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Universal spaces in the theory of transfinite dimension, II

by

Wojciech O l s z e w s k i (Warszawa)

Abstract. We construct a family of spaces with “nice” structure which is univer-
sal in the class of all compact metrizable spaces of large transfinite dimension ω0, or,
equivalently, of small transfinite dimension ω0; that is, the family consists of compact
metrizable spaces whose transfinite dimension is ω0, and every compact metrizable space
with transfinite dimension ω0 is embeddable in a space of the family. We show that the
least possible cardinality of such a universal family is equal to the least possible cardinality
of a dominating sequence of irrational numbers.

1. Introduction. In Part I of the paper we have proved that there is
no universal space in the class of all compact metrizable spaces X with
IndX = ω0, or equivalently, with indX = ω0 (see [3], Proposition 4.11, or
Lemma 2.3 of this paper). That class will be denoted by D. We have also
shown that there is no universal space in the class of all separable metrizable
spaces X with IndX = ω0, to be denoted by C. In this part we introduce
the notion of a universal family which is a generalization of the notion of a
universal space, and we study universal families for C and D.

1.1. Definition. Let C be a class of topological spaces. A family A of
spaces belonging to C is said to be a universal family in C if every space in
C is embeddable in a space belonging to A.

Universal families can play a role similar to that played by universal
spaces. Universal families of small cardinality consisting of spaces with
“nice” structure are of particular interest.

In Sections 4 and 5 we construct a universal family A in D consisting
of spaces with “nice” structure. Since every separable metrizable space X
has a compactification Z such that IndZ = IndX (see [5], and [6] for the
proof), the family A is also universal in C. In Section 6 we estimate the least
possible cardinality of a universal family in D; by the above compactification
theorem, it is equal to the least possible cardinality of a universal family in C.
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In order to formulate our result, we have to recall a few notions.
Irrational numbers can be viewed as sequences of natural numbers. We

denote by Nω0 the set of irrational numbers, i.e., the set of all sequences
σ = (σ(k))∞k=0 of natural numbers. On Nω0 we consider the relation ≤∗
defined by letting

σ ≤∗ τ if σ(k) ≤ τ(k) for all but a finite number of k ∈ N .
A subset D ⊆ Nω0 cofinal in Nω0 is said to be dominating , i.e., D is domi-
nating if for every σ ∈ Nω0 , there exists a τ ∈ D such that σ ≤∗ τ . We set
d = min{|D| : D ⊆ Nω0 is a dominating sequence}.

One can prove that
ℵ1 ≤ d ≤ c ;

one can also prove that each of the following formulae is consistent with the
axioms of set theory:

ℵ1 = d = c ,

ℵ1 = d < c ,

ℵ1 < d < c ,

ℵ1 < d = c .

For a deeper discussion and the proofs of the above statements we refer
the reader to E. K. van Douwen’s survey [1].

Section 6 contains the proof of the equality

min{|A| : A is a universal family in D} = d ,

which, in particular, gives

min{|A| : A is a universal family in C} = d .

Acknowledgements. The paper contains some of the results of my
Ph.D. thesis supervised by Professor R. Engelking whom I would like to
thank for his comments and improvements. I also wish to express my thanks
to Professors J. Chaber, J. Krasinkiewicz and W. Marciszewski whose com-
ments have helped me to improve the presentation significantly.

2. Three lemmas. For a topological space and its closed subset A, we
denote by X/A the quotient space obtained by identifying A to a point (see
[4], Example 2.4.12); we denote this point by a, and the natural quotient
mapping by q.

2.1. Lemma. Let X be a compact metrizable space, and A its closed sub-
set. Let ε be a positive real number. If f : X → In has the property that f |A
is an ε-mapping , then there exist m > n and g : X → Im−n such that the
diagonal f M g is an ε-mapping and

(f M g)−1(In × {(0, . . . , 0)}) = A .
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P r o o f. Since X/A is a compact metrizable space, there exists an em-
bedding

h = (h1, h2, . . .) : X/A→ Iℵ0 = I × I × . . .
Let h0 : X/A → I be a function such that (h0)−1(0) = {a}; set φ =

(h0, h0 · h1, h0 · h2, . . .). It is easy to check that φ : X/A → I × Iℵ0 is
also an embedding, and therefore f M (φ ◦ q) : X → In × I × Iℵ0 is
an ε-mapping. By compactness of X, so is f M (pm−n ◦ φ ◦ q) for suffi-
ciently large m, where pm−n : I × Iℵ0 → I × Im−n denotes the projec-
tion, i.e., pm−n((x1, x2, x3, . . .)) = (x1, x2, x3, . . . , xm−n+1) for x1 ∈ I and
(x2, x3, . . .) ∈ Iℵ0 . Consider an m with this property.

Set g = pm−n ◦φ◦q. Then (f M g)−1(In×{(0, . . . , 0)}) = g−1((0, . . . , 0))
= (h0 ◦ q)−1(0) = q−1(a) = A.

2.2. Lemma. Let m and n be natural numbers such that n ≥ 2m + 2.
Let X be a compact metrizable space, and A and B its closed subspaces with
IndB ≤ m. Then there exists f : X → In such that f |B−A is an embedding ,
and f−1((0, . . . , 0)) = A.

P r o o f. Consider the quotient mapping q : X → X/A. Since we have
Ind({a} ∪ q(B)) ≤ m and n − 1 ≥ 2m + 1, there exists an embedding
h : {a} ∪ q(B) → In−1. Let h∗ be an extension of h onto X/A, and g :
X/A→ I a function such that g−1(0) = {a}. Since In−1 is embeddable in the
geometrical boundary bd In of In, and bd In is homogeneous, we can assume
that bd In is the range of h∗, and h∗(a) = (0, . . . , 0). Let φ : (bd In)×I → In

be an embedding with φ(x, 0) = x for every x ∈ bd In.
It is easy to check that f = φ ◦ (h∗ M g) ◦ q has the required properties.

