Universal spaces in the theory of transfinite dimension, II

by

Wojciech Olszewski (Warszawa)

Abstract. We construct a family of spaces with "nice" structure which is universal in the class of all compact metrizable spaces of large transfinite dimension ω_0 , or, equivalently, of small transfinite dimension ω_0 ; that is, the family consists of compact metrizable spaces whose transfinite dimension is ω_0 , and every compact metrizable space with transfinite dimension ω_0 is embeddable in a space of the family. We show that the least possible cardinality of such a universal family is equal to the least possible cardinality of a dominating sequence of irrational numbers.

1. Introduction. In Part I of the paper we have proved that there is no universal space in the class of all compact metrizable spaces X with Ind $X = \omega_0$, or equivalently, with ind $X = \omega_0$ (see [3], Proposition 4.11, or Lemma 2.3 of this paper). That class will be denoted by \mathcal{D} . We have also shown that there is no universal space in the class of all separable metrizable spaces X with Ind $X = \omega_0$, to be denoted by \mathcal{C} . In this part we introduce the notion of a universal family which is a generalization of the notion of a universal space, and we study universal families for \mathcal{C} and \mathcal{D} .

1.1. DEFINITION. Let C be a class of topological spaces. A family A of spaces belonging to C is said to be a *universal family* in C if every space in C is embeddable in a space belonging to A.

Universal families can play a role similar to that played by universal spaces. Universal families of small cardinality consisting of spaces with "nice" structure are of particular interest.

In Sections 4 and 5 we construct a universal family \mathcal{A} in \mathcal{D} consisting of spaces with "nice" structure. Since every separable metrizable space Xhas a compactification Z such that $\operatorname{Ind} Z = \operatorname{Ind} X$ (see [5], and [6] for the proof), the family \mathcal{A} is also universal in \mathcal{C} . In Section 6 we estimate the least possible cardinality of a universal family in \mathcal{D} ; by the above compactification theorem, it is equal to the least possible cardinality of a universal family in \mathcal{C} .

¹⁹⁹¹ Mathematics Subject Classification: Primary 54F45, 54A25.

^[121]

In order to formulate our result, we have to recall a few notions.

Irrational numbers can be viewed as sequences of natural numbers. We denote by \mathbb{N}^{ω_0} the set of irrational numbers, i.e., the set of all sequences $\sigma = (\sigma(k))_{k=0}^{\infty}$ of natural numbers. On \mathbb{N}^{ω_0} we consider the relation \leq^* defined by letting

$$\sigma \leq^* \tau$$
 if $\sigma(k) \leq \tau(k)$ for all but a finite number of $k \in \mathbb{N}$

A subset $D \subseteq \mathbb{N}^{\omega_0}$ cofinal in \mathbb{N}^{ω_0} is said to be *dominating*, i.e., D is dominating if for every $\sigma \in \mathbb{N}^{\omega_0}$, there exists a $\tau \in D$ such that $\sigma \leq^* \tau$. We set $\mathfrak{d} = \min\{|D| : D \subseteq \mathbb{N}^{\omega_0} \text{ is a dominating sequence}\}.$

One can prove that

$$\aleph_1 \leq \mathfrak{d} \leq \mathfrak{c};$$

one can also prove that each of the following formulae is consistent with the axioms of set theory:

$$\begin{split} \aleph_1 &= \mathfrak{d} = \mathfrak{c} \,, \\ \aleph_1 &= \mathfrak{d} < \mathfrak{c} \,, \\ \aleph_1 &< \mathfrak{d} < \mathfrak{c} \,, \\ \aleph_1 &< \mathfrak{d} = \mathfrak{c} \,. \end{split}$$

For a deeper discussion and the proofs of the above statements we refer the reader to E. K. van Douwen's survey [1].

Section 6 contains the proof of the equality

 $\min\{|\mathcal{A}|: \mathcal{A} \text{ is a universal family in } \mathcal{D}\} = \mathfrak{d},$

which, in particular, gives

 $\min\{|\mathcal{A}|: \mathcal{A} \text{ is a universal family in } \mathcal{C}\} = \mathfrak{d}.$

Acknowledgements. The paper contains some of the results of my Ph.D. thesis supervised by Professor R. Engelking whom I would like to thank for his comments and improvements. I also wish to express my thanks to Professors J. Chaber, J. Krasinkiewicz and W. Marciszewski whose comments have helped me to improve the presentation significantly.

2. Three lemmas. For a topological space and its closed subset A, we denote by X/A the quotient space obtained by identifying A to a point (see [4], Example 2.4.12); we denote this point by a, and the natural quotient mapping by q.

2.1. LEMMA. Let X be a compact metrizable space, and A its closed subset. Let ε be a positive real number. If $f: X \to I^n$ has the property that f|Ais an ε -mapping, then there exist m > n and $g: X \to I^{m-n}$ such that the diagonal $f \bigtriangleup g$ is an ε -mapping and

$$(f \Delta g)^{-1}(I^n \times \{(0, \dots, 0)\}) = A.$$

Proof. Since X/A is a compact metrizable space, there exists an embedding

$$h = (h_1, h_2, \ldots) : X/A \to I^{\aleph_0} = I \times I \times \ldots$$

Let $h_0: X/A \to I$ be a function such that $(h_0)^{-1}(0) = \{a\}$; set $\phi = (h_0, h_0 \cdot h_1, h_0 \cdot h_2, \ldots)$. It is easy to check that $\phi: X/A \to I \times I^{\aleph_0}$ is also an embedding, and therefore $f \vartriangle (\phi \circ q): X \to I^n \times I \times I^{\aleph_0}$ is an ε -mapping. By compactness of X, so is $f \bigtriangleup (p_{m-n} \circ \phi \circ q)$ for sufficiently large m, where $p_{m-n}: I \times I^{\aleph_0} \to I \times I^{m-n}$ denotes the projection, i.e., $p_{m-n}((x_1, x_2, x_3, \ldots)) = (x_1, x_2, x_3, \ldots, x_{m-n+1})$ for $x_1 \in I$ and $(x_2, x_3, \ldots) \in I^{\aleph_0}$. Consider an m with this property.

Set $g = p_{m-n} \circ \phi \circ q$. Then $(f \bigtriangleup g)^{-1}(I^n \times \{(0, \dots, 0)\}) = g^{-1}((0, \dots, 0))$ = $(h_0 \circ q)^{-1}(0) = q^{-1}(a) = A$.

2.2. LEMMA. Let m and n be natural numbers such that $n \ge 2m + 2$. Let X be a compact metrizable space, and A and B its closed subspaces with Ind $B \le m$. Then there exists $f: X \to I^n$ such that f|B-A is an embedding, and $f^{-1}((0,\ldots,0)) = A$.

Proof. Consider the quotient mapping $q: X \to X/A$. Since we have $\operatorname{Ind}(\{a\} \cup q(B)) \leq m$ and $n-1 \geq 2m+1$, there exists an embedding $h: \{a\} \cup q(B) \to I^{n-1}$. Let h^* be an extension of h onto X/A, and $g: X/A \to I$ a function such that $g^{-1}(0) = \{a\}$. Since I^{n-1} is embeddable in the geometrical boundary bd I^n of I^n , and bd I^n is homogeneous, we can assume that bd I^n is the range of h^* , and $h^*(a) = (0, \ldots, 0)$. Let $\phi: (\operatorname{bd} I^n) \times I \to I^n$ be an embedding with $\phi(x, 0) = x$ for every $x \in \operatorname{bd} I^n$.

It is easy to check that $f = \phi \circ (h^* \bigtriangleup g) \circ q$ has the required properties.

Note that the assumption $n \ge 2m + 2$ in Lemma 2.2 can be replaced by $n \ge 2m + 1$. The proof under this weaker assumption is similar to that of Corollaries 2.5 and 2.7 in [7]. However, we will only need the lemma in the form given above.

2.3. LEMMA. A compact metrizable space satisfies $\operatorname{Ind} X \leq \omega_0$ if and only if for every pair of distinct points $x, y \in X$ there exists a finite-dimensional partition L between x and y.

