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An axiomatic theory of non-absolutely convergent
integrals in Rn

by

W. B. J u r k a t and D. J. F. N o n n e n m a c h e r (Ulm)

Abstract. We introduce an axiomatic approach to the theory of non-absolutely con-
vergent integrals. The definition of our ν-integral will be descriptive and depends mainly
on characteristic null conditions. By specializing our concepts we will later obtain concrete
theories of integration with natural properties and very general versions of the divergence
theorem.

Introduction. Suppose that F : R→ R is differentiable everywhere and
that we seek an integration process which integrates f = F ′ always to the
expected value. Since not all derivatives are absolutely integrable we need an
extension of Lebesgue integration. Denjoy (1912, 1916, 1917) was the first
to solve this problem by a transfinite construction. Lusin (1912, 1916, 1917)
gave a much simpler descriptive definition by characterizing the associated
interval function F (b) − F (a). Directly constructive definitions in terms of
Riemann sums (involving f) were given much later by Kurzweil (1957) and
Henstock (1961). A partially constructive definition (involving major and
minor (interval) functions) was given by Perron (1914).

Similar results for dimension n > 1 seem much desirable. Here one would,
e.g., consider an n-dimensional vector field ~v which is differentiable every-
where on Rn and the integral

∫
A

div~v over reasonable sets A, not just in-
tervals. We look for an integration process which expresses this integral
(without further assumptions) in terms of ~v on ∂A in the expected way.
Today there are essentially three lines of thought to achieve this goal.

In the papers by Jarńık–Kurzweil [Jar-Ku 1–3], directly constructive def-
initions (in terms of Riemann sums) are given for a certain PU-integral (par-
tition of unity). In dimension n = 2 the sets A considered are bounded by
piecewise C1 Jordan curves, while A = Rn for general n, with certain excep-
tional points allowed where differentiability is replaced by weaker conditions.
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The papers by Pfeffer [Pf 1–3] and Pfeffer–Yang [Pf-Ya] begin with a
partially constructive definition of a variational integral (which can also be
characterized, cf. [Pf 3]) and then extend it by transfinite induction. Pfeffer
treats sets A ∈ BV (for instance compact sets with |∂A|n−1 < ∞, cf. [Ju])
and allows general (n − 1)-dimensional exceptional sets, where ~v is only
continuous or bounded.

Finally, Jurkat [Ju] uses Riemann sums restricted by various control con-
ditions. Here the basic tool is a decomposition theorem and the resulting
divergence theorem is essentially the same as Pfeffer’s. The method of con-
trol conditions is very flexible and was extended by Nonnenmacher [No]
now allowing further exceptional points in the divergence theorem, where ~v
satisfies only Lipschitz conditions of non-negative orders.

In the meantime we have extended the method still further so that now
also Lipschitz conditions of negative orders > 1− n can be treated. In fact,
based on Jurkat’s decomposition theorem, there is a great variety of integrals
which could be used and lead to “concrete” theories. So it was natural to look
for common underlying ideas, and this led to the axiomatic theory which we
present in this paper. It will be useful to explain some of the general ideas:

A constructive definition associates with a point function f a number,
its integral

∫
f , while a descriptive definition associates with f an additive

set function F whose derivative Ḟ (e.g., the ordinary derivative in the sense
of [Saks]) equals f almost everywhere. Here one needs further restrictions
on F such that f = 0 implies F = 0 (uniqueness). Ideally, we look for
directly constructive definitions (with Riemann sums) which are equivalent
to such a descriptive definition. In our concrete theories this equivalence
can be established, and we found that certain null conditions, formulated in
terms of control conditions, express the relevant properties of F .

This occurred first in Jurkat–Knizia [Ju-Kn], also in Nonnenmacher [No],
and again in Pfeffer [Pf 3].

Another problem with non-absolutely convergent integrals is the additiv-
ity, which is lacking for instance in Mawhin [Maw], Jurkat–Knizia [Ju-Kn],
and also for Pfeffer’s variational integral [Pf 2, Prop. 5.7 and Ex. 5.21], which
is only partially additive. The following general principle may help. Suppose
we have a concept of integrability and integral for functions f : Rn → R,
which is linear and such that fχB is also integrable for a certain class B of
sets B (χB being the characteristic function of B). Then we can define

∫
A
f

by
∫
fχA provided that fχA is integrable (A arbitrary). If A is the disjoint

union of B1 and B2 in B we see from fχA = fχB1 +fχB2 (fχBi = fχA ·χBi)
that f is integrable over A iff f is integrable over B1 and B2; moreover, in
that case ∫

A

f =
∫
B1

f +
∫
B2

f.
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Our present paper is organized as follows. In Section 0 we explain that
our abstract process of integration depends on the concepts of “reasonable”
sets, of differentiability, and of control conditions. The fundamental defini-
tions (and axioms) are given in Sections 1–3. The relevant properties of our
ν-integral (ν refers to the null conditions) are proved in Sections 4 and 5
(e.g., it is an extension of the Lebesgue integral). In Section 6 we give our
version of the Saks–Henstock lemma which will be used in our concrete the-
ories to show the equivalence of the constructive and descriptive definitions.
We also have a transformation formula based on an additional axiom (Sec-
tion 7). Specializing our concepts and results we obtain mainly two concrete
theories, which will be published later.

0. Preliminaries. N, R and R+ are the sets of all positive integers,
all real numbers and all positive real numbers, respectively, and n ∈ N is
assumed to be fixed throughout the paper. In Rn we work with the usual
inner product x · y =

∑n
i=1 xiyi and the associated norm ‖ · ‖. If A ⊆ Rn

and x ∈ Rn, then A◦, A, ∂A, d(A) and dist(x,A) denote respectively the
interior, closure, boundary, diameter of A and the distance from the point
x to the set A. For x ∈ Rn and r > 0 let B(x, r) = {y ∈ Rn : ‖y − x‖ ≤ r}.
P(Rn) denotes the power set of Rn; the complement of A ⊂ Rn, i.e. the set
Rn −A, is sometimes denoted by Ac.

In Rn we use the n-dimensional outer Lebesgue measure |·|n, and a subset
E of Rn with |E|n = 0 is called an n-null set or just a null set . Terms like
measurable and almost everywhere (a.e.) always refer to the measure | · |n.

Throughout, an interval is assumed to be compact and non-degenerate.
Now we like to explain in general terms the underlying structure we

need to define our process of integration. Our descriptive integral will be
an additive set function defined on a class B of sets. This function shall be
differentiable a.e.; so we need a differentiation class, that is, a system of
sets from B which is used in forming the set derivative. Thinking of Vitali
regularity, which is controlled by a parameterK > 0, our differentiation class
will also depend upon K and will be denoted by D(K). Most important will
be the formulation of our null conditions which require

∑
|F (Ak)| ≤ ε (small),

provided that the sets Ak ∈ B are suitably restricted (depending on ε > 0).
These restrictions are formulated in terms of control conditions. We could
require, for instance (as in AC), that

∣∣∣
⋃
Ak

∣∣∣
n
≤ ∆ (small)

with ∆ = ∆(ε) > 0 or that certain regularity parameters K > 0 be bounded.
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In general, our control conditions will depend on two parameters, K
and ∆, and define (purely geometrically) the finite sequences {Ak} which
are admitted. Thus with a control condition C there will be associated the
classes C(K,∆) of such sequences {Ak}, and each control condition will
define a corresponding null condition. In order to prove uniqueness, i.e.
F (A) = 0 for A ∈ B, we will decompose A into finitely many parts Ak. Some
of them will make a small contribution because Ḟ is zero there, and others
because of a corresponding null condition. So it will be important that there
exist decompositions where the parts can be grouped so that they satisfy our
control conditions, and we will use two types of control conditions (see our
decomposition axiom). We will have a system Γ̇ of control conditions which
we use on the “regular” parts of the decomposition and another system Γ for
the remaining parts. All resulting null conditions will represent a weakening
of AC.