Note that the assumption n ≥ 2m+ 2 in Lemma 2.2 can be replaced by
n ≥ 2m + 1. The proof under this weaker assumption is similar to that of
Corollaries 2.5 and 2.7 in [7]. However, we will only need the lemma in the
form given above.

2.3. Lemma. A compact metrizable space satisfies IndX ≤ ω0 if and only
if for every pair of distinct points x, y ∈ X there exists a finite-dimensional
partition L between x and y.

P r o o f. The necessity is obvious. To show the sufficiency, we first prove
that for any x ∈ X and any neighbourhood U ⊆ X of x, there exists an
open set V ⊆ X such that Ind bdV < ω0, i.e., indX ≤ ω0.

For every y ∈ X −U , consider a finite-dimensional partition Ly between
x and y; let Uy and Vy be disjoint open subsets of X such that x ∈ Uy,
y ∈ Vy, and Ly = X − (Uy ∪ Vy). Then X − U ⊆ ⋃{Vy : y ∈ X − U}; by
compactness of X − U , there exists a finite family V ⊆ {Vy : y ∈ X − U}
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such that X − U ⊆ ⋃V. It follows immediately that

V = X −
⋃
{clVy : Vy ∈ V}

is an open subset of X with x ∈ V ⊆ U , and

bdV ⊆
⋃
{bdVy : Vy ∈ V} ⊆

⋃
{Ly : Vy ∈ V} ;

since V is finite,

Ind bdV ≤ max{IndLy : Vy ∈ V} < ω0 .

Now, let A ⊆ X be an arbitrary closed set, and U ⊆ X an open set
containing A. For every x ∈ A, consider an open set Vx ⊆ X such that
x ∈ Vx ⊆ U and Ind bdVx < ω0. By compactness of A, there exists a finite
family V ⊆ {Vx : x ∈ A} such that A ⊆ ⋃V. Then V =

⋃V is an open
subset of X such that A ⊆ V ⊆ U and bdV ⊆ ⋃{bdVx : Vx ∈ V}; since V
is finite,

Ind bdV ≤ max{Ind bdVx : Vx ∈ V} < ω0 .

3. The structure of spaces X with IndX ≤ ω0. In this section we
shall prove that compact metrizable spaces of a certain structure have large
transfinite dimension not greater than ω0 (see Theorem 3.2); actually, it
turns out (see Theorem 5.1) that each compact metrizable space X with
IndX ≤ ω0 has that structure.

Let {Mk, r
k
j } be an inverse sequence; then M denotes the inverse limit of

{Mk, r
k
j }, and rk : M →Mk, for k ∈ N, denotes the projection. Each family

{Mk, r
k+1
k }, where rk+1

k : Mk+1 → Mk, determines an inverse sequence
{Mk, r

k
j }; to wit, it suffices to set rkj = rj+1

j ◦ . . . ◦ rkk−1 for k > j and rkk
equal to the identity mapping of Mk. For simplicity, we shall also call each
such family {Mk, r

k+1
k } an inverse sequence.

The next lemma is a technical one and will only be used in the proofs of
Theorem 3.2 and Lemma 6.1.

3.1. Lemma. Let n be a fixed natural number , and let x, y ∈M be distinct.
Suppose there is a j ∈ N such that for every k ≥ j, there exist pairwise
disjoint subsets Uk, Vk and Lk of Mk, where Uk, Vk are open and Lk is
closed , which satisfy the following conditions:

(3.1) Mk = Uk ∪ Vk ∪ Lk,

(3.2) IndLk ≤ n,

(3.3) rj(x) ∈ Uj and rj(y) ∈ Vj ,
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(3.4) (rk+1
k )−1(Uk) ⊆ Uk+1 and (rk+1

k )−1(Vk) ⊆ Vk+1.

Then there exists an at most n-dimensional partition in M between x and y.

P r o o f. Define

L =
∞⋂

k=j

r−1
k (Lk) , U =

∞⋃

k=j

r−1
k (Uk) , and V =

∞⋃

k=j

r−1
k (Vk) .

From (3.1) it follows directly that M = U ∪V ∪L. Clearly, U, V are open
and L is closed in M . Since Uk ∩ Vk = ∅, we have U ∩ V = ∅ by (3.4), and
since Uk ∩ Lk = ∅ = Lk ∩ Vk, we also have U ∩ L = ∅ = L ∩ V . By (3.3),
x ∈ U and y ∈ V , and thus L is a partition in M between x and y.

Since Lk+1 ∩Uk+1 = ∅ = Vk+1 ∩Lk+1, by (3.1) and (3.4), rk+1
k (Lk+1) ⊆

Lk, so we can regard rk+1
k |Lk+1 as a mapping to Lk; thus L coincides with

lim←−{Lk, r
k+1
k |Lk+1}, and so IndL ≤ n by the theorem on the dimension of

the limit of an inverse sequence (see [2], Theorem 1.13.4) and (3.2).

3.2. Theorem. Let {Mk, r
k+1
k } be an inverse sequence of finite-dimen-

sional compact metrizable spaces Mk in which all bonding mappings rk+1
k

are retractions. Suppose that for every k ∈ N, there exist a covering Ak of
Mk and a metric %k on Mk with the following properties:

(3.5) the sets Ak+1 −Mk, where Ak+1 ∈ Ak+1, are open in Mk+1 and
pairwise disjoint ,

(3.6) for every Ak+1∈Ak+1, there exists an Ak∈Ak such that rk+1
k (Ak+1)

⊆ Ak,

(3.7) for every i ∈ N, the sequence of real numbers (sup{diam%i r
k
i (Ak) :

Ak ∈ Ak})∞k=i+1 converges to 0.

Then IndM ≤ ω0.

P r o o f. First for every Ak ∈ Ak, we define A(j)
k ∈ Aj for j ≤ k in such

a way that

(3.8) rkj (Ak) ⊆ A(j)
k ,

(3.9) (A(i)
k )(j) = A

(j)
k whenever j ≤ i ≤ k.