Proof. The necessity is obvious. To show the sufficiency, we first prove that for any $x \in X$ and any neighbourhood $U \subseteq X$ of x, there exists an open set $V \subseteq X$ such that Ind bd $V < \omega_0$, i.e., ind $X \leq \omega_0$.

For every $y \in X - U$, consider a finite-dimensional partition L_y between x and y; let U_y and V_y be disjoint open subsets of X such that $x \in U_y$, $y \in V_y$, and $L_y = X - (U_y \cup V_y)$. Then $X - U \subseteq \bigcup \{V_y : y \in X - U\}$; by compactness of X - U, there exists a finite family $\mathcal{V} \subseteq \{V_y : y \in X - U\}$

such that $X - U \subseteq \bigcup \mathcal{V}$. It follows immediately that

$$V = X - \bigcup \{ \operatorname{cl} V_y : V_y \in \mathcal{V} \}$$

is an open subset of X with $x \in V \subseteq U$, and

$$\operatorname{bd} V \subseteq \bigcup \{ \operatorname{bd} V_y : V_y \in \mathcal{V} \} \subseteq \bigcup \{ L_y : V_y \in \mathcal{V} \};$$

since \mathcal{V} is finite,

Ind bd
$$V \leq \max\{ \operatorname{Ind} L_y : V_y \in \mathcal{V} \} < \omega_0$$
.

Now, let $A \subseteq X$ be an arbitrary closed set, and $U \subseteq X$ an open set containing A. For every $x \in A$, consider an open set $V_x \subseteq X$ such that $x \in V_x \subseteq U$ and Ind bd $V_x < \omega_0$. By compactness of A, there exists a finite family $\mathcal{V} \subseteq \{V_x : x \in A\}$ such that $A \subseteq \bigcup \mathcal{V}$. Then $V = \bigcup \mathcal{V}$ is an open subset of X such that $A \subseteq V \subseteq U$ and bd $V \subseteq \bigcup \{ bd V_x : V_x \in \mathcal{V} \}$; since \mathcal{V} is finite,

Ind bd
$$V \leq \max\{ \operatorname{Ind} \operatorname{bd} V_x : V_x \in \mathcal{V} \} < \omega_0$$
.

3. The structure of spaces X with $\operatorname{Ind} X \leq \omega_0$. In this section we shall prove that compact metrizable spaces of a certain structure have large transfinite dimension not greater than ω_0 (see Theorem 3.2); actually, it turns out (see Theorem 5.1) that each compact metrizable space X with $\operatorname{Ind} X \leq \omega_0$ has that structure.

Let $\{M_k, r_j^k\}$ be an inverse sequence; then M denotes the inverse limit of $\{M_k, r_j^k\}$, and $r_k : M \to M_k$, for $k \in \mathbb{N}$, denotes the projection. Each family $\{M_k, r_k^{k+1}\}$, where $r_k^{k+1} : M_{k+1} \to M_k$, determines an inverse sequence $\{M_k, r_j^k\}$; to wit, it suffices to set $r_j^k = r_j^{j+1} \circ \ldots \circ r_{k-1}^k$ for k > j and r_k^k equal to the identity mapping of M_k . For simplicity, we shall also call each such family $\{M_k, r_k^{k+1}\}$ an inverse sequence.

The next lemma is a technical one and will only be used in the proofs of Theorem 3.2 and Lemma 6.1.

3.1. LEMMA. Let n be a fixed natural number, and let $x, y \in M$ be distinct. Suppose there is a $j \in \mathbb{N}$ such that for every $k \geq j$, there exist pairwise disjoint subsets U_k, V_k and L_k of M_k , where U_k, V_k are open and L_k is closed, which satisfy the following conditions:

- $(3.1) \qquad M_k = U_k \cup V_k \cup L_k,$
- $(3.2) \quad \text{Ind} L_k \le n,$
- (3.3) $r_j(x) \in U_j \text{ and } r_j(y) \in V_j,$

(3.4)
$$(r_k^{k+1})^{-1}(U_k) \subseteq U_{k+1} \text{ and } (r_k^{k+1})^{-1}(V_k) \subseteq V_{k+1}.$$

Then there exists an at most n-dimensional partition in M between x and y.

Proof. Define

$$L = \bigcap_{k=j}^{\infty} r_k^{-1}(L_k) \,, \quad U = \bigcup_{k=j}^{\infty} r_k^{-1}(U_k) \,, \quad \text{and} \quad V = \bigcup_{k=j}^{\infty} r_k^{-1}(V_k)$$

From (3.1) it follows directly that $M = U \cup V \cup L$. Clearly, U, V are open and L is closed in M. Since $U_k \cap V_k = \emptyset$, we have $U \cap V = \emptyset$ by (3.4), and since $U_k \cap L_k = \emptyset = L_k \cap V_k$, we also have $U \cap L = \emptyset = L \cap V$. By (3.3), $x \in U$ and $y \in V$, and thus L is a partition in M between x and y.

Since $L_{k+1} \cap U_{k+1} = \emptyset = V_{k+1} \cap L_{k+1}$, by (3.1) and (3.4), $r_k^{k+1}(L_{k+1}) \subseteq L_k$, so we can regard $r_k^{k+1}|L_{k+1}$ as a mapping to L_k ; thus L coincides with $\lim_{k \to \infty} \{L_k, r_k^{k+1}|L_{k+1}\}$, and so $\operatorname{Ind} L \leq n$ by the theorem on the dimension of the limit of an inverse sequence (see [2], Theorem 1.13.4) and (3.2).

3.2. THEOREM. Let $\{M_k, r_k^{k+1}\}$ be an inverse sequence of finite-dimensional compact metrizable spaces M_k in which all bonding mappings r_k^{k+1} are retractions. Suppose that for every $k \in \mathbb{N}$, there exist a covering \mathcal{A}_k of M_k and a metric ϱ_k on M_k with the following properties:

- (3.5) the sets $A_{k+1} M_k$, where $A_{k+1} \in \mathcal{A}_{k+1}$, are open in M_{k+1} and pairwise disjoint,
- (3.6) for every $A_{k+1} \in \mathcal{A}_{k+1}$, there exists an $A_k \in \mathcal{A}_k$ such that $r_k^{k+1}(A_{k+1}) \subseteq A_k$,
- (3.7) for every $i \in \mathbb{N}$, the sequence of real numbers $(\sup\{\operatorname{diam}_{\varrho_i} r_i^k(A_k) : A_k \in \mathcal{A}_k\})_{k=i+1}^{\infty}$ converges to 0.

Then Ind $M \leq \omega_0$.

Proof. First for every $A_k \in \mathcal{A}_k$, we define $A_k^{(j)} \in \mathcal{A}_j$ for $j \leq k$ in such a way that

 $(3.8) r_j^k(A_k) \subseteq A_k^{(j)},$

(3.9)
$$(A_k^{(i)})^{(j)} = A_k^{(j)}$$
 whenever $j \le i \le k$.

For instance, one can define $A_k^{(k-1)}$ to be an arbitrary member A_{k-1} of \mathcal{A}_{k-1} such that $r_{k-1}^k(A_k) \subseteq A_{k-1}$ for $A_k \in \mathcal{A}_k$ (its existence is guaranteed by (3.6)), and then set by induction $A_k^{(j)} = (A_k^{(j+1)})^{(j)}$. Of course, we put $A_k^{(k)} = A_k$.

We can now begin the proof of $\operatorname{Ind} M \leq \omega_0$. Since M, as the inverse limit of a sequence of compact spaces, is compact, it suffices to find a

finite-dimensional partition between any two distinct points $x, y \in M$ (see Lemma 2.3). To this end, we shall apply Lemma 3.1.

