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The space of ANR’s in Rn

by

Tadeusz D o b r o w o l s k i and Leonard R. Rubin (Norman, OK)

Abstract. The hyperspaces ANR(Rn) and AR(Rn) in 2R
n

(n ≥ 3) consisting respec-
tively of all compact absolute neighborhood retracts and all compact absolute retracts
are studied. It is shown that both have the Borel type of absolute Gδσδ-spaces and that,
indeed, they are not Fσδσ-spaces. The main result is that ANR(Rn) is an absorber for the
class of all absolute Gδσδ-spaces and is therefore homeomorphic to the standard model
space Ω3 of this class.

1. Introduction. For a metric space Z, by 2Z we denote the space of
all nonempty compacta with the topology determined by the Hausdorff dis-
tance. We shall refer to any subspace of 2Z as a hyperspace. The topological
classification of such hyperspaces has been an object of study for many years
[vM]. One of the fundamental results in the area is that 2Z is homeomorphic
to the Hilbert cube Q = [−1, 1]∞ if and only if Z is a Peano continuum. If
we consider C(Z) ⊂ 2Z , the subspace consisting of all the continua in Z,
then one has C(Z) ∼= Q if and only if Z is a Peano continuum which does
not contain a free arc.

Recently, much attention has been paid to hyperspaces which are not nec-
essarily complete-metrizable (see [C1], [C2], [DvMM], [DR], [GvM],
[CDGvM], and others). The central theme of these papers has been to iso-
late, for a given Z, a certain subspace of 2Z determined by some character-
istic topological property and then to topologically identify this hyperspace
as a classical model of infinite-dimensional topology. Some examples are:
the space of arcs or pseudoarcs in R2, the hyperspace of compacta in Q of
a fixed dimension n, the hyperspace of infinite-dimensional compacta in Q.

Continuing in this direction, we will deal in this paper with such hy-
perspaces as ANR(Z) and AR(Z) consisting respectively of the (compact)
absolute neighborhood retracts and absolute retracts in Z. For a space Z
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with nice local structure, the space ANR(Z) is a dense absolute neighbor-
hood retract of 2Z , which itself is an absolute neighborhood retract space.
This is the case if Z = Rn for n ≥ 1.

In the project of topologically identifying ANR(Rn) and AR(Rn), espe-
cially if one expects to put forward the techniques of infinite-dimensional
topology, one first encounters a question concerning the Borel structure of
these spaces. We presume that such questions were asked in the thirties by
the so-called Polish school. Later, the problem of finding a reasonable com-
plete metric on ANR(Z) was successfully investigated by Borsuk [Bor] and
Kuratowski [Kur1]. Borsuk [Bor] discovered that for a finite-dimensional
compactum Z, there exists such a metric that is stronger than the Haus-
dorff metric (i.e., convergence in Borsuk’s metric implies convergence in the
Hausdorff metric). Hence, at least for a finite-dimensional compactum Z,
ANR(Z) is the continuous injective image of a complete space, so it is Borel
by an application of Suslin’s result (see [Kur2]).

In this paper, we shall deal with ANR(Rn) and AR(Rn) for n ≥ 3.
The cases ANR(R2) and AR(R2) are handled in [CDGvM]. It turns out
that ANR(R2) is a difference of two absolute Fσδ-sets; indeed, the exact
Borel class of ANR(R2) is the so-called first small Borel class of the second
ambiguous Borel class (see [Kur2] for this terminology). By contrast, AR(R2)
is an absolute Fσδ-set which is not a Gδσ-set. It is evident that AR(R) is
homeomorphic to {(x, y) ∈ R2 | x ≥ y}. On the other hand, one can show
that ANR(R) ∼= Qf , where Qf = {(xi) ∈ Q | xi = 0 a.e.}—see the Appendix.

Our first result on the topological identification of ANR(Rn), n ≥ 3,
states that both ANR(Rn) and AR(Rn) are absolute Gδσδ-sets; moreover,
they are not Fσδσ-sets. Hence they are of the exact third multiplicative Borel
class.

