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Classical-type characterizations of
non-metrizable ANE(n)-spaces

by

Valentin G u t e v and Vesko V a l o v (Sofia)

Abstract. The Kuratowski–Dugundji theorem that a metrizable space is an absolute
(neighborhood) extensor in dimension n iff it is LCn−1&Cn−1 (resp., LCn−1) is extended
to a class of non-metrizable absolute (neighborhood) extensors in dimension n. On this
base, several facts concerning metrizable extensors are established for non-metrizable ones.

1. Introduction. Throughout this paper n is always an integer ≥ 0;
a space means a completely regular space; T (X) denotes the topology of a
space X; a map between two spaces is a continuous map, and dim stands
for the dimension defined by finite functionally open covers.

To define a concept of a space being an absolute (neighborhood) extensor
in dimension n, we adopt Chigogidze’s approach [1]. Suppose Y is a subspace
of Z and g : Y → X is a map. Then g is Z-normal if, for every real-valued
map ϕ on X, the map ϕ◦g is continuously extendable to the whole of Z. We
say that X is an absolute neighborhood extensor for n-dimensional spaces
(briefly, ANE(n)) if, for every space Z with dim(Z) ≤ n and Y ⊂ Z, every
Z-normal map g : Y → X is continuously extendable to a map f : U → X
for some functionally open neighborhood U of Y in Z; if one can take U = Z,
then X is said to be an AE(n) [1; Definition 1.1]. For X Lindelöf and Čech-
complete, these definitions coincide with the classical ones.

The starting point of the present paper is the familiar Kuratowski–
Dugundji theorem [7, 3] that a metrizable space X is an ANE(n) (resp.,
AE(n)) for metrizable spaces if and only if X is LCn−1 (resp., LCn−1 &
Cn−1). Unfortunately, in this form, the above result fails when X is non-
metrizable. A compact AE(n − 1)-space which is LCn−1 & Cn−1 but not
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an AE(n) is found in [2]. Almost all characterizations of non-metrizable
AE(n)’s are in terms of inverse systems with n-soft projections [6, 10, 2, 1].
These characterizations imply, in particular, that each non-metrizable AE(n)
is certainly LCn−1 & Cn−1. In this way, the following question arises: Can
non-metrizable ANE(n)’s (resp., AE(n)’s) be characterized by LCn−1 (resp.,
LCn−1 & Cn−1) type properties?

Only one such attempt to characterize the compact AE(n)-spaces is
known to the authors [11]. To recall it briefly, the property of a space X
to be LCn−1 & Cn−1 is equivalent to the existence of a special-type “base
for X”. Under “base for X” we mean every map γ : T (X) → exp(T (X))
with U =

⋃
γ(U) for every U ∈ T (X). Then X is LCn−1 & Cn−1 if and

only if it admits a base γ : T (X) → exp(T (X)) such that X ∈ γ(X) and,
for every U ∈ T (X), every continuous map of a k-sphere (k < n) in some
W ∈ γ(U) is contractible in U . These “LCn−1 & Cn−1” bases satisfying, in
addition, an assumption of regularity appear (in [11]) in a characterization
of the compact AE(n)’s among the compact AE(0)’s. Since every metrizable
space is an AE(0) for metrizable spaces, this result agrees with the classical
one. To extend in such a manner the Kuratowski–Dugundji theorem to all
ANE(n)’s (resp., AE(n)’s) and to show how the resulting theorems can be
applied, is the purpose of this paper.

After these preliminaries, we now turn to the central concepts of the
paper. If U(α), α ∈ A, are families of subsets of a space X, then

∧{U(α) :
α ∈ A} will denote the family of all intersections

⋂{Uα : α ∈ A}, where
Uα ∈ U(α). A base γ : T (X) → exp(T (X)) for X is said to be n-regular
[11] if, for every U, V ∈ T (X), the following conditions hold:

1) γ(U) ∧ γ(V ) = γ(U ∩ V ) (regularity condition);
2) Every continuous map of a k-sphere (k < n) in some W ∈ γ(U) is

contractible in U .

Suppose X ⊂ Y . A map e : T (X)→ T (Y ) is called an extension operator
if e(∅) = ∅ and e(U)∩X = U for every U ∈ T (X). Following Shirokov [11],
an extension operator e : T (X)→ T (Y ) is said to be n-regular if, for every
U, V ∈ T (X), the following conditions hold:

1) e(U) ∩ e(V ) = e(U ∩ V ) (regularity condition);
2) Every continuous map of a k-sphere (k < n) in U is contractible in U

provided it is contractible in e(U).

Our first result is the following theorem.

Theorem 1.1. For a Čech-complete AE(0)-space X and n > 0 the fol-
lowing conditions are equivalent :

(i) X is an ANE(n);
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(ii) For every C-embedding of X in a space Y there is an n-regular
extension operator e : T (X)→ T (Y );

(iii) X has an n-regular base.

As will be shown in Section 4 (Corollary 4.6), a space X is an AE(n) if
and only if X ∈ ANE(n) ∩ Cn−1. In view of that, Theorem 1.1 reduces to
[11; Theorem 4] when X is compact and Cn−1.

We do not know whether Theorem 1.1 remains valid if “Čech-complete”
is omitted. But, under slight modifications of the concepts of an n-regular
extension operator and n-regular base, the following characterizations of
arbitrary ANE(n)’s hold.

Theorem 1.2. For an AE(0)-space X and n > 0 the following conditions
are equivalent :

(i) X is an ANE(n);
(ii) For every C-embedding of X in a space Y there is an (n,ℵ1)-regular

extension operator e : T (X)→ T (Y );
(iii) X has an (n,ℵ1)-regular base.

The precise definitions of an (n,ℵ1)-regular extension operator and base
are given in Section 2.

Despite its complication, the characterization of ANE(n)’s in terms of
(n,ℵ1)-regular bases is very successful in proving that a space X is an
ANE(n) provided X admits a countable functionally open cover of ANE(n)’s
(Theorem 7.1). On the base of Theorems 1.1 and 1.2, we also establish some
homotopic and realization properties of ANE(n)’s (Section 6).

The proofs of Theorems 1.1 and 1.2 take up most of the paper and will
be finally accomplished in Sections 5 and 4, respectively.