Take the smallest $i \in \mathbb{N}$ such that $r_i(x) \neq r_i(y)$ and define $\varepsilon = \varrho_i(r_i(x), r_i(y))$. By (3.7), there exists a j > i such that

(3.10)
$$\operatorname{diam}_{\varrho_i} r_i^j(A_j) < \varepsilon/3 \quad \text{for each } A_j \in \mathcal{A}_j \,.$$

Let

$$\begin{split} U_i &= \{ z \in M_i : \varrho_i(z, r_i(x)) < \varepsilon/3 \}, \\ V_i &= \{ z \in M_i : \varrho_i(z, r_i(x)) > 2\varepsilon/3 \}, \\ L_i &= \{ z \in M_i : \varepsilon/3 \le \varrho_i(z, r_i(x)) \le 2\varepsilon/3 \}, \\ \text{and } U_j &= (r_i^j)^{-1}(U_i), V_j = (r_i^j)^{-1}(V_i), L_j = (r_i^j)^{-1}(L_i). \end{split}$$

Put

 $\mathcal{U}_k = \{A_k \in \mathcal{A}_k : A_k^{(j)} \cap V_j = \emptyset\}, \quad \mathcal{V}_k = \{A_k \in \mathcal{A}_k : A_k^{(j)} \cap V_j \neq \emptyset\}$ for $k \ge j$, and

$$U_k = \left(\bigcup \mathcal{U}_k\right) - L_j, \quad V_k = \left(\bigcup \mathcal{V}_k\right) - L_j, \quad L_k = L_j$$

for k > j; since the bonding mappings are retractions, L_j is a subset of M_k for k > j.

We first check that

(3.11)
$$U_k, V_k$$
 and L_k are pairwise disjoint.

Obviously, $U_j \cap V_j = \emptyset$. Suppose, on the contrary, that $U_k \cap V_k \neq \emptyset$ for a k > j. Then there exists a $z \in (A_k \cap B_k) - L_j$ for some $A_k \in \mathcal{U}_k$ and $B_k \in \mathcal{V}_k$. By (3.5), we have $z \in M_{k-1}$ and since r_{k-1}^k is a retraction, we conclude, using (3.8), that

$$z \in A_k \cap B_k \cap M_{k-1} \subseteq A_k^{(k-1)} \cap B_k^{(k-1)}$$

Observe that $A_k^{(k-1)} \in \mathcal{U}_{k-1}$ and $B_k^{(k-1)} \in \mathcal{V}_{k-1}$; indeed, as $A_k \in \mathcal{U}_k$ $(B_k \in \mathcal{V}_k)$ we have $A_k^{(j)} \cap V_j = \emptyset$ $(B_k^{(j)} \cap V_j \neq \emptyset)$; hence by (3.9), $(A_k^{(k-1)})^{(j)} \cap V_j = A_k^{(j)} \cap V_j = \emptyset$ $((B_k^{(k-1)})^{(j)} \cap V_j = B_k^{(j)} \cap V_j \neq \emptyset)$, and so $A_k^{(k-1)} \in \mathcal{U}_{k-1}$ $(B_k^{(k-1)} \in \mathcal{V}_{k-1})$. In the same manner we can show by induction that $z \in A_k^{(j)} \cap B_k^{(j)}$ and $A_k^{(j)} \in \mathcal{U}_j$, $B_k^{(j)} \in \mathcal{V}_j$.

Consequently, $A_k^{(j)} \cap V_j = \emptyset$ and $z \notin V_j$; however, $z \notin L_j$, and so, by the definition of U_j, V_j, L_j , we conclude that $z \in U_j$; thus $B_k^{(j)} \cap U_j \neq \emptyset$. On the other hand, $B_k^{(j)} \cap V_j \neq \emptyset$ (since $B_k^{(j)} \in \mathcal{V}_j$).

This shows that

$$\varrho_i(r_i^j(z_1), r_i(x)) < \varepsilon/3 \quad \text{and} \quad \varrho_i(r_i^j(z_2), r_i(x)) > 2\varepsilon/3$$

for some $z_1, z_2 \in B_k^{(j)}$, contrary to (3.10). Thus $U_k \cap V_k = \emptyset$. That $U_k \cap L_k = \emptyset = L_k \cap V_k$ follows directly from the definition of U_k, V_k, L_k .

We now show that for $n = \text{Ind } M_i$,

(3.12) U_k, V_k and L_k satisfy conditions (3.1)–(3.4) of Lemma 3.1.

Condition (3.1) is obvious for k = j. Take k > j. Since

$$M_{k} \supseteq U_{k} \cup V_{k} \cup L_{k} = \left[\left(\bigcup \mathcal{U}_{k} \right) - L_{j} \right] \cup \left[\left(\bigcup \mathcal{V}_{k} \right) - L_{j} \right] \cup L_{j}$$
$$\supseteq \left(\bigcup \mathcal{U}_{k} \right) \cup \left(\bigcup \mathcal{V}_{k} \right) = \bigcup \mathcal{A}_{k} = M_{k},$$

(3.1) also holds for k > j.

Conditions (3.2) and (3.3) follow immediately from the definitions of U_k, V_k and L_k .

Let $z \in M_{k+1}$ and $r_k^{k+1}(z) \in U_k$. Take an $A_{k+1} \in \mathcal{A}_{k+1}$ such that

 $z \in A_{k+1} \text{ and suppose that } A_{k+1} \in \mathcal{V}_{k+1}.$ Then $A_{k+1}^{(j)} \cap V_j \neq \emptyset$, so $(A_{k+1}^{(k)})^{(j)} \cap V_j \neq \emptyset$ (see (3.9)) and $A_{k+1}^{(k)} \in \mathcal{V}_k$. If k = j, then, by (3.8), $r_k^{k+1}(z) \in A_{k+1}^{(j)}$, therefore also $A_{k+1}^{(j)} \cap U_j \neq \emptyset$, contrary to (3.10). If k > j, then $A_{k+1}^{(k)} \subseteq V_k \cup L_k$ and, by (3.8), $r_k^{k+1}(z) \in V_k \cup L_k$; but we know (see (3.11)) that $(V_k \cup L_k) \cap U_k = \emptyset$, and therefore $r_k^{k+1}(z) \notin U_k$, a contradiction. Thus $A_{k+1} \in \mathcal{U}_{k+1}$.

This clearly forces $A_{k+1} \subseteq U_{k+1} \cup L_{k+1}$. We have $z \notin L_{k+1}$, because otherwise $z \in L_{k+1} = L_k$, and hence $r_k^{k+1}(z) = z \in L_k \cap U_k = \emptyset$ (see (3.11)). Thus $z \in A_{k+1} - L_{k+1} \subseteq U_{k+1}$, and the first part of (3.4) is proved.

The second part of (3.4) can be shown similarly, and thus the proof of (3.12) is complete.

We see at once that

$$(3.13) L_k \text{ is a closed subset of } M_k$$

In order to check that the assumptions of Lemma 3.1 are satisfied, it remains to show that

(3.14)
$$U_k$$
 and V_k are open subsets of M_k .

We prove this for U_k by induction on k; the same argument works for V_k . For k = j, (3.14) is evident. Assume that (3.14) holds for numbers less than some k > j.

First, we verify that

(3.15)
$$U_k \cap M_{k-1} = U_{k-1} \,.$$

Indeed,

$$U_{k-1} \subseteq M_{k-1} \cap (r_{k-1}^k)^{-1} (U_{k-1}) \subseteq M_{k-1} \cap U_k$$

(see (3.12) and (3.4); recall that r_{k-1}^k is a retraction). On the other hand, if

there were $z \in (U_k \cap M_{k-1}) - U_{k-1}$, we would have

$$z \in (M_{k-1} - U_{k-1}) \cap U_k \subseteq (L_{k-1} \cup V_{k-1}) - (L_k \cup V_k) \\ \subseteq (L_k \cup V_{k-1}) - (L_k \cup V_{k-1}) = \emptyset$$

(recall that $L_k = L_{k-1}$ and $V_{k-1} \subseteq V_k$; see (3.12) and (3.4)).

We now return to the inductive proof. Take a $z \in U_k$. If $z \in M_{k-1}$, then $z \in U_{k-1}$ by (3.15); then $(r_{k-1}^k)^{-1}(U_{k-1})$ is a neighbourhood of zby the inductive assumption, and it follows from (3.12) and (3.4) that $(r_{k-1}^k)^{-1}(U_{k-1}) \subseteq U_k$. If $z \notin M_{k-1}$, then $z \in A_k - M_{k-1}$ for some $A_k \in U_k$; by (3.5), $A_k - M_{k-1}$ is a neighbourhood of z, and since $L_k \subseteq M_{k-1}$, this neighbourhood is contained in U_k .