Results related to the topological classification are obtained with use
of the absorbing set method (see Section 3). We use a variation of this
method by [BM] (and then developed and applied by many authors, see, e.g.,
[DvMM]). In [BM] it is shown that, for each of the absolute Borel classes Aα
andMα with α ≥ 2, there exist spaces (one calls them models) Λα and Ωα,
respectively, which are absorbing sets for Aα and Mα. The spaces Λα and
Ωα are of the exact additive and multiplicative class, topologically contain
all elements of Aα, Mα as closed subsets, and are “minimal” with respect
to these two properties. One can find copies of them nicely embedded as
dense subsets of Q (see [BM]).

We usually will identify Rn with the open cube (−1, 1)n ⊂ [−1, 1]n = Dn,
and then will treat ANR(Rn) as a subspace of 2Dn ∼= Q. Our main result
states that ANR(Rn) with n ≥ 3 is an M3-absorber. By the Uniqueness
Theorem on absorbers, ANR(Rn) is homeomorphic to Ω3. We do not settle
the case of AR(Rn) for n ≥ 3. There are some indications that, for large n,
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the space AR(Rn) might not even be an absolute retract; see the Introduc-
tion of [CDGvM]).

To complete the picture, let us mention that in [CDGvM] it was shown
that ANR(R2) is a Γ -absorber, where Γ is the first small Borel class of the
second ambiguous Borel class. Moreover, it was proved that ANR(R2) ∼=
Ω2×(Q\Ω2), a subset of Q×Q, which is another Γ -absorber. In [CDGvM],
it was also shown that AR(R2) ∼= Ω2.

The facts that ANR(Rn) and AR(Rn) are absolute Gδσδ-sets are ob-
tained in Section 2. They are consequences of our characterization of (com-
pact) absolute neighborhood retracts and absolute retracts among compacta
in the Hilbert cube Q.

That the spaces ANR(Rn) and AR(Rn) for n ≥ 3 are absolute Gδσδ-sets
which are not Fσδσ-sets is derived in Section 4. This is obtained by using a
“cylindrical” variation of the approach used in [CDGvM].

The main difficulty of showing that ANR(Rn) for n ≥ 3 is an M3-
absorbing set is in verification of the so-called strong M3-universality (see
Section 3). Here our method differs from the ad hoc arguments developed
before. The details are in Section 6.

In our case, the proof comes down to this. We will be given a map
f : U → V ∩ 2R

n

, where U is an open subset of Q, and V is an open
subset of 2Dn . Then for an arbitrary Gδσδ-subset C of U we must be able
to closely approximate f by an injective map g : U → V ∩ 2R

n

so that
g−1(ANR(Rn)) = C.

First we employ an approximate factorization α : U → P , β : P →
V ∩2R

n

of f through a polyhedron P . We design a certain map ϕ : U → 2I
3

so that ϕ(q) ∈ ANR(I3) for q ∈ C and ϕ(q) ∈ 2I
3 \ANR(I3) for q ∈ U \C.

We then obtain a map β̃ : P × 2I
3 → V ∩ 2R

n

so that for a fixed K ∈ 2I
3
,

β̃ : P = P × {K} → V ∩ 2R
n

closely approximates β. Moreover, this β̃
is defined in such a way that if q ∈ C, then β̃(p, ϕ(q)) ∈ ANR(Rn) and if
q ∈ U \ C, then β̃(p, ϕ(q)) ∈ 2R

n \ ANR(Rn) for each p ∈ P . Finally, our
map g : U → V ∩ 2R

n

is given as the composition (α,ϕ) : U → P × 2I
3

followed by β̃ : P × 2I
3 → V ∩ 2R

n

. This g will closely approximate f , and
by a procedure involving certain coding given by the map ϕ and retained
by β̃, we shall simultaneously deduce that g is injective.