2. Some properties of ANE(n)-spaces. Throughout this section τ is
an infinite cardinal. By Tfo(X) we denote the functionally open subsets of
X. For two subsets V and U of X we write V

n
↪→U if every continuous map

of a k-sphere (k < n) in V is contractible in U . If V and U are two families
of subsets of X, then V n

↪→U means that every continuous map of a k-sphere
(k < n) in some element of V is contractible in an element of U .

Suppose X ⊂ Y . We say that an extension operator e : T (X) → T (Y )
is (n, τ)-regular if

1)e e(U) ∈ Tfo(Y ) provided U ∈ Tfo(X);
2)e Whenever U ⊂ T (X) with card(U) < τ , every continuous map of a

k-sphere (k < n) in
⋂U is contractible in

⋂U provided it is contractible in⋂{e(U) : U ∈ U}.
We say that a base γ : T (X)→ exp(T (X)) for X is (n, τ)-regular if
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1)γ γ(U) ⊂ Tfo(X) is countable if U ∈ Tfo(X);

2)γ
∧{γ(U) : U ∈ U} n

↪→⋂U for every U ⊂ T (X) with card(U) < τ .

Lemma 2.1. Suppose X is Lindelöf and X ⊂ Y . Then:

(i) The existence of an n-regular extension operator e : T (X) → T (Y )
implies the existence of an (n,ℵ0)-regular one;

(ii) X has an n-regular base if and only if X has an (n,ℵ0)-regular base.

P r o o f. (i) In fact, it suffices to construct an extension operator e0 :
T (X) → T (Y ) such that, for every U ∈ T (X), e0(U) ⊂ e(U) and e0(U) ∈
Tfo(Y ) provided U ∈ Tfo(X). For U ∈ Tfo(X), take a countable v(U) ⊂
Tfo(Y ) such that U ⊂ ⋃ v(U) ⊂ e(U). This is possible because each func-
tionally open subset of X is Lindelöf. Next, merely set e0(U) =

⋃
v(U) if

U ∈ Tfo(X) and e0(U) = e(U) otherwise.
(ii) Suppose γ : T (X) → exp(T (X)) is an n-regular base for X. Let

γ0(U) ⊂ Tfo(X) be a countable cover of U refining γ(U) if U ∈ Tfo(X) and
γ0(U) = γ(U) otherwise. It is easily seen that this defines an (n,ℵ0)-regular
base γ0 for X. Suppose now γ0 is an (n,ℵ0)-regular base for X. Define
γ : T (X)→ exp(T (X)) by

γ(U) =
⋃{∧

{γ0(V ) : V ∈ V} : V ⊂ Tfo(X) is finite and
⋂
V ⊂ U

}
.

Clearly, γ(U) covers U and γ(U)∧γ(V ) = γ(U ∩V ) for every U, V ∈ T (X).
It follows from the definition of γ that, for each W ∈ γ(U), there is a finite
V ⊂ Tfo(X) such that

⋂V ⊂ U and W ∈ ∧{γ0(V ) : V ∈ V}. Then, by the
(n,ℵ0)-regularity of γ0, W

n
↪→ U . So, γ is n-regular.

Lemma 2.2. Suppose an ANE(n)-space X is C-embedded in RT . Then
there exists an extension operator e : T (X) → T (RT ) with the following
properties:

(i) e is both n-regular and (n, τ)-regular ;
(ii) For every space Z, a closed subset F of Z with dim(Z−F ) ≤ n, and

every map u : Z → e(X) with u(F ) ⊂ X, there is a map h : Z → X such
that h|u−1(X) = u|u−1(X) and h(u−1(e(U))) ⊂ U for every U ∈ T (X).

P r o o f. By [1; Lemma 3.1], there is an n-dimensional space P and a
perfect functionally closed n-invertible map f from P onto RT . The last
means that, whenever Z is a space with dim(Z) ≤ n and u : Z → RT , there
is a map q : Z → P such that f ◦ q = u. Set A = f−1(X). Since X is
C-embedded in RT , f |A is P -normal. Therefore, there exists a functionally
open (in P ) neighborhood W1 of A and a continuous extension g1 : W1 → X
of f |A. Note that V = RT−f(P−W1) contains X and it is functionally open
in RT because f is functionally closed. Then W = f−1(V ) is functionally
open in P and W ⊂W1.
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Define e : T (X)→ T (RT ) by e(U) = V − f(P − g−1(U)) for every U ∈
T (X), where g = g1|W . It is easily seen that e is an extension operator such
that, for every U, V ∈ T (X), e(U) ∩ e(V ) = e(U ∩ V ) and e(U) ∈ Tfo(RT )
provided U ∈ Tfo(X). The n-regularity and the (n, τ)-regularity of e follow
from (ii). So, we only have to check (ii).

Take Z, F and u as in (ii). Since e(X) = V and f is n-invertible, there
is a q : Z − F → W with f ◦ q = u|Z − F . Since F ⊂ Z is closed and
f−1(e(U)) ⊂ g−1(U) for every U ∈ T (X), setting h|Z − F = g ◦ q and
h|F = u|F , we get a map h from Z into X such that h(u−1(e(U))) ⊂ U ,
U ∈ T (X) (h is continuous because h−1(U) = (h|Z − F )−1(U)∪ u−1(e(U))
for every U ∈ T (X)). Finally,

g ◦ q|(u−1(X)− F ) = f ◦ q|(u−1(X)− F ) = u|(u−1(X)− F )

implies h|u−1(X) = u|u−1(X).

Lemma 2.3. For any space X , we have (i)⇒(ii)⇒(iii), where

(i) X is an ANE(n);
(ii) For every C-embedding of X in a space Y there is an (n, τ)-regular

extension operator e : T (X)→ T (Y );
(iii) X has an (n, τ)-base.

P r o o f. (i)⇒(ii). Suppose X is C-embedded in Y . Consider Y as a C-
embedded subset of RT for some T . By Lemma 2.2, there is an (n, τ)-regular
extension operator e′ : T (X)→ T (RT ). Then e : T (X)→ T (Y ) defined by
e(U) = e′(U) ∩ Y is as required.