We have thus verified that the assumptions of Lemma 3.1 are satisfied. Consequently, there exists a finite-dimensional partition (more precisely, a partition of dimension not greater than $n = \text{Ind } M_j$) between x and y in the space M.

4. The spaces I_a^{σ} . In this section, for any increasing sequence $\sigma = (\sigma(k))_{k=0}^{\infty}$ of positive integers, and any sequence $a = (a(k))_{k=1}^{\infty}$ of real numbers such that 1/2 < a(k) < 1 for every k and $\prod_{k=1}^{\infty} a(k) = 0$ we construct a compact metrizable space I_a^{σ} with $\operatorname{Ind} I_a^{\sigma} = \omega_0$. For our purposes it suffices to restrict attention to any fixed sequence $a = (a(k))_{k=1}^{\infty}$ which has the above properties, except for Section 6, where we will additionally need the condition

(*)
$$\prod_{k=1}^{\infty} 2a(k) < \infty.$$

Thus the reader can assume that $a = (1/2 + 1/2^{k+1})_{k=1}^{\infty}$; it is easy to see that this sequence has all the required properties.

From now on, σ stands for an increasing sequence of positive integers, and a for a sequence of real numbers such that 1/2 < a(k) < 1 and $\prod_{k=1}^{\infty} a(k) = 0$; for a given σ , we denote by $\sigma|k$ the sequence $\sigma(0), \sigma(1), \ldots, \sigma(k-1)$; in particular, $\sigma|0$ is the empty sequence. We denote by $S^a_{\sigma(k)}$ the set of all sequences

$$\gamma: \{1, 2, \dots, \sigma(k)\} \to \{0, 1 - a(k+1)\}$$

i.e., the set of all sequences of $\sigma(k)$ elements equal to either 0 or 1-a(k+1); S_0 consists of the empty sequence. Let

$$S^a_{\sigma|0} = S_0, \quad S^a_{\sigma|k} = S^a_{\sigma(0)} \times S^a_{\sigma(1)} \times \ldots \times S^a_{\sigma(k-1)}, \quad S^a_{\sigma} = \bigcup_{k=0}^{\infty} S^a_{\sigma|k}.$$

For every sequence $s = (\gamma_0, \gamma_1, \dots, \gamma_{k-1}) \in S^a_{\sigma|k}$ and m < k, let s|m stand for the sequence $(\gamma_0, \gamma_1, \dots, \gamma_{m-1}) \in S^a_{\sigma|m}$. Fix σ and a. First, we construct by induction an inverse sequence $\{I_a^{\sigma|k}, r_a^{\sigma|k+1}\}$, where $r_a^{\sigma|k+1} : I_a^{\sigma|k+1} \to I_a^{\sigma|k}$; simultaneously, we define a covering $\{I_s : s \in S_{\sigma|k}^a\}$ of $I_a^{\sigma|k}$ by $\sigma(k)$ -dimensional cubes for $k = 0, 1, \ldots$

Let $I_a^{\sigma|0}$ be the $\sigma(0)$ -dimensional cube $I^{\sigma(0)}$ and $I_s = I^{\sigma(0)}$ for the unique $s \in S^a_{\sigma|0}$. Assume that we have already defined $I_a^{\sigma|k}$ and its covering $\{I_s : s \in S^a_{\sigma|k}\}$.

For every $s \in S^a_{\sigma|k}$, we identify I_s and the standard $\sigma(k)$ -dimensional cube $I^{\sigma(k)}$. For $t = (s, \gamma) \in S^a_{\sigma|k+1}$, set $I'_t = \{(x_1, \ldots, x_{\sigma(k)}) \in I_s : \gamma(i) \leq x_i \leq \gamma(i) + a(k+1) \text{ for } i \leq \sigma(k)\}$; that is, I'_t is a smaller cube placed in a corner of I_s such that the length ratio of their edges is a(k+1).

Roughly speaking, we glue a $\sigma(k+1)$ -dimensional cube, denoted here by I_t , along its $\sigma(k)$ -dimensional face, which is identified with I'_t , to every cube $I'_t \subseteq I^{\sigma|k}_a$, where $t \in S^a_{\sigma|k+1}$, in such a way that the sets $I_t - I'_t$ are pairwise disjoint. Our $I^{\sigma|k+1}_a$ is the space so obtained.

Precisely, the space $I_a^{\sigma|k+1}$ can be defined as follows. Let Q_t , where $t \in S^a_{\sigma|k+1}$, be a copy of the $(\sigma(k+1) - \sigma(k))$ -dimensional cube $I^{\sigma(k+1) - \sigma(k)}$. Set

$$I_{t} = \{ (y, \{y_{s} : s \in S^{a}_{\sigma|k+1}\}) \in I^{\sigma|k}_{a} \times \mathbb{P}\{Q_{s} : s \in S^{a}_{\sigma|k+1}\} : y \in I'_{t} \text{ and } y_{s} = (0, \dots, 0) \text{ for } s \neq t \}$$

for $t \in S^a_{\sigma|k+1}$, and

$$I_a^{\sigma|k+1} = \bigcup \{ I_t : t \in S^a_{\sigma|k+1} \}.$$

It is easily seen that the covering $\{I_s : s \in S^a_{\sigma|k+1}\}$ consists of $\sigma(k+1)$ -dimensional cubes.

The orthogonal projections of the $\sigma(k+1)$ -dimensional cubes I_s onto their $\sigma(k)$ -dimensional faces I'_s , where $s \in S^a_{\sigma|k+1}$, determine a retraction of $I^{\sigma|k+1}_a$ onto $I^{\sigma|k}_a$; denote it by $r^{\sigma|k+1}_a$. More precisely,

$$r_a^{\sigma|k+1}((y, \{y_s : s \in S^a_{\sigma|k+1}\})) = (y, \{z_s : s \in S^a_{\sigma|k+1}\}),$$

where $z_s = (0, ..., 0)$ for $s \in S^a_{\sigma|k+1}$, for every $(y, \{y_s : s \in S^a_{\sigma|k+1}\})$.

Thus, the inductive construction of $\{I_a^{\sigma|k}, r_a^{\sigma|k+1}\}$ is complete.

In Fig. 4.1 the first steps in constructing $\{I_a^{\sigma|k}, r_a^{\sigma|k+1}\}$, where $\sigma(k) = k+1$ for $k = 0, 1, \ldots$, and $a(k) = 1/2+1/2^{k+1}$ for $k = 1, 2, \ldots$, are exhibited. Let

$$I_a^{\sigma} = \varprojlim \{ I_a^{\sigma|k}, r_a^{\sigma|k+1} \} \,.$$

We list several properties of the space I_a^{σ} .

W. Olszewski



Fig. 4.1

It is easy to check that for $k = 0, 1, ..., I_a^{\sigma|k+1}$ is a closed subspace of $I_a^{\sigma|k} \times \mathbb{P}\{Q_s : s \in S_{\sigma|k+1}^a\}$; thus the spaces $I_a^{\sigma|k}$ are compact and metrizable, and so is I_a^{σ} . Since a(k+1) > 1/2, we have $I_s = \bigcup\{I_t' : t \in S_{\sigma|k+1}^a\}$ and $t|k=s\}$ for every $s \in S_{\sigma|k}^a$; in particular, $I_a^{\sigma|k} = \bigcup\{I_t' : t \in S_{\sigma|k+1}^a\}$. Hence

. . .