In total we will have a quadruple ν = (B,D, Γ̇ , Γ ), and our process of
integration will only depend on ν.

1. Semi-rings, differentiation sets and control conditions. In the
following we will give some basic definitions and our assumptions on B, D,
Γ̇ and Γ .

We suppose that B is a system of subsets of Rn containing all intervals
and such that

(i) B is compact and |∂B|n = 0 for all B ∈ B.
(ii) If A,B ∈ B then A∩B ∈ B and A−B◦ =

⋃
Ak, a finite union with

all Ak ∈ B having disjoint interiors.

We call B a semi-ring (cf. [Weir, p. 86]).
For each K > 0 we have a differentiation class D(K) ⊆ B satisfying

d(B)n ≤ K|B|n for any B ∈ D(K), and we suppose that D(K1) ⊆ D(K2)
whenever K1 ≤ K2. Furthermore, we assume the existence of an absolute
constant K∗ = K∗(n) > 0 with the property that for all K ≥ K∗ any interval
I with d(I)n ≤ K|I|n belongs to D(K).
D associates with each positive K the differentiation class D(K).
A control condition C associates with any positive parameters K and ∆

a class C(K,∆) of finite sequences {Ak} with Ak ∈ B and has the following
properties:

(i) C(K,∆) is increasing in K and ∆, i.e. if K1 ≤ K2 and ∆1 ≤ ∆2

then C(K1,∆1) ⊆ C(K2,∆2).
(ii) If {Ak} ∈ C(K,∆) then every subsequence of {Ak} also belongs to

C(K,∆).

Furthermore, with C there is associated a system E(C) of subsets of Rn
such that E ∈ E(C) implies F ∈ E(C) for any F ⊆ E.
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Let E ⊆ Rn and δ : E → R+ be given. Then a finite sequence of pairs
{(xk, Ak)} with xk ∈ Ak ∈ B, A◦i∩A◦j = ∅ (i 6= j), xk ∈ E and d(Ak) < δ(xk)
is called (E, δ)-fine. If in addition E =

⋃
Ak we call {(xk, Ak)} a δ-fine

partition of E. [Later on the property of being (E, δ)-fine will often be
combined with some control condition C, where E ∈ E(C).]

R e m a r k 1.1. Let E ⊆ Rn be a null set and let f : E → R. Then for
any ε > 0 there exists a δ : E → R+ such that

∑ |f(xk)| |Ak|n ≤ ε for any
(E, δ)-fine sequence {(xk, Ak)}.

Indeed, fix ε > 0, let E =
⋃
j∈NEj with Ej = {x ∈ E : j−1 ≤ |f(x)| < j}

and find open sets Gj ⊇ Ej with |Gj |n ≤ ε/(j2j). For x ∈ Ej choose a
δ(x) > 0 such that B(x, δ(x)) ⊆ Gj , and let {(xk, Ak)} be an (E, δ)-fine
sequence. Then∑

|f(xk)| |Ak|n ≤
∑

j∈N

∑

xk∈Ej
j|Ak|n ≤

∑

j∈N
j
∣∣∣
⋃

xk∈Ej
Ak

∣∣∣
n
≤
∑

j∈N
j|Gj |n ≤ ε

as desired.
Here we used the fact that |⋃mi=1Ai|n =

∑m
i=1 |Ai|n for any A1, . . . , Am

∈ B having disjoint interiors, since |∂Ai|n = 0 for all i.

Comparison of control conditions. Let C1 and C2 be two control condi-
tions. We call C1 stronger than C2 (C1 � C2) if ∀K1 > 0 ∃K2 > 0 ∀∆2 > 0
∃∆1 > 0 ∃δ : Rn → R+ such that for any (Rn, δ)-fine sequence {(xk, Ak)},
if {Ak} ∈ C1(K1,∆1) then {Ak} ∈ C2(K2,∆2).

R e m a r k 1.2. An easy check shows that the relation � is reflexive and
transitive.

A system C of control conditions is said to be ordered if for any C1 and
C2 in C, either C1 � C2 or C2 � C1.

A control condition C∗ is said to be a minimal element of an ordered
system C of control conditions if C∗ ∈ C and C � C∗ for any C ∈ C.

We suppose Γ̇ to be an ordered system of control conditions having the
following properties:

(Γ̇1) For any C ∈ Γ̇ , K > 0, ∆ > 0 and each {Ak} ∈ C(K,∆) we have
Ak ∈ D(K) for all k.

(Γ̇2) For every null set E ⊆ Rn there is an element C ∈ Γ̇ with E ∈ E(C).

Finally, we assume Γ to be an ordered system of control conditions which
is disjoint from Γ̇ and contains a minimal element C∗ which satisfies the
following conditions:

(Γ1) ∂A ∈ E(C∗) for all A ∈ B.
(Γ2) For any ε > 0 and K > 0 there are ∆ > 0 and δ : Rn → R+ such

that |⋃Ak|n < ε for every (Rn, δ)-fine sequence {(xk, Ak)} with
{Ak} ∈ C∗(K,∆).
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Motivation. Condition (Γ1) will be important when we restrict our inte-
gral to sets A ∈ B (see Thm. II in Section 4) while by (Γ2) the null condition
corresponding to C∗ (see Section 3) will be a weakening of the classical abso-
lute continuity. This in connection with (Γ̇2) will be important to integrate
all Lebesgue integrable functions.

2. The axioms of decomposition and intersection and the de-
composition lemma. In order to guarantee satisfactory properties of the
integration process which will be induced by our quadruple ν = (B,D, Γ̇ , Γ )
we assume two further axioms.

A division of Rn consists of a set Ė and a sequence of pairs (Ei, Ci)i∈N,
where Ci ∈ Γ ∪ Γ̇ and the Ei are null sets in E(Ci) such that Rn is the
disjoint union of all the Ei and Ė.

Analogously for A ∈ B we call Ė, (Ei, Ci)i∈N a division of A if Ci ∈ Γ∪Γ̇ ,
Ei ∈ E(Ci), Ė ⊆ A◦ with |A− Ė|n = 0 and if A is the disjoint union of all
the Ei and Ė.

We first formulate the decomposition axiom which guarantees for each
interval I the existence of suitable partitions corresponding to arbitrary
divisions of the interval. In concrete situations the verification of this axiom
will be the crucial point.

Axiom 1 (decomposition). Let I be any interval in Rn and Ė, (Ei, Ci)i∈N
be any division of I. Then there shall exist positive numbers K∗ and K∗i such
that for any ∆i > 0 and δ : I → R+ there is a δ-fine partition {(xk, Ak)} of
I with the following properties:

• if xk ∈ Ė then Ak belongs to D(K∗),
• {Ak : xk ∈ Ei} ∈ Ci(K∗i , ∆i) for all i ∈ N.

Axiom 2 will be important when restricting the integral to A ∈ B; it
essentially states that if {Ak} belongs to a control condition of Γ then
{A ∩Ak} belongs to the same control condition.

Axiom 2 (intersection). For any C ∈ Γ , E ∈ E(C) and any A ∈ B the
following shall be true: ∀K1 > 0 ∃K2 > 0 ∀∆2 > 0 ∃∆1 > 0 ∃δ : E∩A→ R+

such that {A∩Ak} ∈ C(K2,∆2) for any (E ∩A, δ)-fine sequence {(xk, Ak)}
with {Ak} ∈ C(K1,∆1).