For instance, one can define A(k−1)
k to be an arbitrary member Ak−1 of

Ak−1 such that rkk−1(Ak) ⊆ Ak−1 for Ak ∈ Ak (its existence is guaranteed

by (3.6)), and then set by induction A
(j)
k = (A(j+1)

k )(j). Of course, we put
A

(k)
k = Ak.

We can now begin the proof of IndM ≤ ω0. Since M , as the inverse
limit of a sequence of compact spaces, is compact, it suffices to find a



126 W. Olszewski

finite-dimensional partition between any two distinct points x, y ∈ M (see
Lemma 2.3). To this end, we shall apply Lemma 3.1.

Take the smallest i ∈ N such that ri(x) 6= ri(y) and define ε =
%i(ri(x), ri(y)). By (3.7), there exists a j > i such that

(3.10) diam%ir
j
i (Aj) < ε/3 for each Aj ∈ Aj .

Let
Ui = {z ∈Mi : %i(z, ri(x)) < ε/3} ,
Vi = {z ∈Mi : %i(z, ri(x)) > 2ε/3} ,
Li = {z ∈Mi : ε/3 ≤ %i(z, ri(x)) ≤ 2ε/3} ,

and Uj = (rji )
−1(Ui), Vj = (rji )

−1(Vi), Lj = (rji )
−1(Li).

Put

Uk = {Ak ∈ Ak : A(j)
k ∩ Vj = ∅} , Vk = {Ak ∈ Ak : A(j)

k ∩ Vj 6= ∅}
for k ≥ j, and

Uk =
(⋃

Uk
)
− Lj , Vk =

(⋃
Vk
)
− Lj , Lk = Lj

for k > j; since the bonding mappings are retractions, Lj is a subset of Mk

for k > j.
We first check that

(3.11) Uk, Vk and Lk are pairwise disjoint.

Obviously, Uj ∩ Vj = ∅. Suppose, on the contrary, that Uk ∩ Vk 6= ∅ for
a k > j. Then there exists a z ∈ (Ak ∩ Bk) − Lj for some Ak ∈ Uk and
Bk ∈ Vk. By (3.5), we have z ∈ Mk−1 and since rkk−1 is a retraction, we
conclude, using (3.8), that

z ∈ Ak ∩Bk ∩Mk−1 ⊆ A(k−1)
k ∩B(k−1)

k .

Observe that A(k−1)
k ∈ Uk−1 and B

(k−1)
k ∈ Vk−1; indeed, as Ak ∈ Uk (Bk ∈

Vk) we have A(j)
k ∩Vj = ∅ (B(j)

k ∩Vj 6= ∅); hence by (3.9), (A(k−1)
k )(j)∩Vj =

A
(j)
k ∩ Vj = ∅ ((B(k−1)

k )(j) ∩ Vj = B
(j)
k ∩ Vj 6= ∅), and so A

(k−1)
k ∈ Uk−1

(B(k−1)
k ∈ Vk−1). In the same manner we can show by induction that z ∈

A
(j)
k ∩B(j)

k and A
(j)
k ∈ Uj , B(j)

k ∈ Vj .
Consequently, A(j)

k ∩ Vj = ∅ and z 6∈ Vj ; however, z 6∈ Lj , and so, by the
definition of Uj , Vj , Lj , we conclude that z ∈ Uj ; thus B(j)

k ∩Uj 6= ∅. On the
other hand, B(j)

k ∩ Vj 6= ∅ (since B(j)
k ∈ Vj).

This shows that

%i(r
j
i (z1), ri(x)) < ε/3 and %i(r

j
i (z2), ri(x)) > 2ε/3

for some z1, z2 ∈ B(j)
k , contrary to (3.10). Thus Uk∩Vk = ∅. That Uk∩Lk =

∅ = Lk ∩ Vk follows directly from the definition of Uk, Vk, Lk.
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We now show that for n = IndMj ,

(3.12) Uk, Vk and Lk satisfy conditions (3.1)–(3.4) of Lemma 3.1.

Condition (3.1) is obvious for k = j. Take k > j. Since

Mk ⊇ Uk ∪ Vk ∪ Lk =
[(⋃

Uk
)
− Lj

]
∪
[(⋃

Vk
)
− Lj

]
∪ Lj

⊇
(⋃

Uk
)
∪
(⋃

Vk
)

=
⋃
Ak = Mk ,

(3.1) also holds for k > j.
Conditions (3.2) and (3.3) follow immediately from the definitions of

Uk, Vk and Lk.
Let z ∈ Mk+1 and rk+1

k (z) ∈ Uk. Take an Ak+1 ∈ Ak+1 such that
z ∈ Ak+1 and suppose that Ak+1 ∈ Vk+1.

Then A(j)
k+1 ∩ Vj 6= ∅, so (A(k)

k+1)(j) ∩ Vj 6= ∅ (see (3.9)) and A(k)
k+1 ∈ Vk. If

k = j, then, by (3.8), rk+1
k (z) ∈ A(j)

k+1, therefore also A(j)
k+1∩Uj 6= ∅, contrary

to (3.10). If k > j, then A(k)
k+1 ⊆ Vk∪Lk and, by (3.8), rk+1

k (z) ∈ Vk∪Lk; but
we know (see (3.11)) that (Vk ∪ Lk) ∩ Uk = ∅, and therefore rk+1

k (z) 6∈ Uk,
a contradiction. Thus Ak+1 ∈ Uk+1.

This clearly forces Ak+1 ⊆ Uk+1 ∪ Lk+1. We have z 6∈ Lk+1, because
otherwise z ∈ Lk+1 = Lk, and hence rk+1

k (z) = z ∈ Lk ∩ Uk = ∅ (see
(3.11)). Thus z ∈ Ak+1−Lk+1 ⊆ Uk+1, and the first part of (3.4) is proved.

The second part of (3.4) can be shown similarly, and thus the proof of
(3.12) is complete.

We see at once that

(3.13) Lk is a closed subset of Mk .

In order to check that the assumptions of Lemma 3.1 are satisfied, it
remains to show that

(3.14) Uk and Vk are open subsets of Mk .