(ii)⇒(iii). Consider X as a C-embedded subset of RT for some T . Let e :
T (X)→ T (RT ) be an (n, τ)-regular extension operator and let B ⊂ T (RT )
be a topological base of RT consisting of standard convex sets. Suppose
U ∈ Tfo(X). Since e(U) ∈ Tfo(RT ), by [9], there is a countable D ⊂ T such
that π−1(π(e(U))) = e(U), where π : RT → RD is the projection. Hence,
there exists a countable B(U) ⊂ B such that e(U) =

⋃B(U). Define a base
γ : T (X)→ exp(T (X)) for X by

γ(U) =
{ {H ∩X : H ∈ B(U)} if U ∈ Tfo(X),
{H ∩X : H ∈ B and H ⊂ e(U)} otherwise.

To show that γ is (n, τ)-regular, we only have to check 2)γ . Suppose U ⊂
T (X) with card(U) < τ . Take g : Sk → ⋂{GU : U ∈ U}, where GU ∈ γ(U)
for every U ∈ U and k < n. According to the definition of γ, GU = HU ∩X
for some HU ∈ B with HU ⊂ e(U). By the convexity of

⋂{HU : U ∈ U},
there is an extension h : Bk+1 → ⋂{e(U) : U ∈ U} of g. Since, finally, e is
(n, τ)-regular, g is certainly extendable to a map u : Bk+1 → ⋂U .
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3. γ-admissible sets. In this section, X is a closed C-embedded AE(0)-
subspace of a product Y =

∏{Yt : t ∈ T} of Polish spaces, where card(T ) =
w(X), and γ : T (X) → exp(T (X)) is an (n, τ)-regular base. For every
A ⊂ T , let Y (A) =

∏{Yt : t ∈ A}. If B ⊂ D ⊂ T , we write πB : Y → Y (B)
and πDB : Y (D) → Y (B) for the projections, X(B) = πB(X), pB = πB |X,
and pDB = πDB |X(D). Take an upper semicontinuous compact-valued (briefly,
usco) retraction r : Y → X and a family A(T ) of subsets of T with the
following properties:

(3.1)
⋃M∈ A(T ) for every subfamily M⊂ A(T );

(3.2) Whenever D ∈ A(T ) and B ⊂ D is countable, there is a countable
A ∈ A(T ) with B ⊂ A ⊂ D;

(3.3) For any A ∈ A(T ), pA : X → X(A) is a functionally open map and
X(A) is a closed C-embedded AE(0)-subspace of Y (A);

(3.4) For any A ∈ A(T ), there exists a usco retraction rA : Y (A)→ X(A)
such that pA ◦ r = rA ◦ πA.

For the existence of r andA(T ), see [13; pp. 201–203], where the elements
of A(T ) are called r-admissible subsets of T . In the sequel, for D ∈ A(T ),
we sometimes write A(D) for {B ∈ A(T ) : B ⊂ D}.

For every t ∈ T fix a countable topological base Bt ⊂ T (Yt) of Yt. Denote
by P the subbase for T (Y ) consisting of all U ∈ T (Y ) for which there are
t(U) ∈ T and V ∈ Bt(U) such that U = π−1

t(U)(V ). Next, for every A ⊂ T , set

P(A) = {U ∩X : U ∈ P and t(U) ∈ A}.
Clearly, P(A) ⊂ Tfo(X) and card(P(A)) = card(A) · ℵ0.

We now turn to the central concept of this section. A set A ∈ A(T ) is
called γ-admissible if

(3.5) p−1
A (pA(W )) = W for every W ∈ γ(U) and U ∈ P(A).

Lemma 3.6. Let D ⊂ T be γ-admissible. Then for every countable set
B ⊂ D there is a countable γ-admissible A ∈ A(D) containing B.

P r o o f. The proof follows some arguments of the proof of [11; The-
orem 4]. First, observe that for every functionally open W ⊂ X with
p−1
D (pD(W )) = W there is a countable A(W ) ∈ A(D) such that

(a) p−1
A(W )(pA(W )(W )) = W.

Indeed, since (by (3.3)) pD(W ) is functionally open in X(D) and X(D)
is C-embedded in Y (D), there is a functionally open W ′ ⊂ Y (D) with
W ′ ∩ X(D) = pD(W ). By [9], there exists a countable S ⊂ D such that
(πDS )−1(πDS (W ′)) = W ′. Then, by (3.2), S is a subset of a countable A(W ) ∈
A(D). This A(W ) satisfies (a).
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By induction on i, we now construct an increasing sequence {A(i) : i =
1, 2, . . .} of countable sets A(i) ∈ A(D) such that, for every U ∈ P(A(i))
and W ∈ γ(U),

(b) p−1
A(i+1)(pA(i+1)(W )) = W.

By (3.2), there is a countable A(1) ∈ A(D) containing B. Suppose A(i) ∈
A(D) is countable. Since the families P(A(i)) and γ(U), U ∈ P(A(i)), are
countable, the set

A(i+ 1) = A(i) ∪
⋃
{A(W ) : W ∈ γ(U) and U ∈ P(A(i))}

is also countable and, by (a), A(i + 1) satisfies (b). According to (3.1),
A(i+ 1) ∈ A(D). This completes the inductive construction.

We finally check that A =
⋃{A(i) : i = 1, 2, . . .} is the required set. It

is obvious that A is countable and B ⊂ A. By (3.1), A ∈ A(D). In order
to check (3.5), take a W ∈ γ(U) for some U ∈ P(A). Since U ∈ P(A(i))
for some i, by (b), p−1

A(i+1)(pA(i+1)(W )) = W . Therefore, p−1
A (pA(W )) = W

because A(i+ 1) ⊂ A.

Lemma 3.7. Let M⊂ A(T ) be a family of γ-admissible sets. Then
⋃M

is also γ-admissible.

P r o o f. This follows from the definition of γ-admissibility.