Both axioms together imply that each A ∈ B can be partitioned in a
certain way.

Decomposition Lemma. Let A ∈ B and Ė, (Ei, Ci)i∈N be a division of
A. Then there exist positive numbers K∗ and K∗i such that for any ∆i > 0
and δ : A→ R+ there is a δ-fine partition {(xk, Ak)} of A with the following
properties:
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(i) • if xk ∈ Ė then Ak ∈ D(K∗),
• {Ak : xk ∈ Ei} ∈ Ci(K∗i ,∆i) if Ci ∈ Γ ,
• {Ak : xk ∈ Ei ∩A◦} ∈ Ci(K∗i ,∆i) if Ci ∈ Γ̇ ,

(ii) {Ak : xk ∈ Ei ∩ ∂A} ∈ C∗(K∗i ,∆i) if Ci ∈ Γ̇ .

P r o o f. Choose an interval I with A ⊆ I◦. Then

Ė ∪ (I◦−A), (∂I, C∗), (Ei ∩A◦, Ci)Ci∈Γ̇ , (Ei ∩∂A,C∗)Ci∈Γ̇ , (Ei, Ci)Ci∈Γ

is a division of I and thus Axiom 1 yields positive numbersK∗, 1K∗i (Ci ∈ Γ̇ ),
2K∗i (Ci ∈ Γ̇ ) and 2K∗i (Ci ∈ Γ ).

The pair (∂I, C∗) will not be needed in the following and before we
complete the application of Axiom 1 we use Axiom 2 to determine the
relevant ∆’s and δ.

For 2K∗i choose K̃∗i > 0 by Axiom 2, set

K∗i =
{

max(1K∗i , K̃
∗
i ) if Ci ∈ Γ̇ ,

K̃∗i if Ci ∈ Γ ,

and let ∆i > 0 and δ : A→ R+ be given. Extend δ to I by δ(x) = dist(x,A)
for x ∈ I−A and assume (without loss of generality) δ(x) < dist(x,Rn−A◦)
if x ∈ A◦.

For ∆i > 0 choose, again by Axiom 2, ∆̃i > 0 and δi : Ei ∩ ∂A → R+

or δi : Ei → R+ depending on whether Ci ∈ Γ̇ or Ci ∈ Γ . Assuming
δ ≤ δi (i ∈ N) we can find by Axiom 1 (using ∆i and ∆̃i) a δ-fine partition
{(xk, Ik)} of I with the following properties: if xk ∈ Ė then Ik ∈ D(K∗);
{Ik : xk ∈ Ei ∩ A◦} ∈ Ci(1K∗i ,∆i) if Ci ∈ Γ̇ ; {Ik : xk ∈ Ei ∩ ∂A} ∈
C∗(2K∗i , ∆̃i) if Ci ∈ Γ̇ ; and {Ik : xk ∈ Ei} ∈ Ci(2K∗i , ∆̃i) if Ci ∈ Γ .

Now set Ak = A ∩ Ik if xk ∈ A. Then {(xk, Ak)} is a δ-fine partition of
A. Furthermore:

• if xk ∈ Ė (⊆ A◦) then Ak = Ik ∈ D(K∗),
• {Ak : xk ∈ Ei} ∈ Ci(K̃∗i , ∆i) for Ci ∈ Γ by Axiom 2 since {(xk, Ik) :

xk ∈ Ei} is an (Ei, δi)-fine sequence with {Ik} ∈ Ci(2K∗i , ∆̃i), and

• analogously {Ak : xk ∈ Ei ∩ ∂A} ∈ C∗(K̃∗i ,∆i) and {Ak : xk ∈
Ei ∩A◦} = {Ik : xk ∈ Ei ∩A◦} ∈ Ci(1K∗i ,∆i) for Ci ∈ Γ̇ .

Since all control conditions are non-decreasing in K the proof is com-
plete.

R e m a r k 2.1. If the control condition C∗ only depends on K we may re-
place (ii) of the lemma above by the condition {Ak : xk ∈ ∂A∩

⋃
Ci∈Γ̇ Ei} ∈

C∗(K∗). In the proof one only has to replace the sequence (Ei∩∂A,C∗)Ci∈Γ̇
by the pair (∂A ∩⋃Ci∈Γ̇ Ei, C∗).
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3. Set functions, null conditions and the ν-integral. By a set
function we mean a function F : B → R.

• We call F additive if F (A) =
∑
F (Ak) for any A ∈ B and every finite

sequence {Ak} with Ak ∈ B having disjoint interiors and A =
⋃
Ak. (It

follows that F (B) = 0 if |B|n = 0.)
• F is said to have compact support if there exists an interval I with

F (B) = 0 for every B ∈ B with B ⊆ Rn − I◦. Any such I is called an
interval of support .
• F is called differentiable at x ∈ Rn if there exists a real number α such

that for any ε > 0 and K > 0 there is a δ = δ(x) > 0 with

|F (B)− α|B|n| ≤ ε|B|n
for every B ∈ D(K) satisfying x ∈ B and d(B) < δ. In this case α is uniquely
determined and denoted by Ḟ (x).

R e m a r k 3.1. Let F : B → R be additive with compact support and let I
and Ĩ be two intervals of support. Then we can write I− Ĩ◦ =

⋃
Ak (a finite

union) with Ak ∈ B having disjoint interiors and because I = (I ∩ Ĩ)∪⋃Ak
it follows by additivity that F (I) = F (I ∩ Ĩ) +

∑
F (Ak) = F (I ∩ Ĩ) since

all Ak ⊂ Rn− Ĩ◦. Analogously we get F (Ĩ) = F (I ∩ Ĩ), giving F (I) = F (Ĩ).
In what follows, this unique number will be denoted by F (Rn).

Null conditions. Let F : B → R be a set function, C a control condition,
and E ⊆ Rn. Then we say that F satisfies the null condition corresponding
to C on E (for short, F satisfies N (C,E)) if ∀ε > 0, K > 0 ∃∆ > 0 ∃δ :
E → R+ such that

∑ |F (Ak)| ≤ ε for any (E, δ)-fine sequence {(xk, Ak)}
with {Ak} ∈ C(K,∆).

R e m a r k 3.2. (i) Let Ei (i = 1, . . . ,m) be disjoint sets, and E =
⋃m
i=1Ei.

Then F satisfies N (C,Ei) for all i iff F satisfies N (C,E).
For, if F satisfies N (C,Ei) for all i and if ε,K > 0 then we can find

∆i > 0 and δi : Ei → R+ such that
∑ |F (Ak)| ≤ ε/m for any (Ei, δi)-fine

sequence {(xk, Ak)} with {Ak} ∈ C(K,∆i). Set ∆ = min1≤i≤m∆i and
δ(x) = δi(x) if x ∈ Ei and let {(xk, Ak)} be an (E, δ)-fine sequence with
{Ak} ∈ C(K,∆). Then

∑
|F (Ak)| =

∑

i

∑

xk∈Ei
|F (Ak)| ≤

∑

i

ε/m = ε.

The other direction is obvious.
For countably many Ei the result still holds provided C does not depend

on ∆.

(ii) If F satisfies N (C,E), then F satisfies N (C ′, E) for any C ′ � C.
Indeed, let ε,K ′ > 0. Take a K > 0 witnessing C ′ � C. Then for ε,K
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choose ∆ > 0 and δ : E → R+ witnessing that F satisfies N (C,E) and
take ∆′ > 0 and δ′ : Rn → R+ again using C ′ � C. Assume δ′ ≤ δ on E
and let {(xk, Ak)} be an (E, δ′)-fine sequence with {Ak} ∈ C ′(K ′,∆′). Then
{Ak} ∈ C(K,∆) and therefore

∑ |F (Ak)| ≤ ε.
(iii) Let E ⊆ Rn be a null set and F be differentiable on E. Then for

any ε,K > 0 there exists a δ : E → R+ such that
∑ |F (Ak)| ≤ ε for any

(E, δ)-fine sequence {(xk, Ak)} with Ak ∈ D(K) for all k. In particular, F
satisfies N (C,E) for every C ∈ Γ̇ .