We prove this for Uk by induction on k; the same argument works for Vk.
For k = j, (3.14) is evident. Assume that (3.14) holds for numbers less

than some k > j.
First, we verify that

(3.15) Uk ∩Mk−1 = Uk−1 .

Indeed,

Uk−1 ⊆Mk−1 ∩ (rkk−1)−1(Uk−1) ⊆Mk−1 ∩ Uk
(see (3.12) and (3.4); recall that rkk−1 is a retraction). On the other hand, if
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there were z ∈ (Uk ∩Mk−1)− Uk−1, we would have

z ∈ (Mk−1 − Uk−1) ∩ Uk ⊆ (Lk−1 ∪ Vk−1)− (Lk ∪ Vk)

⊆ (Lk ∪ Vk−1)− (Lk ∪ Vk−1) = ∅
(recall that Lk = Lk−1 and Vk−1 ⊆ Vk; see (3.12) and (3.4)).

We now return to the inductive proof. Take a z ∈ Uk. If z ∈ Mk−1,
then z ∈ Uk−1 by (3.15); then (rkk−1)−1(Uk−1) is a neighbourhood of z
by the inductive assumption, and it follows from (3.12) and (3.4) that
(rkk−1)−1(Uk−1) ⊆ Uk. If z 6∈Mk−1, then z ∈ Ak −Mk−1 for some Ak ∈ Uk;
by (3.5), Ak −Mk−1 is a neighbourhood of z, and since Lk ⊆ Mk−1, this
neighbourhood is contained in Uk.

We have thus verified that the assumptions of Lemma 3.1 are satisfied.
Consequently, there exists a finite-dimensional partition (more precisely, a
partition of dimension not greater than n = IndMj) between x and y in the
space M .

4. The spaces Iσa . In this section, for any increasing sequence σ =
(σ(k))∞k=0 of positive integers, and any sequence a = (a(k))∞k=1 of real num-
bers such that 1/2 < a(k) < 1 for every k and

∏∞
k=1 a(k) = 0 we construct

a compact metrizable space Iσa with Ind Iσa = ω0. For our purposes it suf-
fices to restrict attention to any fixed sequence a = (a(k))∞k=1 which has the
above properties, except for Section 6, where we will additionally need the
condition

(∗)
∞∏

k=1

2a(k) <∞ .

Thus the reader can assume that a = (1/2+1/2k+1)∞k=1; it is easy to see
that this sequence has all the required properties.

From now on, σ stands for an increasing sequence of positive integers, and
a for a sequence of real numbers such that 1/2 < a(k) < 1 and

∏∞
k=1 a(k) =

0; for a given σ, we denote by σ|k the sequence σ(0), σ(1), . . . , σ(k − 1);
in particular, σ|0 is the empty sequence. We denote by Saσ(k) the set of all
sequences

γ : {1, 2, . . . , σ(k)} → {0, 1− a(k + 1)} ,
i.e., the set of all sequences of σ(k) elements equal to either 0 or 1−a(k+1);
S0 consists of the empty sequence. Let

Saσ|0 = S0, Saσ|k = Saσ(0) × Saσ(1) × . . .× Saσ(k−1) , Saσ =
∞⋃

k=0

Saσ|k .

For every sequence s = (γ0, γ1, . . . , γk−1) ∈ Saσ|k and m < k, let s|m stand
for the sequence (γ0, γ1, . . . , γm−1) ∈ Saσ|m.
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Fix σ and a. First, we construct by induction an inverse sequence
{Iσ|ka , r

σ|k+1
a }, where r

σ|k+1
a : Iσ|k+1

a → I
σ|k
a ; simultaneously, we define a

covering {Is : s ∈ Saσ|k} of Iσ|ka by σ(k)-dimensional cubes for k = 0, 1, . . .

Let Iσ|0a be the σ(0)-dimensional cube Iσ(0) and Is = Iσ(0) for the unique
s ∈ Saσ|0. Assume that we have already defined I

σ|k
a and its covering {Is :

s ∈ Saσ|k}.
For every s ∈ Saσ|k, we identify Is and the standard σ(k)-dimensional

cube Iσ(k). For t = (s, γ) ∈ Saσ|k+1, set I ′t = {(x1, . . . , xσ(k)) ∈ Is : γ(i) ≤
xi ≤ γ(i) + a(k + 1) for i ≤ σ(k)}; that is, I ′t is a smaller cube placed in a
corner of Is such that the length ratio of their edges is a(k + 1).

Roughly speaking, we glue a σ(k+1)-dimensional cube, denoted here by
It, along its σ(k)-dimensional face, which is identified with I ′t, to every cube
I ′t ⊆ Iσ|ka , where t ∈ Saσ|k+1, in such a way that the sets It − I ′t are pairwise

disjoint. Our Iσ|k+1
a is the space so obtained.

Precisely, the space Iσ|k+1
a can be defined as follows. Let Qt, where t ∈

Saσ|k+1, be a copy of the (σ(k + 1) − σ(k))-dimensional cube Iσ(k+1)−σ(k).
Set

It = {(y, {ys : s ∈ Saσ|k+1}) ∈ Iσ|ka × P{Qs : s ∈ Saσ|k+1} :

y ∈ I ′t and ys = (0, . . . , 0) for s 6= t}
for t ∈ Saσ|k+1, and

Iσ|k+1
a =

⋃
{It : t ∈ Saσ|k+1} .

It is easily seen that the covering {Is : s ∈ Saσ|k+1} consists of σ(k + 1)-
dimensional cubes.

The orthogonal projections of the σ(k + 1)-dimensional cubes Is onto
their σ(k)-dimensional faces I ′s, where s ∈ Saσ|k+1, determine a retraction of

I
σ|k+1
a onto Iσ|ka ; denote it by rσ|k+1

a . More precisely,

rσ|k+1
a ((y, {ys : s ∈ Saσ|k+1})) = (y, {zs : s ∈ Saσ|k+1}) ,

where zs = (0, . . . , 0) for s ∈ Saσ|k+1, for every (y, {ys : s ∈ Saσ|k+1}).
Thus, the inductive construction of {Iσ|ka , r

σ|k+1
a } is complete.