(4.1)
$$I_s \subseteq \bigcup \{ I_t : t \in S^a_{\sigma|k+1} \text{ and } t|k=s \} \text{ for every } s \in S^a_{\sigma|k},$$

(4.2)
$$I_a^{\sigma|k} \subseteq I_a^{\sigma|k+1} \quad \text{for } k = 0, 1,$$

Since a(k+1) > 1/2, we also have

(4.3)
$$\bigcap \{I_t : t \in S^a_{\sigma|k+1} \text{ and } t|k=s\} \neq \emptyset \quad \text{for every } s \in S^a_{\sigma|k}.$$

It follows immediately from the definition that the bonding mappings $r_a^{\sigma|k+1}$ are retractions; thus we can assume that

(4.4)
$$I_a^{\sigma|k} \subseteq I_a^{\sigma} \quad \text{for } k = 0, 1, \dots$$

From the definition it also follows that

(4.5)
$$r_a^{\sigma|k+1}(I_s) = I'_s \subseteq I_{s|k} \quad \text{for every } s \in S^a_{\sigma|k+1}$$

For k = 0, 1, ..., there exists a metric $\rho_{\sigma,k}^a$ on $I_a^{\sigma|k}$ with the property that (4.6) diam $_{\rho_{\sigma,k}^a} r_a^{\sigma|m} \circ r_a^{\sigma|m-1} \circ ... \circ r_a^{\sigma|k+1}(I_s)$

$$\leq \Big(\prod_{l=k+1}^m a(l)\Big) \operatorname{diam}_{\varrho^a_{\sigma,k}} I_a^{\sigma|k} \quad \text{ for any } m > k \text{ and } s \in S^a_{\sigma|m}$$

The metrics $\varrho_{\sigma,k}^a$ can be defined by induction in the following way: $\varrho_{\sigma,0}^a$ is the standard Euclidean metric on $I_a^{\sigma|0} = I^{\sigma(0)}$, and $\varrho_{\sigma,k+1}^a$ is the restriction to $I_a^{\sigma|k+1}$ of the Cartesian product metric of $I_a^{\sigma|k} \times \mathbb{P}\{Q_s : s \in S_{\sigma|k+1}^a\}$, where $I_a^{\sigma|k}$ is equipped with the metric $\varrho_{\sigma|k}^a$ and every Q_s is equipped with the standard Euclidean metric.

We now prove that for each increasing sequence σ of natural numbers, Ind $I_a^{\sigma} = \omega_0$.

Since $I_a^{\sigma|k}$, and hence I_a^{σ} , contains a $\sigma(k)$ -dimensional cube and $\sigma(k) \to \infty$ as $k \to \infty$, we have Ind $I_a^{\sigma} \ge \omega_0$.

The opposite inequality follows from Theorem 3.2 applied to $M_k = I_a^{\sigma|k}$ for $k \in \mathbb{N}$; we take $\{I_s : s \in S_{\sigma|k}^a\}$ for \mathcal{A}_k . It is clear that (3.5) is satisfied; (3.6) follows from (4.5), and (3.7) follows from (4.6) and the equality $\prod_{k=1}^{\infty} a(k) = 0$.

5. Every space X with $\operatorname{Ind} X \leq \omega_0$ is embeddable in some I_a^{σ} . Let $a = (a(k))_{k=1}^{\infty}$ be an arbitrary sequence of real numbers such that 1/2 < a(k) < 1 for each $k \in \mathbb{N}$ and $\prod_{k=1}^{\infty} a(k) = 0$.

5.1. THEOREM. Every compact metrizable space X with $\operatorname{Ind} X \leq \omega_0$ is embeddable in I_a^{σ} for some increasing sequence σ of natural numbers.

Proof. Fix a metric on X. We shall define inductively an increasing sequence $\sigma = (\sigma(k))_{k=0}^{\infty}$ of natural numbers and a sequence $(h_k)_{k=0}^{\infty}$ of mappings, where $h_k : X \to I_a^{\sigma|k}$, such that

$$(5.1)_k r_a^{\sigma|k} \circ h_k = h_{k-1}$$

for every k > 0 and

$$(5.2)_k$$
 h_k is a $1/(k+1)$ -mapping.

Simultaneously, we shall define families $\{G_s : s \in S^a_{\sigma|k+1}\}$ of pairwise disjoint open subsets of X (for the definition of $S^a_{\sigma|k+1}$, see Section 4) satisfying the following conditions:

$$(5.3)_k h_k(G_s) \subseteq I'_s for every \ s \in S^a_{\sigma|k+1},$$

$$(5.4)_k h_k | X - \bigcup \{G_s : s \in S^a_{\sigma|k+1}\} \text{ is an embedding.}$$

By Lemma 2.1, there exist an $m \in \mathbb{N}$ and a 1-mapping $g_0 : X \to I^m$. Since Ind $X \leq \omega_0$, there exists a finite-dimensional partition L_i in X between

$$E_0^i = g_0^{-1}(\{(z_1, \dots, z_m) \in I^m : z_i \le 1 - a(1)\})$$

and

$$E_{1-a(1)}^{i} = g_0^{-1}(\{(z_1, \dots, z_m) \in I^m : z_i \ge a(1)\}),$$

for i = 1, ..., m; let G_0^i and $G_{1-a(1)}^i$ be disjoint open subsets of X such that

$$E_0^i \subseteq G_0^i, \quad E_{1-a(1)}^i \subseteq G_{1-a(1)}^i, \quad \text{and} \quad X - L_i = G_0^i \cup G_{1-a(1)}^i$$

Let

$$\sigma(0) = \max\{2(\operatorname{Ind} L_i) + 1 : i = 1, \dots, m\} + m$$

Consider a mapping $f_0: X \to I^{\sigma(0)-m}$ such that $f_0 | \bigcup_{i=1}^m L_i$ is an embedding and

$$f_0(X) \subseteq \{ (z_{m+1}, z_{m+2}, \dots, z_{\sigma(0)}) \in I^{\sigma(0)-m} : \\ z_i \leq a(1) \text{ for } i = m+1, m+2, \dots, \sigma(0) \}$$

and set $h_0 = g_0 \vartriangle f_0$; obviously, $h_0 : X \to I^{\sigma(0)} = I_a^{\sigma(0)}$. The family $\{G_s : s \in S_{\sigma|1}^a\}$ is defined by letting

$$G_s = G_{\gamma(1)}^1 \cap G_{\gamma(2)}^2 \cap \ldots \cap G_{\gamma(m)}^m$$

for $s = \gamma = (\gamma(i))_{i=0}^{\sigma(0)} \in S^a_{\sigma|1}$ such that $\gamma(i) = 0$ for i > m, and $G_s = \emptyset$ for other $s \in S^a_{\sigma|1}$; observe that this family consists of pairwise disjoint open subsets of X.

It is a simple matter to verify that conditions $(5.2)_k - (5.4)_k$ are satisfied.

Assume that the numbers $\sigma(0) < \sigma(1) < \ldots < \sigma(k)$, the mappings h_k , and the families $\{G_s : s \in S^a_{\sigma|k+1}\}$ of pairwise disjoint subsets of X are defined and satisfy $(5.1)_k$.

Fix an $s \in S^a_{\sigma|k+1}$. The set $I'_s \subseteq I^{\sigma|k}_a$ is closed, and so $h_k(\operatorname{cl} G_s) \subseteq I'_s$ by $(5.3)_k$. Since the sets G_s are open and pairwise disjoint, bd $G_s \subseteq X - \bigcup \{G_t : t \in S^a_{\sigma|k+1}\}$. Hence, by $(5.4)_k$, $h_k|\operatorname{bd} G_s$ is an embedding of bd G_s in I'_s .