P r o o f. Choose an open set G ⊇ E with |G|n ≤ 1 and let ε,K > 0.
Then for every x ∈ E there is a δ(x) > 0 such that B(x, δ(x)) ⊆ G and
|F (B) − Ḟ (x)|B|n| ≤ ε|B|n/2 for any B ∈ D(K) with x ∈ B and d(B) <
δ(x). Furthermore, by Remark 1.1 (making δ smaller if necessary), we may
assume

∑ |Ḟ (xk)| |Ak|n ≤ ε/2 for any (E, δ)-fine sequence {(xk, Ak)}. Thus
given an (E, δ)-fine sequence {(xk, Ak)} with Ak ∈ D(K) for all k we get

∑
|F (Ak)| −

∑
|Ḟ (xk)| |Ak|n ≤

∑
|F (Ak)− Ḟ (xk)|Ak|n|

≤ ε

2

∑
|Ak|n ≤ ε

2
|G|n ≤ ε

2
and therefore

∑ |F (Ak)| ≤ ε.
(iv) If G : B → R is another set function and if c1 and c2 are real

numbers then c1F + c2G satisfies N (C,E) provided that both F and G
satisfy N (C,E).

An additive set function F : B → R is called a ν-integral if the following
two conditions are satisfied:

(1) There exists a division Ė, (Ei, Ci)i∈N of Rn such that F is differen-
tiable on Ė and satisfies N (Ci, Ei) for all i ∈ N, N (C∗, Ė), and N (C∗, Ei)
if Ci ∈ Γ̇ .

(2) There is an interval I with Ḟ = 0 a.e. on Ic.

(Here (2) reflects the fact that later on we will integrate functions f :
Rn → R having compact support.)

Let A ∈ B, B(A) = {B ∈ B : B ⊆ A}, F : B(A) → R (called a set
function on A), x ∈ A◦, C a control condition and E ⊆ A. Then it is
clear what it means that F is an additive set function on B(A) or that F is
differentiable at x or that F satisfies N (C,E) (just require all sets occurring
in the definitions given above to be in B(A)).

We call an additive set function F : B(A)→ R a ν-integral on A if there
exists a division Ė, (Ei, Ci)i∈N of A such that F is differentiable on Ė and
satisfies N (Ci, Ei) for all i ∈ N, N (C∗, Ė), and N (C∗, Ei) if Ci ∈ Γ̇ .

R e m a r k 3.3. Observe that for set functions on A the statements anal-
ogous to Remark 3.2 also hold true.
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4. Three basic theorems for the ν-integral. In this section we prove
three theorems which should be true in every reasonable theory of integra-
tion.

Theorem I shows that any linear combination of two ν-integrals is itself a
ν-integral while Theorem II establishes a relation between ν-integrals and ν-
integrals on A. Theorem III shows that a ν-integral F is uniquely determined
by its derivative Ḟ .

Theorem I (Linearity). Let F1 and F2 be two ν-integrals and let c1 and
c2 be real numbers. Then c1F1 + c2F2 is a ν-integral.

P r o o f. Denote by Ėj , (Eij , Cij)i∈N a division of Rn which corresponds
to Fj (j = 1, 2). Then we form a new division of Rn by taking Ė1 ∩ Ė2,
(Ė1 ∩ Ei2, Ci2)i∈N, (Ė2 ∩ Ei1, Ci1)i∈N, (Ei1 ∩ Ej2, C̃ij)i,j∈N, where

C̃ij =




Cj2 if Ci1 ∈ Γ̇ and Cj2 ∈ Γ ,
Ci1 if Ci1 ∈ Γ and Cj2 ∈ Γ̇ ,
Ci1 resp. Cj2 in all other cases in which Ci1�Cj2 resp. Cj2�Ci1.

(If there are two possibilities in the last case, the choice is arbitrary.)
Obviously F = c1F1+c2F2 is differentiable on Ė1∩Ė2 and by Remark 3.2,

F satisfies N (C∗, Ė1 ∩ Ė2).
Next consider (Ė1 ∩ Ei2, Ci2) (i ∈ N). Assuming first that Ci2 ∈ Γ we

know that Ci2 � C∗ and since F1 satisfies N (C∗, Ė1 ∩ Ei2) it also satisfies
N (Ci2, Ė1 ∩ Ei2) by Remark 3.2. Since the latter is also true for F2 we
conclude that it must be true for F . On the other hand, suppose Ci2 ∈
Γ̇ . Since F1 is differentiable on the null set Ė1 ∩ Ei2 we know again by
Remark 3.2 that F1 satisfies N (Ci2, Ė1 ∩ Ei2) and thus the same holds for
F . In addition, both F1 and F2 satisfy N (C∗, Ė1 ∩ Ei2) and therefore the
same is true for F .

Analogously one discusses the pairs (Ė2 ∩ Ei1, Ci1) for i ∈ N.
It remains to examine (Ei1 ∩ Ej2, C̃ij) for i, j ∈ N. If Ci1 ∈ Γ̇ and

Cj2 ∈ Γ then F1 satisfies N (C∗, Ei1 ∩ Ej2) since Ci1 ∈ Γ̇ and thus F1

satisfies N (Cj2, Ei1∩Ej2) and the same holds for F . Analogously F satisfies
N (C̃ij , Ei1 ∩Ej2) if Ci1 ∈ Γ and Cj2 ∈ Γ̇ . The remaining cases are obvious
since both Γ and Γ̇ are ordered, and thus F is indeed a ν-integral.

If A ∈ B and F : B → R is a set function we denote by F |A the restriction
of F to B(A).

Theorem II (Restriction and Extension). Let A ∈ B and F : B(A)→ R.

(1) If there exists a ν-integral F̃ : B → R with F̃ |A = F then F is a
ν-integral on A.
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(2) If F is a ν-integral on A then the set function F̃ : B → R defined by
F̃ (X) = F (A ∩X) (X ∈ B) is a ν-integral with F̃ |A = F .

P r o o f. (1) Denote by Ė, (Ei, Ci)i∈N a division of Rn which corresponds
to F̃ . Obviously Ė ∩A◦, (Ė ∩ ∂A,C∗), (Ei ∩A,Ci)i∈N is a suitable division
of A for F .

(2) F̃ is additive, ˙̃
F = 0 on Ac, and denote by Ė, (Ei, Ci)i∈N a division

of A corresponding to F . Then a division of Rn is given by
Ė ∪Ac, (Ei ∩A◦, Ci)Ci∈Γ̇ , (Ei ∩ ∂A,C∗)Ci∈Γ̇ , (Ei, Ci)Ci∈Γ .

Since Ė, Ei ∩A◦ ⊆ A◦ we see immediately that F̃ is differentiable on Ė

(with ˙̃
F = Ḟ ) and satisfies N (C∗, Ė ∪ Ac) as well as N (Ci, Ei ∩ A◦) and

N (C∗, Ei ∩A◦) for all i ∈ N with Ci ∈ Γ̇ .
Let us prove that F̃ satisfies N (Ci, Ei) for Ci ∈ Γ . For given ε,K > 0

find K̃ > 0 by Axiom 2 and then choose ∆̃ > 0 and δ̃ : Ei → R+ for ε and K̃
witnessing that F satisfies N (Ci, Ei). Again Axiom 2 gives ∆ > 0 and δ∗ :
Ei → R+. Set δ = min(δ̃, δ∗) and let {(xk, Ak)} be an (Ei, δ)-fine sequence
with {Ak} ∈ Ci(K,∆). Then {A ∩Ak} ∈ Ci(K̃, ∆̃) by Axiom 2 and thus∑

|F̃ (Ak)| =
∑
|F (A ∩Ak)| ≤ ε.