Lemma 3.8. Suppose A and B are γ-admissible subsets of T and B is
countable. Then there exists a countable γ-admissible subset C ⊂ A contain-
ing A ∩B such that X(A ∪B) is homeomorphic to the fibered product

Z = {(x1, x2) ∈ X(B ∪ C)×X(A) : pB∪CC (x1) = pAC(x2)}.
P r o o f. Since A ∩ B is countable, by Lemma 3.6, it is a subset of some

countable γ-admissible C ⊂ A. The usco retractions rA∪B : Y (A ∪ B) →
X(A ∪B), rA : Y (A)→ X(A) and rB∪C : Y (B ∪ C)→ X(B ∪ C), existing
by (3.4), form the following commutative diagram:

Y (A ∪B) Y (A)

X(A ∪B) X(A)

Y (B ∪ C)

X(B ∪ C) X(C)

rA∪B
NNNNNNNNN&&

πA∪BB∪C

²²

πA∪BA //

rA

KKKKKKKK%%

pA∪BB∪C

²²

pA∪BA //

pAC

²²
rB∪C

NNNNNNNNN&& pB∪CC //
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We now show that h : X(A ∪ B) → Z defined by h(x) = (pA∪BB∪C(x),
pA∪BA (x)) is a homeomorphism. Take z = (x1, x2) ∈ Z. Since (B ∪C −C)∩
(A − C) = ∅, there is exactly one x ∈ Y (A ∪ B) for which πA∪BB∪C(x) = x1

and πA∪BA (x) = x2. Note that pA∪BB∪C(rA∪B(x)) = x1, pA∪BA (rA∪B(x)) = x2

and rA∪B(x) ⊂ X(A ∪ B). Therefore, rA∪B(x) = x is the unique point of
X(A ∪B) with h(x) = z. That is, h is a one-to-one map. Since, finally, h is
open, it is certainly a homeomorphism.

4. Proof of Theorem 1.2. Below we need the following definitions: A
surjection f : X → Y between realcompact spaces is n-soft [1] if for any
realcompact space Z with dim(Z) ≤ n, Z0 ⊂ Z closed and any two maps
g : Z0 → X and h : Z → Y such that g is Z-normal and f ◦ g = h|Z0, there
exists a lifting u : Z → X of h (i.e., f ◦ u = h) such that u|Z0 = g. A map
f : X → Y is said to have a Polish kernel [1] if there is a Polish space P
such that X is C-embedded in Y × P and f = π|X, where π : Y × P → Y

is the projection. A subset A of a space Y is Ck provided A
k+1
↪→ A. A family

A of subsets of a space Y is equi-LCk in Y [8] if, for any y ∈ Y and
any neighborhood V of y in Y , there is a neighborhood W of y such that

W ∩A k+1
↪→ V ∩A for every A ∈ A.

Now we turn to the proof of Theorem 1.2. Suppose X is an AE(0)-
space. By Lemma 2.3, we only have to prove (iii)⇒(i). Assume γ : T (X)→
exp(T (X)) is an (n,ℵ1)-regular base for X, and X is a closed C-embedded
subset of Rw(X). Set T = {λ : λ < w(X)}. Below we freely use all notation
of Section 3 with Y replaced by RT . For every λ ∈ T , by Lemma 3.6, fix a
countable γ-admissible B(λ) ⊂ T containing λ. Next, put A(λ) =

⋃{B(µ) :
µ < λ} if λ is a limit ordinal and A(λ) =

⋃{B(µ) : µ ≤ λ} otherwise. By
Lemma 3.7, these A(λ) are γ-admissible. For convenience, we set

Xλ = X(A(λ)), pλ = πA(λ)|X : X → Xλ, p
µ
λ = π

A(µ)
A(λ) |Xµ for λ < µ.

Since A(λ) ∈ A(T ), by (3.3), Xλ is a closed C-embedded AE(0)-subspace
of RA(λ). Thus, we get a continuous inverse system S = {Xλ, p

µ
λ : λ < µ <

w(X)} with X = lim←−S.

We now prove that X ∈ ANE(n) by showing X1 is LCn−1 and each
pλ+1
λ is n-soft. First we show by induction on k (k ≤ n) that pλ+1

λ is k-soft.
By (3.3), pλ is functionally open. Hence, for every λ < w(X), pλ+1

λ is func-
tionally open with a Polish kernel. So, all pλ+1

λ are 0-soft [1; Corollary 1.20].
Assuming all pλ+1

λ are k-soft for some k < n, we prove that they are (k+1)-
soft. For a particular λ < w(X), by Lemma 3.8, there exists a countable
γ-admissible subset C(λ) ⊂ A(λ) containing A(λ)∩ (B(λ)∪B(λ+ 1)) such
that the diagram
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(4.1)

Xλ+1 Xλ

X(D(λ)) X(C(λ))

p
A(λ+1)
D(λ)

²²

pλ+1
λ //

p
A(λ)
C(λ)

²²pC(λ) //

is a Cartesian square (i.e., Xλ+1 is a fibered product, where D(λ) = B(λ)∪
B(λ+ 1)∪C(λ)). To prove now that pλ+1

λ is (k+ 1)-soft, it suffices to show
that q = p

D(λ)
C(λ) is (k + 1)-soft. Notice X(D(λ)) and X(C(λ)) are Polish

spaces and q is open (see (3.3)). Then, by [8; Theorem 1.2], we only have to
check that each fiber q−1(z) is Ck and the family {q−1(z) : z ∈ X(C(λ))}
is equi-LCk in X(D(λ)). To this end, suppose x ∈ X(D(λ)) and V is a
neighborhood of x. First, take a finite U(x) ⊂ P(D(λ)) such that

(4.2) x ∈ pD(λ)

(⋂
U(x)

)
⊂ V.

Next, for every U ∈ U(x), pick a WU ∈ γ(U) with WU ∩ p−1
D(λ)(x) 6= ∅. Note

that

(4.3) p−1
D(λ)(pD(λ)(WU )) = WU for every U ∈ U(x),

because D(λ) is γ-admissible (see (3.5)). Setting now

W = pD(λ)

(⋂
{WU : U ∈ U(x)}

)
,

we get a neighborhood W of x because pD(λ) is open. Let us check that this
W is as required. So, let u : Sm → q−1(z) ∩W be a map, where m ≤ k and
z ∈ X(C(λ)). Take a countable U(z) ⊂ P(C(λ)) with

(4.4) pC(λ)

(⋂
U(z)

)
= z.

For every U ∈ U(z) we fix a WU ∈ γ(U) for which WU ∩ p−1
C(λ)(z) 6= ∅. Since

C(λ) is γ-admissible,

(4.5) p−1
C(λ)(pC(λ)(WU )) = WU for every U ∈ U(z).