In Fig. 4.1 the first steps in constructing {Iσ|ka , r
σ|k+1
a }, where σ(k) =

k+1 for k = 0, 1, . . . , and a(k) = 1/2+1/2k+1 for k = 1, 2, . . . , are exhibited.
Let

Iσa = lim←−{I
σ|k
a , rσ|k+1

a } .
We list several properties of the space Iσa .
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I
σ|0
a

I ′1−(1/2+1/4)︷ ︸︸ ︷︸ ︷︷ ︸
I ′0

Fig. 4.1
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It is easy to check that for k = 0, 1, . . . , Iσ|k+1
a is a closed subspace of

I
σ|k
a ×P{Qs : s ∈ Saσ|k+1}; thus the spaces Iσ|ka are compact and metrizable,

and so is Iσa . Since a(k + 1) > 1/2, we have Is =
⋃{I ′t : t ∈ Saσ|k+1 and

t|k = s} for every s ∈ Saσ|k; in particular, Iσ|ka =
⋃{I ′t : t ∈ Saσ|k+1}. Hence

Is ⊆
⋃
{It : t ∈ Saσ|k+1 and t|k = s} for every s ∈ Saσ|k ,(4.1)

Iσ|ka ⊆ Iσ|k+1
a for k = 0, 1, . . .(4.2)

Since a(k + 1) > 1/2, we also have

(4.3)
⋂
{It : t ∈ Saσ|k+1 and t|k = s} 6= ∅ for every s ∈ Saσ|k .

It follows immediately from the definition that the bonding mappings rσ|k+1
a

are retractions; thus we can assume that

(4.4) Iσ|ka ⊆ Iσa for k = 0, 1, . . .

From the definition it also follows that

(4.5) rσ|k+1
a (Is) = I ′s ⊆ Is|k for every s ∈ Saσ|k+1 .

For k = 0, 1, . . . , there exists a metric %aσ,k on Iσ|ka with the property that

(4.6) diam%a
σ,k
rσ|ma ◦ rσ|m−1

a ◦ . . . ◦ rσ|k+1
a (Is)

≤
( m∏

l=k+1

a(l)
)

diam%a
σ,k
Iσ|ka for any m > k and s ∈ Saσ|m .

The metrics %aσ,k can be defined by induction in the following way:

%aσ,0 is the standard Euclidean metric on I
σ|0
a = Iσ(0), and %aσ,k+1 is the

restriction to I
σ|k+1
a of the Cartesian product metric of Iσ|ka × P{Qs :

s ∈ Saσ|k+1}, where Iσ|ka is equipped with the metric %aσ|k and every Qs
is equipped with the standard Euclidean metric.

We now prove that for each increasing sequence σ of natural numbers,
Ind Iσa = ω0.

Since Iσ|ka , and hence Iσa , contains a σ(k)-dimensional cube and σ(k)→
∞ as k →∞, we have Ind Iσa ≥ ω0.

The opposite inequality follows from Theorem 3.2 applied to Mk = I
σ|k
a

for k ∈ N; we take {Is : s ∈ Saσ|k} for Ak. It is clear that (3.5) is satis-
fied; (3.6) follows from (4.5), and (3.7) follows from (4.6) and the equality∏∞
k=1 a(k) = 0.

5. Every space X with IndX ≤ ω0 is embeddable in some Iσa . Let
a = (a(k))∞k=1 be an arbitrary sequence of real numbers such that 1/2 <
a(k) < 1 for each k ∈ N and

∏∞
k=1 a(k) = 0.
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5.1. Theorem. Every compact metrizable space X with IndX ≤ ω0 is
embeddable in Iσa for some increasing sequence σ of natural numbers.

P r o o f. Fix a metric on X. We shall define inductively an increasing
sequence σ = (σ(k))∞k=0 of natural numbers and a sequence (hk)∞k=0 of map-
pings, where hk : X → I

σ|k
a , such that

(5.1)k rσ|ka ◦ hk = hk−1

for every k > 0 and

(5.2)k hk is a 1/(k + 1)-mapping.

Simultaneously, we shall define families {Gs : s ∈ Saσ|k+1} of pairwise disjoint
open subsets of X (for the definition of Saσ|k+1, see Section 4) satisfying the
following conditions:

hk(Gs) ⊆ I ′s for every s ∈ Saσ|k+1,(5.3)k

hk

∣∣∣X −
⋃
{Gs : s ∈ Saσ|k+1} is an embedding.(5.4)k

By Lemma 2.1, there exist an m ∈ N and a 1-mapping g0 : X → Im.
Since IndX ≤ ω0, there exists a finite-dimensional partition Li in X between

Ei0 = g−1
0 ({(z1, . . . , zm) ∈ Im : zi ≤ 1− a(1)})

and

Ei1−a(1) = g−1
0 ({(z1, . . . , zm) ∈ Im : zi ≥ a(1)}),

for i = 1, . . . ,m; let Gi0 and Gi1−a(1) be disjoint open subsets of X such that

Ei0 ⊆ Gi0, Ei1−a(1) ⊆ Gi1−a(1), and X − Li = Gi0 ∪Gi1−a(1) .

Let

σ(0) = max{2(IndLi) + 1 : i = 1, . . . ,m}+m.

Consider a mapping f0 : X → Iσ(0)−m such that f0|
⋃m
i=1 Li is an embedding

and

f0(X) ⊆ {(zm+1, zm+2, . . . , zσ(0)) ∈ Iσ(0)−m :

zi ≤ a(1) for i = m+ 1,m+ 2, . . . , σ(0)} ,
and set h0 = g0 M f0; obviously, h0 : X → Iσ(0) = I

σ(0)
a . The family

{Gs : s ∈ Saσ|1} is defined by letting

Gs = G1
γ(1) ∩G2

γ(2) ∩ . . . ∩Gmγ(m)

for s = γ = (γ(i))σ(0)
i=0 ∈ Saσ|1 such that γ(i) = 0 for i > m, and Gs = ∅ for

other s ∈ Saσ|1; observe that this family consists of pairwise disjoint open
subsets of X.