The proof that F̃ satisfies N (C∗, Ei ∩ ∂A) if Ci ∈ Γ̇ is the same (since
F satisfies N (C∗, Ei)), and therefore F̃ is indeed a ν-integral.

Theorem III (Positivity and Uniqueness). (1) Let A ∈ B and F :
B(A)→ R be a ν-integral on A with Ḟ ≥ 0 a.e. (on A◦). Then F (A) ≥ 0.

(2) If F : B → R is a ν-integral , A ∈ B and Ḟ ≥ 0 a.e. on A, then
F (A) ≥ 0.

(3) Assume F1 and F2 to be two ν-integrals with Ḟ1 = Ḟ2 a.e. Then
F1(B) = F2(B) for every B ∈ B.

P r o o f. Of course (1) implies (2) and (3) by Theorem II and so let us
prove (1).

Assume Ė, (Ei, Ci)i∈N to be a division of A which corresponds to F ,
denote by E a null set with ∂A ⊆ E ⊆ A and Ḟ ≥ 0 on A− E, and let K∗

and K∗i be the numbers from the Decomposition Lemma.
Let ε > 0. If x ∈ Ė there is a δ(x) > 0 with δ(x) ≤ dist(x,Rn − A◦)

such that |F (B)− Ḟ (x)|B|n| ≤ ε|B|n/(1 + |A|n) for every B ∈ D(K∗) with
x ∈ B and d(B) < δ(x).

Since |E∩Ė|n = 0 we may also assume by Remark 3.2(iii) that
∑ |F (Ak)|

≤ ε for any (E ∩ Ė, δ)-fine sequence {(xk, Ak)} with Ak ∈ D(K∗) for all k.
Furthermore, for ε/2i and K∗i we find ∆i > 0 and δ : Ei → R+ corre-

sponding to both null conditions, N (Ci, Ei) (i ∈ N) and N (C∗, Ei ∩∂A), in
case Ci ∈ Γ̇ (i ∈ N), which are satisfied by F .
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We have taken the same δ-function in all previous situations, since we
may make it smaller finitely many times.

Thus by the Decomposition Lemma there is a δ-fine partition {(xk, Ak)}
of A such that

•
∑

xk∈Ė−E
F (Ak) ≥

∑

xk∈Ė−E
Ḟ (xk)|Ak|n −

∑

xk∈Ė−E

ε|Ak|n
1 + |A|n ≥ −ε,

•
∑

xk∈Ė∩E
|F (Ak)| ≤ ε,

• if Ci ∈ Γ then
∑

xk∈Ei
|F (Ak)| ≤ ε/2i,

• if Ci ∈ Γ̇ then
∑

xk∈Ei∩A◦
|F (Ak)| ≤ ε/2i and

∑

xk∈Ei∩∂A
|F (Ak)| ≤ ε/2i,

and so by additivity F (A) ≥ −5ε. Since ε was arbitrary we conclude that
F (A) ≥ 0.

5. Integrable functions and their properties. Here we consider
integrability of point functions, and we summarize the basic properties of
the associated integral which follow from Theorems I–III. Furthermore, we
show that our integration process generalizes the one of Lebesgue. Finally,
the Fundamental Theorem characterizes those set functions which allow an
integral representation.

5(a). ν-integrable functions. If A ⊆ Rn and f is a real-valued function
defined at least on A then we define fA : Rn → R by

fA(x) =
{
f(x) if x ∈ A,
0 otherwise.

For any f : Rn → R we denote by supp f as usual the closure of the set
of points where f is different from zero.

We call f : Rn → R with compact support ν-integrable if there exists a
ν-integral F : B → R with Ḟ = f a.e., and we write

ν
∫
f = F (Rn) (see Thm. III and Remark 3.1).

Here Theorem III implies that F is unique and has compact support. We
denote by Iν the class of all ν-integrable functions.

Let A be a measurable subset of Rn and f be a real-valued function which
is defined at least on A. Then we call f ν-integrable on A if fA belongs to
Iν , and in this case we write

ν
∫
A

f =
ν
∫
fA.

We denote by Iν(A) the class of all functions which are ν-integrable on A.
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R e m a r k 5.1. (i) By the second part of the definition we have f ∈ Iν(Rn)
iff f ∈ Iν , and ν∫

Rn f = ν∫
f .

(ii) If there is no danger of misunderstanding we will often omit the
superscript ν and write

∫
f resp.

∫
A
f instead of ν

∫
f resp. ν

∫
A
f .

(iii) For A ∈ B Theorem II implies that f ∈ Iν(A) iff there exists a
ν-integral F on A with Ḟ = f a.e. on A, and in that case F (A) = ν∫

A
f .

(iv) By Banach’s theorem [Saks, p. 112] every f ∈ Iν is measurable since
the “ordinary” derivative of F exists a.e.

Proposition 5.1. (i) Let f ∈ Iν and denote by F the ν-integral with
Ḟ = f a.e. Then f ∈ Iν(A) and

∫
A
f = F (A) for all A ∈ B.

(ii) If f1 and f2 belong to Iν and c1, c2 ∈ R then c1f1 + c2f2 ∈ Iν and∫
(c1f1 + c2f2) = c1

∫
f1 + c2

∫
f2.

(iii) Assume f ∈ Iν with f ≥ 0 a.e. Then
∫
f ≥ 0.

(iv) Any function f : Rn → R with compact support and f = 0 a.e. is
ν-integrable with

∫
f = 0.

P r o o f. (i) Let A ∈ B. Then by Theorem II the set function G : B → R
defined by G(X) = F (A∩X) (X ∈ B) is a ν-integral with Ġ = fA a.e. Thus
f ∈ Iν(A) and

∫
A
f = G(I) = F (A) where I denotes an interval of support

of G containing A.
(ii) See Theorem I.
(iii) By Theorem III.
(iv) Clearly, F : B → R defined by F (B) = 0 for all B ∈ B is a ν-inte-

gral.

R e m a r k 5.2. (i) If f ∈ Iν then by the above proposition all character-
istic functions χA with A ∈ B are multipliers for f , i.e. fχA ∈ Iν .

(ii) By part (iv) of the above proposition we can and will consider ν-
integrability also for functions which are only defined a.e.

Proposition 5.2 gives the full additivity of our integral.

Proposition 5.2. Let A ∈ B, f : A → R and assume A to be the finite
union of sets Ak ∈ B with disjoint interiors. Then f ∈ Iν(A) iff f ∈ Iν(Ak)
for all k, and in that case ∫

A

f =
∑ ∫

Ak

f.

P r o o f. If f ∈ Iν(A) then fAk = (fA)Ak ∈ Iν by Proposition 5.1.
Conversely, suppose f ∈ Iν(Ak) for all k. Then

∑
fAk ∈ Iν with

∫ ∑
fAk =∑∫

fAk =
∑∫

Ak
f , and since fA =

∑
fAk a.e., by Proposition 5.1(iv) we

get fA ∈ Iν with
∫
A
f =

∫ ∑
fAk .