Take z′ ∈ Xλ such that pA(λ)
C(λ)(z

′) = z, and then define gλ+1 : Sm → Xλ+1 by
gλ+1(s) = (u(s), z′), s ∈ Sm. Since the diagram (4.1) is a Cartesian square,
gλ+1 is correctly defined. By the k-softness of all adjacent projections in
the system S, there is a lifting g : Sm → X of gλ+1. It follows from (4.3)
and (4.5) that

g(Sm) ⊂
⋂
{WU : U ∈ U} ∈

∧
{γ(U) : U ∈ U},

where U = U(x)∪U(z). Since γ is (n,ℵ1)-regular and U ⊂ T (X) is countable,
there exists an extension h : Bm+1 → ⋂U of g. Finally, by (4.2) and (4.4),
pD(λ) ◦ h is a map from Bm+1 into q−1(z) ∩ V extending u.
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To prove that q−1(z) is Ck, we repeat the previous proof with W replaced
by X(D(λ)) and with U replaced by U(z). This completes the induction.
Thus, all pλ+1

λ are n-soft.
Finally, we show that X1 is LCn−1. Fix an x ∈ X1 and its neighborhood

V . Take a point x0 ∈ p−1
1 (x) and a finite family U(x) ⊂ P(A(1)) of its

neighborhoods such that p1(
⋂U(x)) ⊂ V . Set W = p1(

⋂{WU : U ∈ U(x)}),
where WU ∈ γ(U) is a neighborhood of x0. Since p1 is n-soft (all pλ+1

λ are
n-soft and S is continuous) and

p−1
1 (W ) ⊂

⋂
{WU : U ∈ U(x)} ∈

∧
{γ(U) : U ∈ U(x)} n

↪→
⋂
U(x),

we conclude that W
n
↪→ V .

Corollary 4.6. A space X ∈ AE(n) if and only if X ∈ ANE(n)∩Cn−1.

P r o o f. We only have to prove the sufficiency. Suppose X ∈ ANE(n) ∩
Cn−1. First, let us show that X is an AE(0). Suppose Z is a zero-dimensional
space, A ⊂ Z and g : A → X is a Z-normal map. Let X be a C-embedded
subset of RT (for some T ) and let e : T (X)→ T (RT ) be as in Lemma 2.2.
By [1], e(X) is an AE(0) because it is functionally open in RT . Hence,
there is a map u : Z → e(X) with u|A = g. Then, by Lemma 2.2(ii) (with
F = ∅), there exists a map h : Z → X such that h|A = g. That is, X is
an AE(0). It now follows from the proof of Theorem 1.2 ((iii)⇒(i)) that X
is the limit space of a continuous inverse system S = {Xλ, p

µ
λ : λ < µ <

w(X)}, where all projections are n-soft and X1 is an LCn−1 Polish space.
In particular, p1 is n-soft and therefore X1 ∈ Cn−1. Then X1 ∈ AE(n)
(see [1; Proposition 1.11]). Hence, X ∈ AE(n) as an n-soft preimage of an
AE(n)-space.

5. Proof of Theorem 1.1. Following [2] we introduce weak versions of
Ck and equi-LCk. We say that a subset A of a space Y is weakly Ck (briefly,

wCk) in Y provided A
k+1
↪→ G for every neighborhood G of A in Y . A family

A of subsets of a space Y is equi-weakly LCk (equi-wLCk) in Y if, for any
y ∈ Y and any neighborhood V of y in Y , there is a neighborhood W of y

such that W ∩ A k+1
↪→ V ∩ G for every A ∈ A and every neighborhood G of

A in Y .

Proposition 5.1. Let Y be a completely metrizable space and A be a
family of closed subsets of Y such that A is equi-wLCk in Y and every
A ∈ A is wCk in Y. Then A is equi-LCk in Y and every A ∈ A is Ck.

P r o o f. Following the arguments of [8; Proposition 2.1] we find a com-
plete metric % on Y (agreeing with the topology of Y ) with the following

property: for every ε > 0 there is an η(ε) > 0 such that Bη(ε)(y) ∩ A k+1
↪→
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Bε(y) ∩ Bξ(A) for any y ∈ Y , A ∈ A and ξ > 0. Here, Bξ(A) denotes the
ξ-neighborhood of A in (Y, %); similarly for Bε(y), etc. Note, in addition,

that A
k+1
↪→ Bξ(A) for any ξ > 0. Thus, by [5; Theorem 3.1], A is equi-LCk

in Y and each A ∈ A is Ck.

We now proceed to the proof of Theorem 1.1. Suppose X is a Čech-
complete AE(0)-space. By [13; Theorem 3], X is Lindelöf. Then, according
to Lemmas 2.1, 2.2 and 2.3, we only have to prove the implication (iii)⇒(i).
AssumeX has an n-regular base. Then, by Lemma 2.1(ii), there is an (n,ℵ0)-
regular base γ forX. Let T = {λ : λ ∈ w(X)}. EmbedX as a closed subset of
Y =

∏{Yλ : λ ∈ T}, where Y1 is a Polish space and Yλ = [0, 1] for λ > 1 (this
can be done because X is Lindelöf and Čech-complete). Using Lemma 3.6,
for every λ ∈ T , fix a countable γ-admissible subset B(λ) ⊂ T containing
both 1 and λ. Following the notation of the proof of Theorem 1.2(iii)⇒(i),
we construct a continuous inverse system S = {Xλ, p

µ
λ : λ < µ < w(X)}

such that X = lim←−S and each pλ+1
λ is functionally open with a Polish kernel.