It is a simple matter to verify that conditions (5.2)k–(5.4)k are satisfied.



Universal spaces, II 133

Assume that the numbers σ(0) < σ(1) < . . . < σ(k), the mappings hk,
and the families {Gs : s ∈ Saσ|k+1} of pairwise disjoint subsets of X are
defined and satisfy (5.1)k–(5.4)k.

Fix an s ∈ Saσ|k+1. The set I ′s ⊆ I
σ|k
a is closed, and so hk(clGs) ⊆ I ′s by

(5.3)k. Since the sets Gs are open and pairwise disjoint, bdGs ⊆ X−
⋃{Gt :

t ∈ Saσ|k+1}. Hence, by (5.4)k, hk|bdGs is an embedding of bdGs in I ′s.
By Lemma 2.1 applied to the space clGs and to its closed subset bdGs,

there exist a natural number m > Ind I ′s = σ(k) and a mapping gs : clGs →
Im−σ(k) such that

(hk|clGs) M gs is a 1/(k + 2)-mapping,(5.5)

((hk|clGs) M gs)−1(I ′s × {(0, . . . , 0)}) = bdGs .(5.6)

Since Saσ|k+1 is finite, one can assume that m does not depend on s.
Let

Eis,0 = ((hk|clGs) M gs)−1({(z1, . . . , zm) ∈ I ′s×Im−σ(k) : zi ≤ 1−a(k+2)}) ,
Eis,1−a(k+2)

= ((hk|clGs) M gs)−1({(z1, . . . , zm) ∈ I ′s × Im−σ(k) : zi ≥ a(k + 2)}) .
Since Ind clGs ≤ IndX ≤ ω0, there exists a finite-dimensional partition

Lis in the space clGs between Eis,0 and Eis,1−a(k+2); let Gis,0 and Gis,1−a(k+2)

be disjoint open subsets of clGs such that Eis,0 ⊆ Gis,0, Eis,1−a(k+2) ⊆
Gis,1−a(k+2), and clGs − Lis = Gis,0 ∪Gis,1−a(k+2).

Set σ(k + 1) = max{2(IndLis) + 2 : i = 1, . . . ,m and s ∈ Saσ|k+1}+m.
By Lemma 2.2 applied to the space clGs and its closed subsetsA = bdGs

and B =
⋃m
i=1 L

i
s, there exists a mapping fs : clGs → Iσ(k+1)−m such that

fs

∣∣∣
m⋃

i=1

Lis − bdGs is an embedding,(5.7)

f−1
s ((0, . . . , 0)) = bdGs ;(5.8)

obviously, one can additionally assume that

(5.9) fs(clGs) ⊆ {(zm+1, zm+2, . . . , zσ(k+1)) ∈ Iσ(k+1)−m :

zi ≤ a(k + 2) for i = m+ 1,m+ 2, . . . , σ(k + 1)} .
Let hs = (hk|clGs) M gs M fs; then

hs : clGs → I ′s × Im−σ(k) × Iσ(k+1)−m = I ′s × Iσ(k+1)−σ(k) .

Identifying in the natural way I ′s× Iσ(k+1)−σ(k) and Is, we can assume that
Is is the range of hs.

By (5.6) and (5.8), we have hs(x) = hk(x) for every x ∈ bdGs and s ∈
Saσ|k+1; thus the mappings hs, s ∈ Saσ|k+1, and hk|X−

⋃{Gs : s ∈ Saσ|k+1} are
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compatible. Denote by hk+1 the combination (∇{hs : s ∈ Saσ|k+1})∇(hk|X−⋃{Gs : s ∈ Saσ|k+1}); obviously, hk+1 : X → I
σ|k+1
a .

Since the sets Is − I ′s are pairwise disjoint, we have

(5.10) h−1
k+1(Is − I ′s) = Gs for every s ∈ Saσ|k+1

(see (5.6) and (5.8)).
We now show that hk+1 satisfies (5.1)k+1 and (5.2)k+1.
From the definition of hk+1 it follows immediately that hk+1(x) = hk(x)

for x ∈ X−⋃{Gs : s ∈ Saσ|k+1}; since rσ|k+1
a is a retraction, rσ|k+1

a (hk+1(x))
= hk(x) for these points. On the other hand, if x ∈ Gs for some s ∈ Saσ|k+1,

then r
σ|k+1
a (hk+1(x)) = r

σ|k+1
a (hs(x)) = r

σ|k+1
a (((hk|clGs) M gs M fs)(x))

= (hk|clGs)(x) = hk(x). Thus we have shown that (5.1)k+1 is satisfied.

In order to show (5.2)k+1 take an arbitrary point z ∈ I
σ|k+1
a . If z ∈

I
σ|k
a ⊆ I

σ|k+1
a , then h−1

k+1(z) ⊆ X − ⋃{Gs : s ∈ Saσ|k+1} by (5.10); since

hk(x) = hk+1(x) for every x ∈ X −⋃{Gs : s ∈ Saσ|k+1}, by (5.2)k, h−1
k+1(z)

is either empty or a one-point set. If z 6∈ I
σ|k
a , then z ∈ Is − I ′s for some

s ∈ Saσ|k+1, and so h−1
k+1(z) ⊆ Gs by (5.10); thus

h−1
k+1(z) = h−1

s (z) = ((hk|clGs) M gs M fs)−1(z) ,

and so diamh−1
k+1(z) ≤ 1/(k + 2) by (5.5). We have shown that (5.2)k+1 is

satisfied.
Define the family {Gt : t ∈ Saσ|k+2} by letting

Gt = Gs ∩G1
s,γ(1) ∩G2

s,γ(2) ∩ . . . ∩Gms,γ(m)

for t = (s, γ) ∈ Saσ|k+2 such that γ(i) = 0 for i = m+ 1,m+ 2, . . . , σ(k+ 1),
and Gt = ∅ for other t ∈ Saσ|k+2.