5(b). Relation to Lebesgue integration. Next we prove that for non-
negative functions our process of integration coincides with Lebesgue’s.
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For a measurable subset A of Rn we denote by L(A) the set of all mea-
surable functions f : A → R for which a finite Lebesgue integral L

∫
A
|f |

exists.

Theorem IV (Extension of Lebesgue Integration). Let f : Rn → R be
non-negative with compact support. Then f ∈ Iν iff f ∈ L(Rn), and in that
case

ν
∫
Rn

f =
L∫
Rn

f.

P r o o f. We first assume f ∈ L(Rn) and define an additive set function
F : B → R by F (B) = L∫

B
f (B ∈ B). By Lebesgue’s theorem [Saks,

p. 118] F is “derivable in the general sense” with Ḟ = f on a set Ė with
|Rn− Ė|n = 0. By (Γ̇2) of Section 1 there is a control condition C ∈ Γ̇ with
Rn − Ė ∈ E(C) and thus Ė, (Rn − Ė, C) is a division of Rn.

We will show that F satisfies N (C∗,Rn) and N (C,Rn − Ė). Then F is
a ν-integral with Ḟ = f a.e., hence f ∈ Iν and if I denotes an interval of
support of F containing supp f we get

ν
∫
Rn

f = F (I) =
L∫
Rn

f.

• F satisfies N (C∗,Rn). Indeed, let ε,K > 0. By the absolute continuity
of the Lebesgue integral there is an η > 0 such that L

∫
B
f < ε for any

measurable B with |B|n < η.
By the assumption (Γ2) on C∗ there are a ∆ > 0 and δ : Rn → R+ such

that |⋃Ak|n < η for every (Rn, δ)-fine sequence {(xk, Ak)} with {Ak} ∈
C∗(K,∆). Consequently, for each such sequence,

∑
|F (Ak)| = L

∫
∪Ak

f < ε.

• F satisfies N (C,Rn − Ė). Indeed, for ε,K > 0 let η > 0 be as before
and find an open set G containing Rn − Ė with |G|n < η. If x ∈ Rn − Ė
we choose a δ(x) > 0 with B(x, δ(x)) ⊆ G, and we set ∆ = 1. Then for any
(Rn − Ė, δ)-fine sequence {(xk, Ak)} with {Ak} ∈ C(K,∆) it follows that
|⋃Ak|n ≤ |G|n < η, and hence

∑
|F (Ak)| = L

∫
∪Ak

f < ε

as before.
Conversely, suppose f ∈ Iν . By Remark 5.1, f is measurable, and

the sequence fk = min(f, k) is non-decreasing and converges to f . Since
supp fk ⊆ supp f , all fk belong to L(Rn), and by the first part of the proof
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and the monotonicity of our integral we conclude that
L∫
Rn

f = lim
L∫
Rn

fk = lim
ν
∫
Rn

fk ≤ ν
∫
Rn

f <∞,

and therefore f ∈ L(Rn).

The following corollary contains the monotone and dominated conver-
gence theorems as well as Fatou’s lemma, which are reduced by Theorem IV
to the classical situation.

Corollary 5.1. Let A be a bounded measurable subset of Rn and let f ,
g, h, fk be real-valued functions a.e. on A with g, h, fk ∈ Iν(A) (k ∈ N).

(i) For non-negative f we have f ∈ Iν(A) iff f ∈ L(A), and in that
case ν∫

A
f = L

∫
A
f .

(ii) If fk ↗ f pointwise and the (existing) lim ν∫
A
fk is finite, then f ∈

Iν(A) and ν∫
A
f = lim ν∫

A
fk.

(iii) Assume that g ≤ fk ≤ h and fk → f pointwise a.e. on A. Then
f ∈ Iν(A), lim ν∫

A
fk exists and ν∫

A
f = lim ν∫

A
fk.

(iv) If fk ≥ g on A and lim inf ν
∫
A
fk < ∞ then lim inf fk is finite a.e.

on A and belongs to Iν(A). Furthermore, ν
∫
A

lim inf fk ≤ lim inf ν
∫
A
fk.

5(c). The Fundamental Theorem. We call F : B → R an indefinite
ν-integral if there exists an f ∈ Iν with F (B) = ν∫

B
f for all B ∈ B.

Analogously if A ∈ B then F : B(A) → R is said to be an indefinite
ν-integral on A if there is an f ∈ Iν(A) such that F (B) = ν∫

B
f for all

B ∈ B(A).
The next theorem characterizes the indefinite ν-integrals as ν-integrals.

Theorem V (Fundamental Theorem). (1) F : B → R is an indefinite
ν-integral iff it is a ν-integral , and in that case Ḟ is ν-integrable and F (B) =
ν∫
B
Ḟ for all B ∈ B.
(2) Let A ∈ B. Then F : B(A)→ R is an indefinite ν-integral on A iff it

is a ν-integral on A, and in that case Ḟ ∈ Iν(A) and F (B) = ν∫
B
Ḟ for all

B ∈ B(A).

P r o o f. (1) Assume F to be an indefinite ν-integral; thus there is an
f ∈ Iν with F (B) =

∫
B
f for all B ∈ B by definition. Since f ∈ Iν there

exists a ν-integralG with Ġ = f a.e. and, by Proposition 5.1(i),G(B) =
∫
B
f

for B ∈ B so that F = G. Further, since Ḟ = f a.e. we conclude that Ḟ ∈ Iν ,
and consequently F (B) =

∫
B
Ḟ for all B ∈ B.

Now let F be a ν-integral. Then there exists an interval I with Ḟ = 0 a.e.
on Ic, and we define f : Rn → R by f(x) = Ḟ (x) for all x ∈ I where Ḟ (x)
exists, and f(x) = 0 elsewhere. Then f has compact support, Ḟ = f a.e., and
therefore f ∈ Iν with F (B) =

∫
B
f for B ∈ B again by Proposition 5.1(i).
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(2) Assume first f ∈ Iν(A) with F (B) =
∫
B
f (B ∈ B(A)), and let

G : B → R be the ν-integral with Ġ = fA a.e. Then G(B) =
∫
B
fA for

B ∈ B, and therefore F = G|A is a ν-integral on A by Theorem II.
Conversely, if F is a ν-integral on A then G(X) = F (A ∩ X) (X ∈ B)

defines a ν-integral (Thm. II), and therefore by (1) we have G(X) =
∫
X
Ġ

for X ∈ B. Since Ḟ = Ġ a.e. on A we conclude that Ḟ ∈ Iν(A) and
F (B) =

∫
B
Ḟ for B ∈ B(A).

Discussion. Let F : B → R be an additive set function and let D be the
set of points x where Ḟ (x) exists. We assume that Dc is a null set and that
Ḟ = 0 a.e. on Ic for some interval I.

Usually the Fundamental Theorem is concerned with additional condi-
tions on F such that

(∗) Ḟ ∈ Iν(B) and F (B) =
ν
∫
B

Ḟ (∀B ∈ B).

Clearly, Ḟ ∈ Iν(B) for all B ∈ B is equivalent to Ḟ ∈ Iν (take B = I).
Hence, by Theorem V(1), (∗) means that F is a ν-integral. So, by recalling
the definition of a ν-integral (Section 3), we see that in our case (∗) means
that F must satisfy the null conditions corresponding to some division of
Rn with Ė ⊆ D.

6. The Saks–Henstock Lemma. In this section we assume addition-
ally that the control condition C∗ does not depend on ∆, i.e. C∗(K,∆) =
C∗(K). This restriction is, in particular, satisfied in our concrete theories
and seems to be quite natural.

Now we can prove the Saks–Henstock Lemma which gives a character-
ization of integrable functions, half way between a descriptive definition
(as ours) and Riemann-type definitions of the integral (which are discussed
separately).

