $\mathcal{A}=\left\{I_{a}^{\sigma}: \sigma \in D\right\}$. In order to prove $\mathfrak{m} \leq \mathfrak{d}$, it suffices to show that
\mathcal{A} is a universal family in \mathcal{D}.
In Section 4, we have shown that for every increasing sequence σ of natural numbers, I_{a}^{σ} is a compact metrizable space with ind $I_{a}^{\sigma}=\omega_{0}$, and so I_{a}^{σ} belongs to \mathcal{D}. If X is a compact metrizable space with ind $X \leq \omega_{0}$, then, by Theorem 5.1, X is embeddable in I_{a}^{σ} for some increasing sequence $\sigma \in \mathbb{N}^{\omega_{0}}$. Take $\tau \in D$ such that $\sigma \leq^{*} \tau$; then there exists an $n \in\{0,1, \ldots\}$ such that $\sigma(k) \leq \tau(k)$ for $k \geq n$ (see Section 1 , the definition of \leq^{*}). Since $\sigma(k) \leq \sigma(k+n) \leq \tau(k+n)$ for $k=0,1, \ldots, I_{a}^{\sigma}$ is embeddable in I_{a}^{τ} by Lemma 6.2, and so X is embeddable in I_{a}^{τ}. The proof of (6.2) is complete.

Consider now a family \mathcal{A} of cardinality \mathfrak{m} universal in the class \mathcal{D}; by Theorem 5.1, we can assume that \mathcal{A} consists of the spaces I_{a}^{σ}, where a stands for a sequence with property $(*)$. For every σ such that $I_{a}^{\sigma} \in \mathcal{A}$ and $n=0,1, \ldots$, define the sequence σ_{n} by letting

$$
\sigma_{n}(k)=\sigma(n+k) \quad \text { for } k=0,1, \ldots,
$$

and put

$$
D=\left\{\sigma_{n}: I_{a}^{\sigma} \in \mathcal{A} \text { and } n=0,1, \ldots\right\}
$$

In order to prove $\mathfrak{d} \leq \mathfrak{m}$, it suffices to show that D is a dominating sequence.

Let $\tau \in \mathbb{N}^{\omega_{0}}$ be an arbitrary sequence. Take an increasing sequence $\theta \in \mathbb{N}^{\omega_{0}}$ such that $\tau(k) \leq \theta(k)$ for every $k=0,1, \ldots$ The space I_{a}^{θ} is embeddable in some $I_{a}^{\sigma} \in \mathcal{A}$; thus by Lemma 6.2, there exists a natural number n such that $\theta(k) \leq \sigma(n+k)$ for every k. Hence

$$
\tau(k) \leq \theta(k) \leq \sigma(n+k)=\sigma_{n}(k) \quad \text { for } k=0,1, \ldots,
$$

which completes the proof.
From (6.1) it follows that $\aleph_{0}<\mathfrak{m} \leq \mathfrak{c}$ (see Section 1); however, the inequalities $\aleph_{0}<\mathfrak{m}$ and $\mathfrak{m} \leq \mathfrak{c}$ can be proved in a more direct way.

Indeed, since the cardinality of the family of all closed subspaces of the Hilbert cube is \mathfrak{c}, we have $\mathfrak{m} \leq \mathfrak{c}$.

On the other hand, the existence of a countable universal family \mathcal{A} in the class \mathcal{D} would contradict Theorem 5.1 of [8]. Namely, the one-point compactification of the sum of topological spaces $\bigoplus \mathcal{A}$ would be a universal space for compact metrizable spaces X with ind $X \leq \omega_{0}$.

References

[1] E. K. van Douwen, The Integers and Topology, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, 1984, 111-167.
[2] R. Engelking, Dimension Theory, PWN, Warszawa, 1978.
[3] -, Transfinite dimension, in: Surveys in General Topology, G. M. Reed (ed.), Academic Press, 1980, 131-161.
[4] -, General Topology, Heldermann, Berlin, 1989.
[5] L. A. Luxemburg, On transfinite inductive dimensions, Dokl. Akad. Nauk SSSR 209 (1973), 295-298 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 388-393.
[6] -, On compactifications of metric spaces with transfinite dimensions, Pacific J. Math. 101 (1982), 399-450.
[7] W. Olszewski, Universal spaces for locally finite-dimensional and strongly count-able-dimensional metrizable spaces, Fund. Math. 135 (1990), 97-109.
[8] -, Universal spaces in the theory of transfinite dimension, I, ibid. 144 (1994), 243258.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WARSAW
BANACHA 2
02-097 WARSZAWA, POLAND

Received 24 February 1993;
in revised form 24 June 1993

[^0]: 1991 Mathematics Subject Classification: Primary 54F45, 54A25.