Our proof now continues just as that of Theorem 1.2. Everything goes
through as before, except that a bit more care is necessary to check that
the map q = p

D(λ)
C(λ) (see diagram (4.1)) is (k + 1)-soft provided all adjacent

projections of S are k-soft (k < n). In that proof, the hypothesis that γ
is (n,ℵ1)-regular was needed because, for every z ∈ X(C(λ)), we took a
countable family U(z) ⊂ P(C(λ)) such that pC(λ)(

⋂U(z)) = z (see (4.4)).
In our present situation γ is only (n,ℵ0)-regular but, in addition, q is now
perfect. Indeed, πD(λ)

C(λ) : Y (D(λ)) → Y (C(λ)) is perfect because 1 ∈ A(λ) ∩
(B(λ)∪B(λ+1)) ⊂ C(λ), and therefore so is q = π

D(λ)
C(λ) |X(D(λ)). Whenever

G is a neighborhood of q−1(z), this allows one to find a neighborhood G0 of
z such that q−1(G0) ⊂ G. Take then a finite U(z,G) ⊂ P(C(λ)) with

(4.4∗) z ∈ pC(λ)

(⋂
U(z,G)

)
⊂ G0.

Since U(x) ∪ U(z,G) ⊂ T (X) is finite and γ is (n,ℵ0)-regular, repeating
precisely the previous proof with (4.4) replaced by (4.4*), we see that each
fiber q−1(z) is wCk in X(D(λ)) and the family {q−1(z) : z ∈ X(C(λ))} is
equi-wLCk in X(D(λ)). Then Proposition 5.1 completes the proof.

6. Homotopic and realization properties of ANE(n)-spaces. The
characterizations of ANE(n)’s in terms of regular extension operators and
regular bases allow one to obtain some other characterizations. In this sec-
tion we show that some classical descriptions of metrizable ANE(n)’s admit
natural extensions to all ANE(n)’s.

Let f, g : Z → X and let ν be a family of subsets of X. Then f and
g are said to be ν-close if, for every z ∈ Z, there is an H ∈ ν such that
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f(z), g(z) ∈ H; and f and g are ν-homotopic if there is a homotopy h :
Z × I → X between f and g such that {h({z} × I) : z ∈ Z} refines ν,
where I = [0, 1]. We say that a map δ : Cov(X) → Cov(X) is regular if
δ(ω) ∧ δ(ν) = δ(ω ∧ ν) for every ω, ν ∈ Cov(X). Here, Cov(X) denotes the
family of all open covers of X.

Since there is no such thing as a (−1)-sphere, every extension operator e
(or base γ) satisfying the regularity condition is 0-regular (see Section 1). For
convenience, each 0-regular extension operator (resp., base) will be called
regular.

Theorem 6.1. For a Čech-complete AE(0)-space X and n > 0 the fol-
lowing conditions are equivalent :

(i) X is an ANE(n);
(ii) There is a regular map δ : Cov(X) → Cov(X) such that , whenever

ω ∈ Cov(X) and Z is a space with dim(Z) < n, any two δ(ω)-close maps
f, g : Z → X are ω-homotopic.

P r o o f. (i)⇒(ii). Consider X as a C-embedded subset of RT for some
T . Let e : T (X) → T (RT ) be as in Lemma 2.2, and let B ⊂ T (RT ) be a
topological base of RT consisting of standard convex sets. Set β(U) = {H ∈
B : H ⊂ U} for every U ∈ T (RT ). Thus, we obtain a regular base β for RT .
Define δ : Cov(X)→ Cov(X) by

δ(ω) = {H ∩X : H ∈ β(e(U)), U ∈ ω} for ω ∈ Cov(X).

Since β and e are regular, so is δ. Let ω ∈ Cov(X), Z be a space with
dim(Z) < n, and let f, g : Z → X be two δ(ω)-close maps. Let u : Z ×
I → RT be the linear homotopy between f and g. Since f and g are δ(ω)-
close, for every z ∈ Z there are U(z) ∈ ω and H(z) ∈ β(e(U(z))) such
that f(z), g(z) ∈ H(z). Therefore, u({z} × I) ⊂ H(z) ⊂ e(U(z)). By [4;
Theorem 1.5], dim(Z × I) ≤ n. So, by Lemma 2.2(ii) (with F = ∅), there is
a map h : Z×I → X such that h|Z×{0, 1} = u|Z×{0, 1} and h({z}×I) ⊂
U(z) for every z ∈ Z. Hence, f and g are ω-homotopic.

(ii)⇒(i). Suppose δ : Cov(X) → Cov(X) is as in (ii). Define a regular
base η for X by η(U) = {V ∈ T (X) : cl(V ) ⊂ U} for every U ∈ T (X).
Next, define a regular base γ : T (X)→ exp(T (X)) for X by

γ(U) = {W ∩ V : V ∈ η(U), W ∈ δ({U,X − cl(V )})} for U ∈ T (X).

It follows from the construction of γ and from the properties of δ that γ(U)
n
↪→

U for U ∈ T (X). So, γ is an n-regular base for X and, by Theorem 1.1(iii),
X is an ANE(n).

Our next result characterizes ANE(n)’s by realization of simplicial com-
plexes. We only consider locally finite simplicial complexes. For such a com-
plex M we use |M | to denote the polytope on M , and M (k) for the k-skeleton
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of M . A subcomplex L of M is said to be full if M (0) ⊂ L. Suppose ν is
a cover of X and L is a subcomplex of M . A map g : |L| → X is a partial
ν-realization of M provided {g(|σ ∩ L|) : σ ∈M} refines ν. If L = M , then
g is said to be a full ν-realization of M .

Theorem 6.2. For a Čech-complete AE(0)-space X and n > 0 the fol-
lowing conditions are equivalent :

(i) X is an ANE(n);
(ii) There is a regular map δ : Cov(X) → Cov(X) such that , whenever

ω ∈ Cov(X), M is a simplicial complex and L is a full subcomplex of M
with dim(M − L) ≤ n, every partial δ(ω)-realization g : |L| → X of M can
be extended to a full ω-realization of M.

P r o o f. The proof follows the pattern of that of Theorem 6.1. For
(ii)⇒(i), we repeat precisely the corresponding implication of that theo-
rem. As for (i)⇒(ii), let us check that the map δ constructed in (i)⇒(ii)
of Theorem 6.1 works in our present situation. Suppose M is a simplicial
complex, L is a full subcomplex of M with dim(M−L) ≤ n and g : |L| → X
is a partial δ(ω)-realization of M for some ω ∈ Cov(X). For every σ ∈ M
pick a U(σ) ∈ ω and H(σ) ∈ β(e(U(σ))) such that g(|σ ∩ L|) ⊂ H(σ). By
inductively climbing up the complexes Lk = L ∪ M (k) (k ≤ n), we now
extend g to a map u : |Ln| = |M | → RT such that u(|σ|) ⊂ conv(g(|σ ∩L|))
for every σ ∈M . Since H(σ) is convex, u(|σ|) ⊂ H(σ) ⊂ e(U(σ)). Then, by
Lemma 2.2(ii) (with F = |L|), there is an extension h : |M | → X of g such
that, for every σ ∈M , h(|σ|) ⊂ U(σ). This h is a full ω-realization of M .