It is easily seen that the sets Gt are open, pairwise disjoint, and

X −
⋃
{Gt : t ∈ Saσ|k+2} =

(
X −

⋃
{Gs : s ∈ Saσ|k+1}

)
(5.11)

∪
⋃
{Lis : i = 1, . . . ,m and s ∈ Saσ|k+1} .

We now show (5.3)k+1–(5.4)k+1. Take a t = (s, γ) ∈ Saσ|k+2. If γ(i) =
1 − a(k + 2) for some i > m, then Gt = ∅, and so (5.3)k+1 is satisfied.
Assume therefore that γ(i) = 0 for i = m + 1,m + 2, . . . , σ(k + 1). Since
Gis,γ(i) ∩ Eis,1−a(k+2)−γ(i) = ∅ for i = 1, . . . ,m, we have

((hk|clGs) M gs)(Gt) ⊆ {(z1, . . . , zn) ∈ I ′s × Im−σ(k) :

γ(i) ≤ zi ≤ γ(i) + a(k + 2) for i = 1, . . . ,m} ;



Universal spaces, II 135

hence, by (5.9),

hk+1(Gt) = ((hk|clGs) M gs M fs)(Gt) ⊆ I ′t ,
and therefore (5.3)k+1 is satisfied for every s ∈ Saσ|k+2.

In order to prove (5.4)k+1 it suffices to show that hk+1|X −
⋃{Gs :

s ∈ Saσ|k+2} is 1-1. Put

C = X −
⋃
{Gs : s ∈ Saσ|k+1} ,

D =
(⋃
{Lis : s ∈ Saσ|k+1, i = 1, . . . ,m}

)
∩
(⋃
{Gs : s ∈ Saσ|k+1}

)
;

observe that X −⋃{Gt : t ∈ Saσ|k+2} = C ∪D (see (5.11)).
Consider a pair of distinct points x, y ∈ X−⋃{Gt : t ∈ Saσ|k+2}. If one of

them, say x, belongs to C, and the other to D, then hk+1(x) = hk(x) ∈ Iσ|ka ,
whereas hk+1(y) 6∈ Iσ|ka (see (5.10)); if x, y ∈ C, then hk+1(x) = hk(x) 6=
hk(y) = hk+1(y) by (5.4)k. If x, y ∈ (

⋃m
i=1 L

i
s) ∩ Gs for some s ∈ Saσ|k+1,

then hk+1(x) = hs(x) 6= hs(y) = hk+1(y) by (5.7). If x ∈ Gs and y ∈ Gt for
some distinct s, t ∈ Saσ|k+1, then hk+1(x) ∈ Is − I ′s and hk+1(y) ∈ It − I ′t
(see (5.10)); since (Is− I ′s)∩ (It− I ′t) = ∅, we have hk+1(x) 6= hk+1(y). Thus
(5.4)k+1 is satisfied.

The inductive construction of the mappings h0, h1, . . . is complete.
Since the sequence (hk)∞k=0 satisfies (5.1)k for k = 1, 2, . . . , it determines

a mapping h : X → Iσa ; from (5.2)k, k = 0, 1, . . . , it follows that h is 1-1,
and so it is a homeomorphic embedding by compactness of X.

5.2. Corollary. For every sequence a = (a(k))∞k=1 such that 1/2 <
a(k) < 1 for each k ∈ N and

∏∞
k=1 a(k) = 0 the family {Iσa : σ is an increas-

ing sequence of natural numbers} is universal in the class of all compact
metrizable spaces X with IndX = ω0.

6. Cardinalities of universal families. Denote by D the class of all
compact metrizable spaces X with indX = ω0; let

m = min{|A| : A is a universal family in D} .
In this section we show that

(6.1) m = d .

The proof will be preceded by two lemmas. We denote by st(Y ) the star
of a set Y ⊆ Iσ|ja with respect to the covering {It : t ∈ Saσ|j}, that is,

st(Y ) =
⋃
{It : t ∈ Saσ|j and Y ∩ It 6= ∅} .

6.1. Lemma. Let j be a natural number , and let A be a subspace of Iσa .
If the image of A under the projection of Iσa onto I

σ|j
a is not contained in
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any st(Is), where s ∈ Saσ|j , then for some x, y ∈ A, there exists an at most
σ(j)-dimensional partition in A between x and y.

P r o o f. Denote by Aj the image of A under the projection of Iσa onto
I
σ|j
a . Since A 6= ∅ and Iσ|ja =

⋃{Is : s ∈ Saσ|j}, it follows that Aj ∩ Is 6= ∅ for
some s ∈ Saσ|j ; take an x ∈ A whose image under the above projection—to
be denoted by xj—belongs to Is. By assumption, there exists a y ∈ A whose
image, say yj , belongs to Iσ|ja − st(Is). Let

Uj = Iσ|ja −
⋃
{It : t ∈ Saσ|j and It ∩ Is = ∅},

Vj = Iσ|ja − st(Is) and Lj = Iσ|ja − (Uj ∪ Vj) .
The sets Uj and Vj are open, and xj ∈ Uj , yj ∈ Vj ; hence Lj is a partition

in I
σ|j
a between xj and yj . Of course,

IndLj ≤ Ind Iσ|ja ≤ σ(j) .

From the definitions it follows immediately that none of the sets It, where
t ∈ Saσ|j , intersects Uj and Vj simultaneously.

Set
Uk = {It : t ∈ Saσ|k and It|j ∩ Is 6= ∅} ,
Vk = {It : t ∈ Saσ|k and It|j ∩ Is = ∅} for k ≥ j ,

and

Uk =
(⋃

Uk
)
− Lj , Vk =

(⋃
Vk
)
− Lj , and Lk = Lj for k > j .

A reasoning similar to that in the proof of Theorem 3.2 shows that the
sets Uk, Vk, Lk satisfy the assumptions of Lemma 3.1 for n = IndLj ≤ σ(j);
therefore there exists an at most σ(j)-dimensional partition L in Iσa between
x and y.