Lemma (Saks–Henstock). Let A ∈ B. Then f : A → R is ν-integrable
on A iff there is an additive set function F : B(A) → R and a division Ė,
(Ei, Ci)i∈N of A with the following property :

∀ε > 0, K > 0, Ki > 0 (i ∈ N)∃∆i > 0 (i ∈ N), δ : A→ R+ such that∑
|F (Ak)− f(xk)|Ak|n|+

∑
|F (A′k)− f(x′k)|A′k|n| ≤ ε

for any (A, δ)-fine sequence {(xk, Ak)}∪{(x′k, A′k)} with Ak, A′k ∈ B(A) and

(i) if xk ∈ Ė then Ak ∈ D(K), and {Ak : xk ∈ Ei} ∈ Ci(Ki,∆i)
(i ∈ N),

(ii) {A′k} ∈ C∗(K) and x′k ∈ Ė ∪
⋃
Ci∈Γ̇ Ei for all k.
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P r o o f. Assume first that f ∈ Iν(A), denote by F : B(A) → R the
ν-integral on A with Ḟ = f a.e., let Ė, (Ei, Ci)i∈N be a division of A corre-
sponding to F , and let ε,K,Ki > 0.

Since Ḟ = f a.e. there is a null set Ẽ ⊆ Ė such that Ḟ = f on Ė − Ẽ
and for any x ∈ Ė − Ẽ there exists a δ(x) > 0 with B(x, δ(x)) ⊆ A◦ and
|F (B) − f(x)|B|n| ≤ ε|B|n/(6(1 + |A|n)) for each B ∈ D(K) with x ∈ B
and d(B) < δ(x).

By Remark 1.1 we can find a δ : Ẽ ∪ (A − Ė) → R+ which implies∑ |f(xk)||Ak|n ≤ ε/6 for any (Ẽ ∪ (A − Ė), δ)-fine sequence {(xk, Ak)},
and by Remark 3.2 we may assume

∑ |F (Ak)| ≤ ε/6 for each (Ẽ, δ)-fine
sequence {(xk, Ak)} with all Ak in D(K).

Furthermore, F satisfies N (Ci, Ei) (i ∈ N) and N (C∗, A − ⋃Ci∈Γ Ei)
(see the end of Remark 3.2(i)), which yields ∆i > 0 and δi : Ei → R+ for
ε/(6 · 2i) and Ki, and also δ̃ : A−⋃Ci∈Γ Ei → R+ for ε/6 and K.

Finally, write Ė =
⋃
j∈N Tj with Tj = {x ∈ Ė : j − 1 ≤ |f(x)| < j}

and take δ∗j : Tj → R+ such that |⋃Ak|n ≤ ε/(6j2j) for any (Tj , δ∗j )-fine
sequence {(xk, Ak)} with {Ak} ∈ C∗(K) by the assumption (Γ2) on C∗ (see
Section 1).

We may assume δ ≤ δi (i ∈ N), δ ≤ δ̃ and δ ≤ δ∗j (j ∈ N).
Now let {(x′k, A′k)}∪{(xk, Ak)} be an (A, δ)-fine sequence with A′k, Ak ∈

B(A) satisfying (i) and (ii). Then
∑
|F (A′k)− f(x′k)|A′k|n|+

∑
|F (Ak)− f(xk)|Ak|n|

≤
∑
|F (A′k)|+

∑

j∈N

∑

x′
k
∈Tj
|f(x′k)||A′k|n

+
[ ∑

x′
k
6∈Ė
|f(x′k)||A′k|n +

∑

xk∈Ẽ∪(A−Ė)

|f(xk)||Ak|n
]

+
∑

xk∈Ė−Ẽ
|F (Ak)− f(xk)|Ak|n|+

∑

xk∈Ẽ
|F (Ak)|+

∑

i∈N

∑

xk∈Ei
|F (Ak)|

≤ ε

6
+
∑

j∈N
j
∣∣∣
⋃

x′
k
∈Tj

A′k
∣∣∣
n

+
ε

6
+

ε

6(1 + |A|n)

∑
|Ak|n +

ε

6
+
∑

i∈N

ε

6 · 2i ≤ ε

as desired.
Conversely, suppose F : B(A) → R is additive and Ė, (Ei, Ci)i∈N is a

division of A with the Saks–Henstock property.
By using Vitali’s covering theorem we first prove that Ḟ = f a.e. on Ė

(cf. [Yee-Na]). Denote by E the set of x ∈ Ė where F is not differentiable
or Ḟ (x) 6= f(x). Then for any x ∈ E there are ε(x),K(x) > 0 such that
for every δ > 0 there exists a set B ∈ D(K(x)), B ∈ B(A) with x ∈ B and
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d(B) < δ but
|F (B)− f(x)|B|n| > ε(x)|B|n.

For m, k ∈ N set Em,k = {x ∈ E : ε(x) ≥ 1/m, K(x) ≤ k} so that
E =

⋃
m,k∈NEm,k. It suffices to prove that |Em,k|n = 0 for all m, k ∈ N.

Fix m, k ∈ N, let ε > 0 and determine ∆i > 0 and δ : A → R+ by the
Saks–Henstock property for ε/m, K = k and Ki = 1 (i ∈ N), where we may
assume δ(x) < dist(x,Rn − A◦) if x ∈ A◦. We denote by V the set of all
B ∈ D(k) for which there exists an x ∈ B ∩ Em,k with d(B) < δ(x) and
|F (B)− f(x)|B|n| > |B|n/m.

One easily verifies that V covers Em,k in the sense of Vitali, by the
construction of ε(x) and K(x) above. Consequently (see, e.g., [Saks, p. 109]),
we find at most countably many disjoint Ai ∈ V with |Em,k−

⋃
Ai|n = 0 and,

for each Ai, an xi ∈ Ai∩Em,k with d(Ai) < δ(xi) and |F (Ai)−f(xi)|Ai|n| >
|Ai|n/m. Now using the Saks–Henstock property for {(xi, Ai) : 1 ≤ i ≤ l}
(l ∈ N) we get

∣∣∣
l⋃

i=1

Ai

∣∣∣
n

=
l∑

i=1

|Ai|n ≤ m
l∑

i=1

|F (Ai)− f(xi)|Ai|n| ≤ ε,

and therefore |Em,k|n ≤ ε. Since ε was arbitrary, |Em,k|n = 0.
By the assumptions on Γ̇ we can find a C ∈ Γ̇ with E ∈ E(C) and thus

Ė−E, (E,C), (Ei, Ci)i∈N is a division of A. Now it suffices to show that F
is a ν-integral on A with Ḟ = f a.e. on A. Here we use the Saks–Henstock
(SH) property and Remark 1.1:

To see that F satisfies N (C,E), N (Ci, Ei) we apply the SH-property
with corresponding parameters (e.g., in the first case, with the same ε, K,
and all Ki = 1), where we only need the (i) part.

To see that F satisfiesN (C∗, Ė−E),N (C∗, E), andN (C∗, Ei) if Ci ∈ Γ̇ ,
we use in a similar way the (ii) part of the SH-property. Here, Remark 1.1
does not apply to N (C∗, Ė−E); instead we split Ė−E into countably many
parts where f is bounded (as in the first part of our proof) and use (Γ2).