By Lemma 2.1 applied to the space $\operatorname{cl} G_s$ and to its closed subset $\operatorname{bd} G_s$, there exist a natural number $m > \operatorname{Ind} I'_s = \sigma(k)$ and a mapping $g_s : \operatorname{cl} G_s \to I^{m-\sigma(k)}$ such that

(5.5)
$$(h_k | \operatorname{cl} G_s) \bigtriangleup g_s \text{ is a } 1/(k+2) \text{-mapping},$$

(5.6)
$$((h_k | \operatorname{cl} G_s) \vartriangle g_s)^{-1} (I'_s \times \{(0, \dots, 0)\}) = \operatorname{bd} G_s$$

Since $S^a_{\sigma|k+1}$ is finite, one can assume that m does not depend on s. Let

$$E_{s,0}^{i} = \left((h_{k} | \mathrm{cl} \, G_{s}) \, \Delta \, g_{s} \right)^{-1} \left(\left\{ (z_{1}, \dots, z_{m}) \in I_{s}' \times I^{m-\sigma(k)} : z_{i} \leq 1 - a(k+2) \right\} \right),$$

$$E_{s,1-a(k+2)}^{i}$$

$$\left((l_{s}+1) \in G_{s} \right) = 1 \left(\left\{ (z_{1}, \dots, z_{m}) \in I_{s}' \times I^{m-\sigma(k)} : z_{i} \leq 1 - a(k+2) \right\} \right),$$

$$= ((h_k | cl G_s) \Delta g_s)^{-1} (\{(z_1, \dots, z_m) \in I'_s \times I^{m-\sigma(k)} : z_i \ge a(k+2)\}).$$

Since Ind $\operatorname{cl} G_s \leq \operatorname{Ind} X \leq \omega_0$, there exists a finite-dimensional partition L_s^i in the space $\operatorname{cl} G_s$ between $E_{s,0}^i$ and $E_{s,1-a(k+2)}^i$; let $G_{s,0}^i$ and $G_{s,1-a(k+2)}^i$ be disjoint open subsets of $\operatorname{cl} G_s$ such that $E_{s,0}^i \subseteq G_{s,0}^i$, $E_{s,1-a(k+2)}^i \subseteq G_{s,1-a(k+2)}^i$, and $\operatorname{cl} G_s - L_s^i = G_{s,0}^i \cup G_{s,1-a(k+2)}^i$.

Set $\sigma(k+1) = \max\{2(\operatorname{Ind} L_s^i) + 2 : i = 1, \dots, m \text{ and } s \in S_{\sigma|k+1}^a\} + m.$

By Lemma 2.2 applied to the space cl G_s and its closed subsets $A = \operatorname{bd} G_s$ and $B = \bigcup_{i=1}^m L_s^i$, there exists a mapping $f_s : \operatorname{cl} G_s \to I^{\sigma(k+1)-m}$ such that

(5.7)
$$f_s \bigg| \bigcup_{i=1}^{m} L_s^i - \operatorname{bd} G_s \text{ is an embedding} \bigg|$$

(5.8)
$$f_s^{-1}((0,\ldots,0)) = \operatorname{bd} G_s;$$

obviously, one can additionally assume that

(5.9)
$$f_s(\operatorname{cl} G_s) \subseteq \{(z_{m+1}, z_{m+2}, \dots, z_{\sigma(k+1)}) \in I^{\sigma(k+1)-m} : z_i \leq a(k+2) \text{ for } i = m+1, m+2, \dots, \sigma(k+1)\}.$$

Let
$$h_s = (h_k | \operatorname{cl} G_s) \Delta g_s \Delta f_s$$
; then
 $h_s : \operatorname{cl} G_s \to I'_s \times I^{m-\sigma(k)} \times I^{\sigma(k+1)-m} = I'_s \times I^{\sigma(k+1)-\sigma(k)}$.

Identifying in the natural way $I'_s \times I^{\sigma(k+1)-\sigma(k)}$ and I_s , we can assume that I_s is the range of h_s .

By (5.6) and (5.8), we have $h_s(x) = h_k(x)$ for every $x \in \operatorname{bd} G_s$ and $s \in S^a_{\sigma|k+1}$; thus the mappings $h_s, s \in S^a_{\sigma|k+1}$, and $h_k|X - \bigcup \{G_s : s \in S^a_{\sigma|k+1}\}$ are

compatible. Denote by h_{k+1} the combination $(\nabla \{h_s : s \in S^a_{\sigma|k+1}\}) \nabla (h_k|X - \bigcup \{G_s : s \in S^a_{\sigma|k+1}\});$ obviously, $h_{k+1} : X \to I^{\sigma|k+1}_a$.

Since the sets $I_s - I'_s$ are pairwise disjoint, we have

(5.10) $h_{k+1}^{-1}(I_s - I'_s) = G_s \quad \text{for every } s \in S^a_{\sigma|k+1}$

(see (5.6) and (5.8)).

We now show that h_{k+1} satisfies $(5.1)_{k+1}$ and $(5.2)_{k+1}$.

From the definition of h_{k+1} it follows immediately that $h_{k+1}(x) = h_k(x)$ for $x \in X - \bigcup \{G_s : s \in S^a_{\sigma|k+1}\}$; since $r_a^{\sigma|k+1}$ is a retraction, $r_a^{\sigma|k+1}(h_{k+1}(x)) = h_k(x)$ for these points. On the other hand, if $x \in G_s$ for some $s \in S^a_{\sigma|k+1}$, then $r_a^{\sigma|k+1}(h_{k+1}(x)) = r_a^{\sigma|k+1}(h_s(x)) = r_a^{\sigma|k+1}(((h_k|c|G_s) \triangle g_s \triangle f_s)(x))) = (h_k|c|G_s)(x) = h_k(x)$. Thus we have shown that $(5.1)_{k+1}$ is satisfied.

In order to show $(5.2)_{k+1}$ take an arbitrary point $z \in I_a^{\sigma|k+1}$. If $z \in I_a^{\sigma|k} \subseteq I_a^{\sigma|k+1}$, then $h_{k+1}^{-1}(z) \subseteq X - \bigcup \{G_s : s \in S_{\sigma|k+1}^a\}$ by (5.10); since $h_k(x) = h_{k+1}(x)$ for every $x \in X - \bigcup \{G_s : s \in S_{\sigma|k+1}^a\}$, by $(5.2)_k$, $h_{k+1}^{-1}(z)$ is either empty or a one-point set. If $z \notin I_a^{\sigma|k}$, then $z \in I_s - I'_s$ for some $s \in S_{\sigma|k+1}^a$, and so $h_{k+1}^{-1}(z) \subseteq G_s$ by (5.10); thus

$$h_{k+1}^{-1}(z) = h_s^{-1}(z) = ((h_k | \operatorname{cl} G_s) \bigtriangleup g_s \bigtriangleup f_s)^{-1}(z),$$

and so diam $h_{k+1}^{-1}(z) \leq 1/(k+2)$ by (5.5). We have shown that $(5.2)_{k+1}$ is satisfied.

Define the family $\{G_t : t \in S^a_{\sigma|k+2}\}$ by letting

$$G_t = G_s \cap G^1_{s,\gamma(1)} \cap G^2_{s,\gamma(2)} \cap \ldots \cap G^m_{s,\gamma(m)}$$

for $t = (s, \gamma) \in S^a_{\sigma|k+2}$ such that $\gamma(i) = 0$ for $i = m+1, m+2, \ldots, \sigma(k+1)$, and $G_t = \emptyset$ for other $t \in S^a_{\sigma|k+2}$.

It is easily seen that the sets G_t are open, pairwise disjoint, and

(5.11)
$$X - \bigcup \{G_t : t \in S^a_{\sigma|k+2}\} = \left(X - \bigcup \{G_s : s \in S^a_{\sigma|k+1}\}\right)$$

 $\cup \bigcup \{L^i_s : i = 1, \dots, m \text{ and } s \in S^a_{\sigma|k+1}\}.$

We now show $(5.3)_{k+1}-(5.4)_{k+1}$. Take a $t = (s, \gamma) \in S^a_{\sigma|k+2}$. If $\gamma(i) = 1 - a(k+2)$ for some i > m, then $G_t = \emptyset$, and so $(5.3)_{k+1}$ is satisfied. Assume therefore that $\gamma(i) = 0$ for $i = m+1, m+2, \ldots, \sigma(k+1)$. Since $G^i_{s,\gamma(i)} \cap E^i_{s,1-a(k+2)-\gamma(i)} = \emptyset$ for $i = 1, \ldots, m$, we have

$$((h_k | \operatorname{cl} G_s) \vartriangle g_s)(G_t) \subseteq \{(z_1, \dots, z_n) \in I'_s \times I^{m-\sigma(k)} :$$

$$\gamma(i) \le z_i \le \gamma(i) + a(k+2) \text{ for } i = 1, \dots, m\};$$

hence, by (5.9),

$$h_{k+1}(G_t) = ((h_k | \operatorname{cl} G_s) \land g_s \land f_s)(G_t) \subseteq I'_t,$$

and therefore $(5.3)_{k+1}$ is satisfied for every $s \in S^a_{\sigma|k+2}$.