For the reader familiar with the techniques in [CN], we mention that our
construction of the map β̃ bears some resemblance to a method used there.
Our definition of the map β̃ was in part inspired by their work.

The authors wish to thank Jan van Mill for several stimulating discus-
sions during his visit to Norman in June, 1992, which initiated our research
in this subject. We are especially grateful to Robert Cauty for suggestions
which greatly influenced our preparation of the final draft of this paper.
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2. Borel type of ANR(Rn). In this section we apply the following
characterization of compact absolute neighborhood retracts and compact
absolute retracts in the Hilbert cube Q to determine the Borel types of
ANR(Rn) and AR(Rn).

2.1. Proposition. Let X be a compact subset of the Hilbert cube Q. Then
X is an absolute neighborhood retract (resp., an absolute retract) if and only
if for every ε > 0 there exists a neighborhood U of X such that

(∗) for every δ > 0 there exists a map f : U → B(X, δ) (resp., f : Q →
B(X, δ)), where

(i) d(x, f(x)) < ε for x ∈ U ,
(ii) f is the identity map on some neighborhood of X in U.

P r o o f. We will assume that Q is a convex subset of a Hilbert space and
d is the metric induced by the norm.

Necessity . There is a neighborhood V of X and a retraction r : V → X
(resp., r : Q→ X). Choose a neighborhood U of X, U ⊂ V , such that

(1) d(x, r(x)) < ε, x ∈ U.
Given δ > 0, choose β > 0, β < δ, so that B(X,β) ⊂ U and

(2) d(x, r(x)) < δ whenever x ∈ B(X,β).

Find a map λ : Q→ I so that λ(Q\B(X,β)) ⊂ {1} and λ(B(X,β/2)) ⊂ {0}.
Define f : U → Q (resp., f : Q→ Q) by

f(x) = λ(x)r(x) + (1− λ(x))x.

We claim that f(U) ⊂ B(X, δ) (resp., f(Q) ⊂ B(X, δ)). Since f(x) =
r(x) off B(X,β) and since r(x) ∈ X, we only need to check f(x) for x ∈
B(X,β). In this case, however, we have

d(r(x), f(x)) = d(λ(x)r(x) + (1− λ(x))r(x), λ(x)r(x) + (1− λ(x))x)

≤ d(r(x), x) < δ

(see (2)). Since r(x) ∈ X it follows that f(x) ∈ B(X, δ).
To check (i) notice that, according to (1), d(x, r(x)) < ε for x ∈ U ;

therefore we only need to check f(x) for x ∈ B(X,β). As previously, we have
d(x, f(x)) = d(λ(x)x+ (1− λ(x))x, λ(x)r(x) + (1− λ(x))x) ≤ d(r, r(x)) < ε
(see (1)).

The condition (ii) follows from the fact that λ carries B(X,β/2) to 0,
and hence f is the identity map on B(X,β/2) ⊂ U .

Sufficiency . Let X be a compactum in Q. For each ε = 1/2n we select a
neighborhood Un of X so that condition (∗) is satisfied. Pick kn ∈ N so that

B(X, 1/kn) ⊂ Un+1,
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and k1 < k2 < . . . Apply (∗) to δn = 1/kn to obtain a map fn : Un →
B(X, 1/kn) ⊂ Un+1 (resp., fn : Q→ B(X, 1/kn) ⊂ Un+1) such that

(i)n d(x, fn(x)) < 1/2n for x ∈ Un,
(ii)n fn is the identity map on X.

Let g1 = f1 : U1 → B(X, 1/k1) (resp., g1 = f1 : Q → B(X, 1/k1)).
Assume g1, . . . , gn, n ≥ 1, have been defined so that gi : U1 → B(X, 1/ki)
(resp., gi : Q→ B(X, 1/ki)) and gi is the identity map on X for 1 ≤ i ≤ n.
We let gn+1 = fn+1 ◦ gn. By (i)n, we get

d(gn+1(x), gn(x)) = d(fn+1(gn(x)), gn(x)) < 1/2n+1

for all x ∈ U1 (resp., x ∈ Q). Hence, the sequence {gn}∞n=1 converges uni-
formly on U1 (resp., on Q). Let g : U1 → Q (resp., g : Q→ Q) be the limit
of {gn}∞n=1.