The set A ∩ L is a partition in A between x and y, and Ind(A ∩ L) ≤
IndL ≤ σ(j).

From now on, we will only be concerned with sequences a = (a(k))∞k=1
which additionally satisfy the following condition:

(∗)
∞∏

k=1

2a(k) <∞

(see the beginning of Section 4).

6.2. Lemma. Let σ and τ be increasing sequences of natural numbers; let
nk = min{i = 0, 1, . . . : τ(k) ≤ σ(k + i)} for k ∈ N. Then Iτa is embeddable
in Iσa if and only if the sequence (nk)∞k=1 is bounded.
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P r o o f. Assume that there exists an n ∈ N such that nk ≤ n for every
k. Define σn by letting

σn(k) = σ(k + n) for k = 0, 1, . . . ;

then τ(k) ≤ σn(k) for every k.
From the definitions of Iτa , I

σn
a , and Iσa (see Section 4) it follows that Iτa

is embeddable in Iσna , and for every s ∈ Saτ |n, Iσna is homeomorphic to the
subspace of Iσa consisting of all points which are mapped into

⋃{It : t ∈ Saσ|i
and t|n = s} under the projection of Iσa onto I

σ|i
a for i ≥ n. Thus Iτa is

embeddable in Iσa .
Suppose now, on the contrary, that there exists an embedding h : Iτa →

Iσa and the sequence (nk)∞k=1 is not bounded.
Fix an m ∈ {0, 1, . . .}; let % = %aσ,m be a metric on I

σ|m
a satisfying (4.6).

Take k > m + 2 and s ∈ Saτ |k. Since h(Is) is a τ(k)-dimensional cube, the
dimension of every partition in h(Is) is not less than τ(k)− 1.

By Lemma 6.1 and the inequality σ(k + nk − 2) < τ(k) − 1, the image
of h(Is) under the projection of Iσa onto I

σ|k+nk−2
a is contained in st(It)

for some t ∈ Saσ|k+nk−2; thus the diameter of the image of h(Is) under the

projection of Iσa onto Iσ|ma is not greater than

3 ·
( k+nk−2∏

i=m+1

a(i)
)
· diam% I

σ|m
a

(see (4.6)). Since the above estimate holds for every s ∈ Saτ |k, we conclude,
by (4.1) and (4.3), that the diameter of every h(It), where t ∈ Saτ |k−1, under

the projection of Iσa onto Iσ|ma is not greater than

3 · 2 ·
( k+nk−2∏

i=m+1

a(i)
)
· diam% I

σ|m
a .

We continue in this fashion to deduce that the diameter of the image of
h(Iτ |0a ) = h(Is), where s is the unique element of Saτ |0, under the projection

of Iσa onto Iσ|ma is not greater than

3 · 2k ·
( k+nk−2∏

i=m+1

a(i)
)
· diam% I

σ|m
a = 3 · 2m−nk+2 ·

k+nk−2∏

i=m+1

2a(i)

≤ 3 · 2m−nk+2 ·
∞∏

i=1

2a(i) .

Since
∏∞
i=1 2a(i) < ∞ (see (∗)) and (nk)∞k=1 is not bounded, the image of

h(Iτ |0a ) under the projection of Iσa to Iσ|ma has to be a one-point set.
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As m is an arbitrary natural number we conclude that h(Iτ |0a ) is also a
one-point set, which contradicts the assumption that h is an embedding.

We can now prove (6.1). Let D ⊆ Nω0 be a dominating set of cardinality
d; obviously, we can assume that each element of D is an increasing sequence.
Set A = {Iσa : σ ∈ D}. In order to prove m ≤ d, it suffices to show that

(6.2) A is a universal family in D.
In Section 4, we have shown that for every increasing sequence σ of

natural numbers, Iσa is a compact metrizable space with ind Iσa = ω0, and
so Iσa belongs to D. If X is a compact metrizable space with indX ≤ ω0,
then, by Theorem 5.1, X is embeddable in Iσa for some increasing sequence
σ ∈ Nω0 . Take τ ∈ D such that σ ≤∗ τ ; then there exists an n ∈ {0, 1, . . .}
such that σ(k) ≤ τ(k) for k ≥ n (see Section 1, the definition of ≤∗). Since
σ(k) ≤ σ(k + n) ≤ τ(k + n) for k = 0, 1, . . . , Iσa is embeddable in Iτa by
Lemma 6.2, and so X is embeddable in Iτa . The proof of (6.2) is complete.

Consider now a family A of cardinality m universal in the class D; by
Theorem 5.1, we can assume that A consists of the spaces Iσa , where a
stands for a sequence with property (∗). For every σ such that Iσa ∈ A and
n = 0, 1, . . . , define the sequence σn by letting

σn(k) = σ(n+ k) for k = 0, 1, . . . ,

and put

D = {σn : Iσa ∈ A and n = 0, 1, . . .} .
In order to prove d ≤ m, it suffices to show that D is a dominating

sequence.
Let τ ∈ Nω0 be an arbitrary sequence. Take an increasing sequence

θ ∈ Nω0 such that τ(k) ≤ θ(k) for every k = 0, 1, . . . The space Iθa is
embeddable in some Iσa ∈ A; thus by Lemma 6.2, there exists a natural
number n such that θ(k) ≤ σ(n+ k) for every k. Hence

τ(k) ≤ θ(k) ≤ σ(n+ k) = σn(k) for k = 0, 1, . . . ,

which completes the proof.

From (6.1) it follows that ℵ0 < m ≤ c (see Section 1); however, the
inequalities ℵ0 < m and m ≤ c can be proved in a more direct way.

Indeed, since the cardinality of the family of all closed subspaces of the
Hilbert cube is c, we have m ≤ c.

On the other hand, the existence of a countable universal family A in
the class D would contradict Theorem 5.1 of [8]. Namely, the one-point
compactification of the sum of topological spaces

⊕A would be a universal
space for compact metrizable spaces X with indX ≤ ω0.
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