Similar results remain valid for arbitrary ANE(n)-spaces:

Theorem 6.3. For an AE(0)-space X and n > 0 the following conditions
are equivalent :

(i) X is an ANE(n);
(ii) There is a map δ : Covcfo(X) → Covcfo(X) such that , whenever

Ω ⊂ Covcfo(X) is countable and Z is a space with dim(Z) < n, any two∧{δ(ω) : ω ∈ Ω}-close maps f, g : Z → X are
∧
Ω-homotopic;

(iii) There is a map δ : Covcfo(X) → Covcfo(X) such that , whenever
Ω ⊂ Covcfo(X) is countable, M is a simplicial complex and L is a full
subcomplex of M with dim(M − L) ≤ n, every partial

∧{δ(ω) : ω ∈ Ω}-
realization g : |L| → X of M can be extended to a full

∧
Ω-realization of M .

Here, Covcfo(X) denotes the family of all countable functionally open
covers of X. The proof of Theorem 6.3 closely follows the proofs of Theo-
rems 6.1 and 6.2.

Our last result in this section is a characterization of Čech-complete
ANE(n)-spaces by extension of maps with metric domains.
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Theorem 6.4. For a Čech-complete AE(0)-space X and n > 0 the fol-
lowing conditions are equivalent :

(i) X is an ANE(n);
(ii) There is a regular map δ : Cov(X) → Cov(X) with the following

property : If Z is a metric space, A ⊂ Z is closed with dim(Z − A) ≤ n,
f : Z → X and ω ∈ Cov(X), then every map g : A→ X which is δ(ω)-close
to f |A can be extended to a map which is ω-close to f .

P r o o f. (i)⇒(ii). Let δ be as in the proof of Theorem 6.1(i)⇒(ii). Suppose
Z is a metric space, A ⊂ Z is closed with dim(Z − A) ≤ n, f : Z → X and
ω ∈ Cov(X). Take g : A → X such that g and f |A are δ(ω)-close. Let
q : Z → RT be an extension of g. Consider ν = {H ∈ β(e(U)) : U ∈ ω}
and the open set W =

⋃{f−1(H) ∩ q−1(H) : H ∈ ν} in Z. Since f |A and
q|A = g are δ(ω)-close, W contains A. Take ϕ : Z → I such that ϕ|A ≡ 1 and
ϕ|(Z−W ) ≡ 0. Next define u : Z → RT by u(z) = (1−ϕ(z))f(z)+ϕ(z)q(z),
z ∈ Z. Observe that u|A = g, u|(Z−W ) = f |(Z−W ) and f is ν-close to u.
So, u(Z) ⊂ ⋃ ν ⊂ e(X). Since dim(Z − A) ≤ n, by Lemma 2.2(ii) (with
F = A), there is an extension h : Z → X of g such that h(u−1(e(U))) ⊂ U
for every U ∈ T (U). This implies that h is ω-close to f .

(ii)⇒(i). By Theorem 1.1(iii), it suffices to show that X has an n-
regular base. This can be done by following closely the proof of Theo-
rem 6.1(ii)⇒(i).

7. Open subspaces of ANE(n)’s. In this section we give some appli-
cations of the main theorems.

Theorem 7.1. Suppose X is a space having a countable functionally open
cover consisting of ANE(n)’s. Then X is an ANE(n).

To prove Theorem 7.1 we need three auxiliary propositions.

Proposition 7.2. Under the assumptions of Theorem 7.1, X is an
AE(0)-space.

P r o o f. Let ω be a countable functionally open cover of X consisting of
ANE(0)’s. By Corollary 4.6, it suffices to show that X ∈ ANE(0). To this
end, let Z be a zero-dimensional space, A ⊂ Z and g : A→ X be a Z-normal
map. Since ω is countable functionally open, there is a map p from X onto
a separable metric space Y such that p−1(p(U)) = U and p(U) is open in Y ,
for all U ∈ ω. Using a countable open cover of Y that is a closure refinement
of p(ω), we obtain an open cover {WU : U ∈ ω} of X such that cl(WU ) ⊂ U .
Note that, for every U ∈ ω,

(a) cl(WU ) is C-embedded in X.
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Indeed, let ϕ : cl(WU ) → R. Since, by Corollary 4.6, U ∈ AE(0), it fol-
lows from [1] that there is a map h from U onto a Polish space M with
h(cl(WU )) ⊂ M closed, and a function ψ : h(cl(WU )) → R such that
ψ ◦ (h| cl(WU )) = ϕ. Take a neighborhood G of h(cl(WU )) in M and an
extension Ψ : M → R of ψ with Ψ |(M −G) = 0. Define, finally, the required
extension Φ : X → R of ϕ by Φ|U = Ψ ◦ h and Φ|(X − U) = 0.

Since g is Z-normal, there is a functionally open (in Z) family ν = {VU :
U ∈ ω} with VU ∩A = g−1(WU ). Next, there exists a disjoint open cover µ
of V =

⋃
ν refining ν because V is zero-dimensional (being a functionally

open subset of Z). Our final step is to get an extension f : V → X of g.
Suppose P ∈ µ. If P ∩A = ∅, then merely take f |P to be a constant map. If
P ∩A 6= ∅, let U(P ) ∈ ω be such that g(P ∩A) ⊂WU(P ). By (a), cl(WU(P ))
is C-embedded in X. This implies that g|P ∩A : P ∩A→ U(P ) is P -normal.
Hence, there is an extension f |P : P → U(P ) of g|P ∩A because dim(P ) = 0
and U(P ) ∈ AE(0).

Proposition 7.3. Let X = G1 ∪ G2, where both G1 and G2 are func-
tionally open subsets of X. If each Gi has an (n,ℵ1)-regular base, then the
same is true for X.