In order to prove $(5.4)_{k+1}$ it suffices to show that $h_{k+1}|X - \bigcup \{G_s : s \in S^a_{\sigma|k+2}\}$ is 1-1. Put

$$C = X - \bigcup \{G_s : s \in S^a_{\sigma|k+1}\},$$

$$D = \left(\bigcup \{L^i_s : s \in S^a_{\sigma|k+1}, i = 1, \dots, m\}\right) \cap \left(\bigcup \{G_s : s \in S^a_{\sigma|k+1}\}\right);$$
where that $X = \bigcup \{G_s : t \in S^a_{\sigma|k+1}\}$ (see (5.11))

observe that $X - \bigcup \{G_t : t \in S^a_{\sigma|k+2}\} = C \cup D$ (see (5.11)).

Consider a pair of distinct points $x, y \in X - \bigcup \{G_t : t \in S^a_{\sigma|k+2}\}$. If one of them, say x, belongs to C, and the other to D, then $h_{k+1}(x) = h_k(x) \in I^{\sigma|k}_a$, whereas $h_{k+1}(y) \notin I^{\sigma|k}_a$ (see (5.10)); if $x, y \in C$, then $h_{k+1}(x) = h_k(x) \neq$ $h_k(y) = h_{k+1}(y)$ by (5.4)_k. If $x, y \in (\bigcup_{i=1}^m L^i_s) \cap G_s$ for some $s \in S^a_{\sigma|k+1}$, then $h_{k+1}(x) = h_s(x) \neq h_s(y) = h_{k+1}(y)$ by (5.7). If $x \in G_s$ and $y \in G_t$ for some distinct $s, t \in S^a_{\sigma|k+1}$, then $h_{k+1}(x) \in I_s - I'_s$ and $h_{k+1}(y) \in I_t - I'_t$ (see (5.10)); since $(I_s - I'_s) \cap (I_t - I'_t) = \emptyset$, we have $h_{k+1}(x) \neq h_{k+1}(y)$. Thus (5.4)_{k+1} is satisfied.

The inductive construction of the mappings h_0, h_1, \ldots is complete.

Since the sequence $(h_k)_{k=0}^{\infty}$ satisfies $(5.1)_k$ for $k = 1, 2, \ldots$, it determines a mapping $h: X \to I_a^{\sigma}$; from $(5.2)_k$, $k = 0, 1, \ldots$, it follows that h is 1-1, and so it is a homeomorphic embedding by compactness of X.

5.2. COROLLARY. For every sequence $a = (a(k))_{k=1}^{\infty}$ such that 1/2 < a(k) < 1 for each $k \in \mathbb{N}$ and $\prod_{k=1}^{\infty} a(k) = 0$ the family $\{I_a^{\sigma} : \sigma \text{ is an increasing sequence of natural numbers}\}$ is universal in the class of all compact metrizable spaces X with $\operatorname{Ind} X = \omega_0$.

6. Cardinalities of universal families. Denote by \mathcal{D} the class of all compact metrizable spaces X with ind $X = \omega_0$; let

 $\mathfrak{m} = \min\{|\mathcal{A}| : \mathcal{A} \text{ is a universal family in } \mathcal{D}\}.$

In this section we show that

(6.1)

$$\mathfrak{m}=\mathfrak{d}$$
 .

The proof will be preceded by two lemmas. We denote by st(Y) the star of a set $Y \subseteq I_a^{\sigma|j}$ with respect to the covering $\{I_t : t \in S_{\sigma|j}^a\}$, that is,

$$\operatorname{st}(Y) = \bigcup \{ I_t : t \in S^a_{\sigma|j} \text{ and } Y \cap I_t \neq \emptyset \}.$$

6.1. LEMMA. Let j be a natural number, and let A be a subspace of I_a^{σ} . If the image of A under the projection of I_a^{σ} onto $I_a^{\sigma|j}$ is not contained in any st(I_s), where $s \in S^a_{\sigma|j}$, then for some $x, y \in A$, there exists an at most $\sigma(j)$ -dimensional partition in A between x and y.

Proof. Denote by A_j the image of A under the projection of I_a^{σ} onto $I_a^{\sigma|j}$. Since $A \neq \emptyset$ and $I_a^{\sigma|j} = \bigcup \{I_s : s \in S_{\sigma|j}^a\}$, it follows that $A_j \cap I_s \neq \emptyset$ for some $s \in S_{\sigma|j}^a$; take an $x \in A$ whose image under the above projection—to be denoted by x_j —belongs to I_s . By assumption, there exists a $y \in A$ whose image, say y_j , belongs to $I_a^{\sigma|j} - \operatorname{st}(I_s)$. Let

$$U_j = I_a^{\sigma|j} - \bigcup \{ I_t : t \in S_{\sigma|j}^a \text{ and } I_t \cap I_s = \emptyset \},\$$

$$V_j = I_a^{\sigma|j} - \operatorname{st}(I_s) \quad \text{and} \quad L_j = I_a^{\sigma|j} - (U_j \cup V_j)$$

The sets U_j and V_j are open, and $x_j \in U_j, y_j \in V_j$; hence L_j is a partition in $I_a^{\sigma|j}$ between x_j and y_j . Of course,

Ind
$$L_j \leq \text{Ind } I_a^{\sigma|j} \leq \sigma(j)$$

From the definitions it follows immediately that none of the sets I_t , where $t \in S^a_{\sigma|j}$, intersects U_j and V_j simultaneously.

Set

$$\begin{aligned} \mathcal{U}_k &= \left\{ I_t : t \in S^a_{\sigma|k} \text{ and } I_{t|j} \cap I_s \neq \emptyset \right\}, \\ \mathcal{V}_k &= \left\{ I_t : t \in S^a_{\sigma|k} \text{ and } I_{t|j} \cap I_s = \emptyset \right\} \quad \text{ for } k \ge j\,, \end{aligned}$$

and

$$U_k = \left(\bigcup \mathcal{U}_k\right) - L_j, \quad V_k = \left(\bigcup \mathcal{V}_k\right) - L_j, \text{ and } L_k = L_j \text{ for } k > j.$$

A reasoning similar to that in the proof of Theorem 3.2 shows that the sets U_k, V_k, L_k satisfy the assumptions of Lemma 3.1 for $n = \text{Ind } L_j \leq \sigma(j)$; therefore there exists an at most $\sigma(j)$ -dimensional partition L in I_a^{σ} between x and y.

The set $A \cap L$ is a partition in A between x and y, and $\operatorname{Ind}(A \cap L) \leq \operatorname{Ind} L \leq \sigma(j)$.

From now on, we will only be concerned with sequences $a = (a(k))_{k=1}^{\infty}$ which additionally satisfy the following condition:

$$(*) \qquad \qquad \prod_{k=1}^{\infty} 2a(k) < \infty$$

(see the beginning of Section 4).

6.2. LEMMA. Let σ and τ be increasing sequences of natural numbers; let $n_k = \min\{i = 0, 1, \ldots : \tau(k) \leq \sigma(k+i)\}$ for $k \in \mathbb{N}$. Then I_a^{τ} is embeddable in I_a^{σ} if and only if the sequence $(n_k)_{k=1}^{\infty}$ is bounded.

Proof. Assume that there exists an $n \in \mathbb{N}$ such that $n_k \leq n$ for every k. Define σ_n by letting

$$\sigma_n(k) = \sigma(k+n) \quad \text{for } k = 0, 1, \dots;$$

then $\tau(k) \leq \sigma_n(k)$ for every k.