Corollary 6.1. If A ∈ B and if f : A → R is ν-integrable on A then
there exists a real number J and a division Ė, (Ei, Ci)i∈N of A with the
following property :

∀ε > 0, K > 0, Ki > 0 ∃∆i > 0, δ : A→ R+ such that∣∣∣J −
(∑

f(xk)|Ak|n +
∑

f(x′k)|A′k|n
)∣∣∣ ≤ ε

for any δ-fine partition {(xk, Ak)} ∪ {(x′k, A′k)} of A satisfying

(i) if xk ∈ Ė then Ak ∈ D(K), and {Ak : xk ∈ Ei} ∈ Ci(Ki,∆i)
(i ∈ N),

(ii) {A′k} ∈ C∗(K) and x′k ∈ Ė ∪
⋃
Ci∈Γ̇ Ei for all k.
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The corollary is an immediate consequence of the Saks–Henstock Lemma
(with J = ν∫

A
f), and thus for any integrable function the value of the

integral can be obtained as the limit of certain Riemann sums, since by
Remark 2.1 the desired partitions exist: If we take K ≥ K∗, Ki ≥ K∗i with
the parameters from the Decomposition Lemma we see that the properties
(i) respectively (ii) of that lemma correspond to (i) respectively (ii) of our
corollary.

The existence of such partitions also implies that the number J is unique-
ly determined.

One might hope that the above corollary even gives a characterization
of integrability, but this seems to be unlikely without further restrictions on
B, D, Γ̇ and Γ . However, in our concrete theories this will be the case.

7. The transformation axiom and the transformation formula.
Let A be a measurable subset of Rn. Then φ : A→ Rn is called a transfor-
mation map if it is one-to-one and if φ and φ−1 are Lipschitzian.

R e m a r k 7.1. (i) By the Kirszbraun–McShane theorem [Kir], [McSh]
any transformation map φ : A → Rn has a Lipschitzian extension to the
whole space which is a.e. differentiable according to Rademacher (see, e.g.,
[Fed, p. 216]). Furthermore, for any measurable subset E of A we have
|φ(E)|n = L∫

E
|detφ′| (see, e.g., [Fed, p. 243]), where detφ′ denotes the

determinant of the derivative φ′ at all points where the latter exists uniquely,
and is zero elsewhere.

(ii) Recall that for any A ∈ B and any transformation map φ : A→ Rn
we have φ(A◦) = φ(A)◦ by the domain invariance theorem (see, e.g., [Rot]).

To prove the transformation formula within our theory we assume that
the semi-ring B, the differentiation classes and the control conditions are
invariant with respect to the transformation map.

Axiom 3 (transformation). For each A ∈ B and each transformation map
φ : A→ Rn the following shall be true:

(i) φ(A) ∈ B.
(ii) For all K > 0 there exists a K̃ > 0 such that φ(E) ∈ D(K̃) for any

subset E of A with E ∈ D(K).
(iii) For every C ∈ Γ ∪ Γ̇ we have

(a) ∀K > 0 ∃K̃ > 0 ∀∆̃ > 0 ∃∆ > 0 such that for any sequence
{Ak} ∈ C(K,∆) with Ak ⊆ A we have {φ(Ak)} ∈ C(K̃, ∆̃).

(b) φ(E) ∈ E(C) whenever E ⊆ A with E ∈ E(C).

Theorem VI (Transformation Formula). Let A ∈ B, φ : A → Rn be a
transformation map and let f : φ(A) → R. Then f ∈ Iν(φ(A)) if and only
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if (f ◦ φ)|detφ′| ∈ Iν(A), and in that case
ν
∫

φ(A)

f =
ν
∫
A

(f ◦ φ)|detφ′|.

P r o o f. Since φ−1 is again a transformation map it suffices to consider
the case when f is ν-integrable on φ(A).

There are c1, c2 > 0 such that c2‖x − y‖ ≤ ‖φ(x) − φ(y)‖ ≤ c1‖x − y‖
for all x, y ∈ A.

Denote by F : B(φ(A)) → R the ν-integral on φ(A) with Ḟ = f a.e. on
φ(A), let Ė, (Ei, Ci)i∈N be a corresponding division of φ(A), and define an
additive function G : B(A)→ R by G(X) = F (φ(X)) (X ∈ B(A)).

We will show that G is a ν-integral on A with Ġ = (f ◦ φ)|detφ′| a.e.
on A, which implies (f ◦ φ)|detφ′| ∈ Iν(A) and ν∫

A
(f ◦ φ)|detφ′| = G(A) =

F (φ(A)) = ν∫
φ(A) f by Theorem V(2).

Set H(X) = L∫
X
|detφ′|A (X ∈ B). Then there is a null set E ⊆ Rn

such that Ḣ = |detφ′|A on Ec. We now show that G is differentiable for all
x ∈ φ−1(Ė) − E with Ġ(x) = Ḟ (φ(x))|detφ′(x)|. Fix an x ∈ φ−1(Ė) − E
and let ε,K > 0. Find a K̃ > 0 by (ii) of Axiom 3. Then there are δ1, δ2 > 0
such that

|H(B)− |detφ′(x)||B|n| ≤ ε|B|n
2(1 + |Ḟ (φ(x))|)

and

|F (C)− Ḟ (φ(x))|C|n| ≤ ε|C|n
2cn1

for all B ∈ D(K) with x ∈ B and d(B) < δ1, and respectively for all
C ∈ D(K̃) with C ⊆ φ(A), φ(x) ∈ C and d(C) < δ2.

Now set δ = min(δ1, δ2/c1, dist(x,Rn − A◦)) and let B ∈ D(K) with
x ∈ B and d(B) < δ. Then φ(B) ∈ D(K̃) by Axiom 3, |φ(B)|n ≤ cn1 |B|n
since φ is Lipschitzian, and therefore

|G(B)− Ḟ (φ(x))|detφ′(x)||B|n| ≤ |F (φ(B))− Ḟ (φ(x))|φ(B)|n|
+ |Ḟ (φ(x))| ||φ(B)|n − |detφ′(x)| |B|n| ≤ ε|φ(B)|n

2cn1
+
ε|B|n

2
≤ ε|B|n

by Remark 7.1.
Let Ẽ = φ−1(Ė) ∩E and take C ∈ Γ̇ with Ẽ ∈ E(C). Since |φ(Ẽ)|n = 0

and F is differentiable on φ(Ẽ) we know by Remark 3.2(iii) that F satisfies
N (C, φ(Ẽ)).

Now, φ−1(Ė) − E, (Ẽ, C), (φ−1(Ei), Ci)i∈N is a division of A, and we
will show that G satisfies the corresponding null conditions. It suffices to
prove that G satisfies N (C∗, φ−1(Ė) − E) since the other conditions are
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proved analogously. So let ε,K > 0, find K̃ by Axiom 3(iii) and find ∆̃ > 0
and δ̃ : Ė → R+ for ε and K̃ witnessing that F satisfies N (C∗, Ė). Again
by axiom 3(iii) there is a ∆ > 0 and we set δ(x) = δ̃(φ(x))/c1 for x ∈
φ−1(Ė) − E. If then {(xk, Ak)} denotes a (φ−1(Ė) − E, δ)-fine sequence
with Ak ⊆ A and {Ak} ∈ C∗(K,∆) we have

∑
|G(Ak)| =

∑
|F (φ(Ak))| ≤ ε

since {(φ(xk), φ(Ak))} is an (Ė, δ̃)-fine sequence with {φ(Ak)} ∈ C∗(K̃, ∆̃).
Thus G is a ν-integral on A with Ġ(x) = Ḟ (φ(x))|detφ′(x)| a.e. on A

and since Ḟ = f a.e. on φ(A) the theorem is proved.

Discussion. Axiom 3 relates “all” A, φ to ν = (B,D, Γ̇ , Γ ) although in
Theorem VI only a simple pair (A,φ) is involved. It is clear that one can
formulate a weaker axiom corresponding to such an individual situation. For
reasons of simplicity we have avoided the complications connected with such
a refinement.
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