P r o o f. Let γi : T (Gi)→ exp(T (Gi)) be an (n,ℵ1)-regular base for Gi,
i = 1, 2. Since each Gi is functionally open in X, there is a map h : X → I2

such that h−1(h(Gi)) = Gi and h(Gi) ⊂ I2 is open. So, every Gi contains a
functionally closed (in X) subset Fi such that F1∪F2 = X. Set L1 = X−F2,
L2 = X − F1 and L0 = G1 ∩G2. Define γ : T (X)→ exp(T (X)) by

γ(U) = γ1(U ∩L1)∪ γ2(U ∩L2)∪ (γ1(U ∩L0)∧ γ2(U ∩L0)), U ∈ T (X).

Note U ∩ Lj ∈ Tfo(X), j = 0, 1, 2, provided U ∈ Tfo(X). Hence, for U ∈
Tfo(X), γ(U) ⊂ Tfo(X) is countable because each family γi(U ∩ Li), γi(U ∩
L0) ⊂ Tfo(X), i = 1, 2, is countable. So, it only remains to check 2)γ of the
definition of an (n,ℵ1)-regular base (see Section 2). Take a countable family
U ⊂ T (X) and a non-empty W ∈ ∧{γ(U) : U ∈ U}. Then for every U ∈ U
there is a WU ∈ γ(U) such that W =

⋂{WU : U ∈ U}. Since L1 ∩ L2 = ∅,
there exists an i(W ) ∈ {1, 2} for which

WU ∈ γi(W )(U ∩ Li(W )) ∪ (γ1(U ∩ L0) ∧ γ2(U ∩ L0)), U ∈ U .
Therefore, for every U ∈ U we can choose a VU ∈ γi(W )(U ∩ Li(W )) ∪
γi(W )(U ∩L0) containing WU . Next, for any U ∈ U pick a j(U) ∈ {i(W ), 0}
such that VU ∈ γi(W )(U ∩ Lj(U)). Finally, note that

W ⊂
⋂
{VU : U ∈ U} ∈

∧
{γi(W )(U ∩ Lj(U)) : U ∈ U} n

↪→
⋂
U .

That is,
∧{γ(U) : U ∈ U} n

↪→⋂U .
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Proposition 7.4. Suppose ν is a countable disjoint functionally open
cover of a space X. If every V ∈ ν has an (n,ℵ1)-regular base, then the
same is true for X.

P r o o f. Merely set γ(U) =
⋃{γV (U ∩ V ) : V ∈ ν} (U ∈ T (X)), where

γV is an (n,ℵ1)-regular base for V .

P r o o f o f T h e o r e m 7.1. The proof follows as closely as possible the
proof of the classical result that every metric space that is a countable union
of open ANR’s is an ANR.

Suppose ω is a functionally open cover of X consisting of ANE(n)’s. By
Theorem 1.2(iii) and Proposition 7.2, it suffices to show that X admits an
(n,ℵ1)-regular base. First, we note that X is the union of an increasing
sequence {Uk : k = 1, 2, . . .} of functionally open subsets having (n,ℵ1)-
regular bases. Indeed, by Theorem 1.2(iii), any U ∈ ω has an (n,ℵ1)-regular
base. So, by Proposition 7.3, the same is true for the union of every finite
subfamily of ω. Next, take a countable functionally open cover ν1 ∪ ν2 of
X such that each νi is a pairwise disjoint refinement of {Uk : k = 1, 2, . . .}.
Such a cover ν1 ∪ ν2 certainly exists because there is a map g from X onto
a separable metric space Y such that, for every k, g−1(g(Uk)) = Uk and
g(Uk) ⊂ Y is open. Since every element of νi (being a functionally open
subset of some Uk) admits an (n,ℵ1)-regular base, by Proposition 7.4, Gi =⋃
νi (i = 1, 2) also has an (n,ℵ1)-regular base. Finally, by Proposition 7.3,

the same is true for X = G1 ∪G2.

Corollary 7.5. Suppose U and V are functionally open subsets of a
space X such that U, V, U ∩ V ∈ AE(n). Then X ∈ AE(n).

P r o o f. By Theorem 7.1 and Corollary 4.6, it suffices to show X is Cn−1.
Let g : Sm → X (m < n). As in the proof of Proposition 7.3, we take two
closed subsets F1 and F2 of X such that F1 ∪F2 = X, F1 ⊂ U and F2 ⊂ V .
Set Ai = g−1(Fi) and pick two closed B1, B2 ⊂ Bm+1 such that Bi∩Sm = Ai
and B1∪B2 = Bm+1. Using the hypotheses that U∩V , U and V are AE(n)’s
we can easily obtain the required extension of g by combining extensions on
B1 ∩B2, B1 and B2.

In conclusion, we prove an analogue of a result of Toruńczyk [12] con-
cerning metrizable ANR’s.

Theorem 7.6. Suppose X is a Čech-complete ANE(1)-space which has
a topological base B ⊂ T (X) such that , for every finite subfamily V ⊂ B,
every component of

⋂V is Cn−1. Then X is an ANE(n).

P r o o f. By Theorem 1.1(iii), it suffices to show that X admits an n-
regular base. Suppose η : T (X) → exp(T (X)) is a 1-regular base for X
(Theorem 1.1). Define γ : T (X)→ exp(T (X)) by setting
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γ(U) =
{⋂

V : V ⊂ B is finite and
⋂
V ⊂W ∈ η(U)

}
.

Suppose U1, U2 ∈ T (X). Since η(U1) ∧ η(U2) = η(U1 ∩ U2), the above defi-
nition guarantees that γ(U1) ∧ γ(U2) = γ(U1 ∩ U2). So, it only remains to
check that γ(U)

n
↪→ U for every U ∈ T (X). To this end, take g : Sm → H

with H ∈ γ(U) and m < n. If m = 0, then g(S0) is contractible in U because

γ(U) refines η(U) and η(U)
1
↪→ U . If m > 0, then g(Sm) is connected. From

the definition of γ, there is a finite V ⊂ B such g(Sm) ⊂ ⋂V ⊂ U . Hence,
g(Sm) lies in a component of

⋂V and thus, it is contractible in U .
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