Since gn is the identity on X for each n, so is g. Clearly, gn(U1) ⊂
fn(Un) ⊂ B(X, 1/kn) (resp., gn(Q) ⊂ fn(Q) ⊂ B(X, 1/kn)). We have that
the sequence {kn}∞n=1 increases and X is compact, so im g ⊂⋂∞
n=1B(X, 1/kn) = X. This shows that g is a retraction of U1 (resp., of

Q) onto X.

For a space Z we define the following subspaces of the hyperspace 2Z :

(1) ANR(Z) = {X ∈ 2Z | X is an absolute neighborhood retract},
(2) AR(Z) = {X ∈ 2Z | X is an absolute retract},
(3) ARf(Z) = {X ∈ ANR(Z) | each component of X is an absolute

retract},
(4) ANRc(Z) = {X ∈ ANR(Z) | X is connected}.

The spaces AR(Z) and ANRc(Z) will be treated as subspaces of C(Z), the
hyperspace of all continua of Z, rather than as subspaces of 2Z .

2.2. Theorem. The spaces ANR(Q), AR(Q), ARf(Q) and ANRc(Q) are
absolute Gδσδ-sets.

P r o o f. We first establish the cases of ANR(Q) and AR(Q) by showing
that these spaces are Gδσδ-subsets of the compactum 2Q.

Let U be a countable base for Q which is closed under finite unions. It
follows that for every compactum X ⊂ Q and every neighborhood G of X
there exists U ∈ U such that X ⊂ U ⊆ G. Let F (n,U,m) be the subset of 2Q

consisting of X such that X ⊂ U , and there exists a map f : U → B(X, 1/m)
with d(f(x), x) < 1/n for x ∈ U , and f is the identity on a neighborhood of
X in U ; here n,m ∈ N and U ∈ U . According to 2.1, we have

ANR(Q) =
∞⋂
n=1

⋃

U∈U

∞⋂
m=1

F (n,U,m).
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Since each F (n,U,m) is open and U is countable, ANR(Q) is a Gδσδ-
subset of 2Q. Changing the domain of f in the definition of F (n,U,m) from
U into Q and applying the absolute retract part of 2.1, we deduce that
AR(Q) is also a Gδσδ-subset of 2Q.

Since ANRc(Q) = ANR(Q) ∩ C(Q) and C(Q) is a closed subset of 2Q,
ANRc(Q) is a Gδσδ-subset of 2Q.

Now we will establish the case of ARf(Q). Let Cn = {X ∈ 2Q | X has
≤ n components}, n ≥ 1. Then Cn is a closed subset of 2Q. In what follows,
we show that ARf(Q) ∩ Cn is a Gδσδ-subset of 2Q. Consequently, ARf(Q),
being a countable union

⋃∞
n=1(ARf(Q)∩Cn) of closed Gδσδ-subsets, is itself

an absolute Gδσδ-set (see Proposition 3.8 of [DM]).
Consider the map u : C(Q)n → 2Q given by u(A1, . . . , An) = A1 ∪ . . .

. . . ∪An. Write D1 = C1, and Dn = Cn\
⋃n−1
i=1 Ci for n ≥ 2. We have

u−1(ARf(Q) ∩Dn) = AR(Q)n ∩ Yn,
where Yn = {(A1, . . . , An) ∈ C(Q)n | Ai ∩ Aj = ∅ when i 6= j}. Since Yn is
open and the product AR(Q)n is a Gδσδ-subset of C(Q)n, u−1(ARf(Q)∩Dn)
is also a Gδσδ-subset of C(Q)n. Applying a result of [SR], ARf(Q) ∩Dn is
an absolute Gδσδ-set. Finally, ARf(Q)∩Cn, being a finite union of absolute
Gδσδ-sets,

⋃n
i=1 ARf(Q) ∩Dn, is also an absolute Gδσδ-set.