From the definitions of I_a^{τ} , $I_a^{\sigma_n}$, and I_a^{σ} (see Section 4) it follows that I_a^{τ} is embeddable in $I_a^{\sigma_n}$, and for every $s \in S_{\tau|n}^a$, $I_a^{\sigma_n}$ is homeomorphic to the subspace of I_a^{σ} consisting of all points which are mapped into $\bigcup \{I_t : t \in S_{\sigma|i}^a$ and $t|n = s\}$ under the projection of I_a^{σ} onto $I_a^{\sigma|i}$ for $i \ge n$. Thus I_a^{τ} is embeddable in I_a^{σ} .

Suppose now, on the contrary, that there exists an embedding $h: I_a^{\tau} \to I_a^{\sigma}$ and the sequence $(n_k)_{k=1}^{\infty}$ is not bounded.

Fix an $m \in \{0, 1, \ldots\}$; let $\varrho = \varrho_{\sigma,m}^a$ be a metric on $I_a^{\sigma|m}$ satisfying (4.6). Take k > m + 2 and $s \in S_{\tau|k}^a$. Since $h(I_s)$ is a $\tau(k)$ -dimensional cube, the dimension of every partition in $h(I_s)$ is not less than $\tau(k) - 1$.

By Lemma 6.1 and the inequality $\sigma(k + n_k - 2) < \tau(k) - 1$, the image of $h(I_s)$ under the projection of I_a^{σ} onto $I_a^{\sigma|k+n_k-2}$ is contained in $\operatorname{st}(I_t)$ for some $t \in S^a_{\sigma|k+n_k-2}$; thus the diameter of the image of $h(I_s)$ under the projection of I_a^{σ} onto $I_a^{\sigma|m}$ is not greater than

$$3 \cdot \left(\prod_{i=m+1}^{k+n_k-2} a(i)\right) \cdot \operatorname{diam}_{\varrho} I_a^{\sigma|m}$$

(see (4.6)). Since the above estimate holds for every $s \in S^a_{\tau|k}$, we conclude, by (4.1) and (4.3), that the diameter of every $h(I_t)$, where $t \in S^a_{\tau|k-1}$, under the projection of I^{σ}_a onto $I^{\sigma|m}_a$ is not greater than

$$3 \cdot 2 \cdot \left(\prod_{i=m+1}^{k+n_k-2} a(i)\right) \cdot \operatorname{diam}_{\varrho} I_a^{\sigma|m}$$

We continue in this fashion to deduce that the diameter of the image of $h(I_a^{\tau|0}) = h(I_s)$, where s is the unique element of $S^a_{\tau|0}$, under the projection of I_a^{σ} onto $I_a^{\sigma|m}$ is not greater than

$$3 \cdot 2^k \cdot \left(\prod_{i=m+1}^{k+n_k-2} a(i)\right) \cdot \operatorname{diam}_{\varrho} I_a^{\sigma|m} = 3 \cdot 2^{m-n_k+2} \cdot \prod_{i=m+1}^{k+n_k-2} 2a(i)$$
$$\leq 3 \cdot 2^{m-n_k+2} \cdot \prod_{i=1}^{\infty} 2a(i) \,.$$

Since $\prod_{i=1}^{\infty} 2a(i) < \infty$ (see (*)) and $(n_k)_{k=1}^{\infty}$ is not bounded, the image of $h(I_a^{\tau|0})$ under the projection of I_a^{σ} to $I_a^{\sigma|m}$ has to be a one-point set.

As m is an arbitrary natural number we conclude that $h(I_a^{\tau|0})$ is also a one-point set, which contradicts the assumption that h is an embedding.

We can now prove (6.1). Let $D \subseteq \mathbb{N}^{\omega_0}$ be a dominating set of cardinality \mathfrak{d} ; obviously, we can assume that each element of D is an increasing sequence. Set $\mathcal{A} = \{I_a^{\sigma} : \sigma \in D\}$. In order to prove $\mathfrak{m} \leq \mathfrak{d}$, it suffices to show that

(6.2)
$$\mathcal{A}$$
 is a universal family in \mathcal{D} .

In Section 4, we have shown that for every increasing sequence σ of natural numbers, I_a^{σ} is a compact metrizable space with $\operatorname{ind} I_a^{\sigma} = \omega_0$, and so I_a^{σ} belongs to \mathcal{D} . If X is a compact metrizable space with $\operatorname{ind} X \leq \omega_0$, then, by Theorem 5.1, X is embeddable in I_a^{σ} for some increasing sequence $\sigma \in \mathbb{N}^{\omega_0}$. Take $\tau \in D$ such that $\sigma \leq^* \tau$; then there exists an $n \in \{0, 1, \ldots\}$ such that $\sigma(k) \leq \tau(k)$ for $k \geq n$ (see Section 1, the definition of \leq^*). Since $\sigma(k) \leq \sigma(k+n) \leq \tau(k+n)$ for $k = 0, 1, \ldots, I_a^{\sigma}$ is embeddable in I_a^{τ} by Lemma 6.2, and so X is embeddable in I_a^{τ} . The proof of (6.2) is complete.

Consider now a family \mathcal{A} of cardinality \mathfrak{m} universal in the class \mathcal{D} ; by Theorem 5.1, we can assume that \mathcal{A} consists of the spaces I_a^{σ} , where astands for a sequence with property (*). For every σ such that $I_a^{\sigma} \in \mathcal{A}$ and $n = 0, 1, \ldots$, define the sequence σ_n by letting

$$\sigma_n(k) = \sigma(n+k) \quad \text{for } k = 0, 1, \dots,$$

and put

$$D = \{\sigma_n : I_a^\sigma \in \mathcal{A} \text{ and } n = 0, 1, \ldots\}.$$

In order to prove $\mathfrak{d} \leq \mathfrak{m}$, it suffices to show that D is a dominating sequence.

Let $\tau \in \mathbb{N}^{\omega_0}$ be an arbitrary sequence. Take an increasing sequence $\theta \in \mathbb{N}^{\omega_0}$ such that $\tau(k) \leq \theta(k)$ for every $k = 0, 1, \ldots$ The space I_a^{θ} is embeddable in some $I_a^{\sigma} \in \mathcal{A}$; thus by Lemma 6.2, there exists a natural number n such that $\theta(k) \leq \sigma(n+k)$ for every k. Hence

$$\tau(k) \le \theta(k) \le \sigma(n+k) = \sigma_n(k) \quad \text{for } k = 0, 1, \dots,$$

which completes the proof.

From (6.1) it follows that $\aleph_0 < \mathfrak{m} \leq \mathfrak{c}$ (see Section 1); however, the inequalities $\aleph_0 < \mathfrak{m}$ and $\mathfrak{m} \leq \mathfrak{c}$ can be proved in a more direct way.

Indeed, since the cardinality of the family of all closed subspaces of the Hilbert cube is \mathfrak{c} , we have $\mathfrak{m} \leq \mathfrak{c}$.

On the other hand, the existence of a countable universal family \mathcal{A} in the class \mathcal{D} would contradict Theorem 5.1 of [8]. Namely, the one-point compactification of the sum of topological spaces $\bigoplus \mathcal{A}$ would be a universal space for compact metrizable spaces X with ind $X \leq \omega_0$.

References

- [1] E. K. van Douwen, *The Integers and Topology*, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, 1984, 111–167.
- [2] R. Engelking, *Dimension Theory*, PWN, Warszawa, 1978.
- [3] —, Transfinite dimension, in: Surveys in General Topology, G. M. Reed (ed.), Academic Press, 1980, 131–161.
- [4] —, General Topology, Heldermann, Berlin, 1989.
- [5] L. A. Luxemburg, On transfinite inductive dimensions, Dokl. Akad. Nauk SSSR 209 (1973), 295-298 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 388-393.
- [6] —, On compactifications of metric spaces with transfinite dimensions, Pacific J. Math. 101 (1982), 399–450.
- W. Olszewski, Universal spaces for locally finite-dimensional and strongly countable-dimensional metrizable spaces, Fund. Math. 135 (1990), 97–109.
- [8] —, Universal spaces in the theory of transfinite dimension, I, ibid. 144 (1994), 243–258.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF WARSAW BANACHA 2 02-097 WARSZAWA, POLAND

> Received 24 February 1993; in revised form 24 June 1993