2.3. Corollary. For every separable, complete-metrizable space Z, the
spaces ANR(Z), AR(Z), ARf(Z) and ANRc(Z) are absolute Gδσδ-sets.

P r o o f. Embed Z in the Hilbert cube Q. Then Z is a Gδ-subset of Q.
It is then clear that 2Z = {X ∈ 2Q |X ⊂ Z} is a Gδ-subset of 2Q. Since
ANR(Z) = ANR(Q) ∩ 2Z , AR(Z) = AR(Q) ∩ 2Z , ARf(Z) = ARf(Q) ∩ 2Z

and ANRc(Z) = ANRc(Q) ∩ 2Z , the assertion follows from 2.2.

3. Main result. Let us recall that a closed subset A of an absolute
neighborhood retract M is a Z-set if every map of the n-dimensional cube
In, n ≥ 1, can be approximated by a map whose image misses A. An
arbitrary set A (i.e., not necessarily closed) with the above property is called
a locally homotopy negligible set . A countable union of Z-sets is called a
σZ-set . An embedding whose image is a Z-set is called a Z-embedding .

Here, the Hilbert cube Q will be represented as [−1, 1]∞, the countable
product of the interval [−1, 1].

Let C be a class of spaces which is topological (i.e., every topological
copy of an element of C belongs to C). Let M be a Hilbert cube manifold.
A set X ⊆M is called strongly C-universal if for every C ∈ C with C ⊂ Q,
every map f : Q → M that restricts to a Z-embedding on some compact
subset K of Q can be arbitrarily closely approximated by a Z-embedding
g : Q → M such that g|K = f |K and g−1(X)\K = C\K. (This notion is
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closely related to so-called strong (K, C)-universality, where K is the class of
all compacta; see [C3].)

A subset X ⊆M is called a C-absorber in M if:

(1) X ∈ C,
(2) X ⊆ S for some σZ-set S in M ,
(3) X is strongly C-universal in M .

The uniqueness theorem [DvMM, Theorem 2.1] states that two C-ab-
sorbers X and Y in respective copies M and M ′ of Q are homeomorphic,
i.e., there exists a homeomorphism h of M onto M ′ so that h(X) = Y . This
result can be extended to Hilbert cube manifolds as well [BGvM].

The pseudoboundary of Q, i.e., the set

B = {(xi) ∈ Q | ∃(i ∈ N) (|xi| = 1)},
is an example of an absorber for the class of all σ-compact spaces. The space
B∞ in Q∞ is an absorber for the Borel class of absolute Fσδ-sets. Let

P = {(xi) ∈ (Q∞)∞ | [∀(i ∈ N) (xi ∈ Q∞\B∞)] & xi = 0 a.e.}.
The space P∞ in ((Q∞)∞)∞ is an absorber for the Borel class of absolute
Gδσδ-sets (and P is an absorber in (Q∞)∞ for the Borel class of absolute
Gδσ-sets). These absorbers (together with all absorbers related to the Borel
hierarchy) were described in [BM] and denoted by B = Λ1, B

∞ = Ω2,
P = Λ2 and P∞ = Ω3.

For n ≥ 3, we let Dn = [−1, 1]n ⊂ Rn. We will consider the hyperspaces
2Dn and C(Dn), copies of the Hilbert cube [vM]. We will identify the hy-
perspaces 2R

n

and C(Rn) with 2(−1,1)n and C((−1, 1)n) in 2Dn and C(Dn),
respectively.

Here is our main result.

3.1. Theorem. For every n ≥ 3, ANR(Rn) and ARf(Rn) are Gδσδ-
absorbers in 2Dn , and ANRc(Rn) is a Gδσδ-absorber in C(Dn).

P r o o f. We need to check the conditions (1)–(3) of the above definition
of an absorber with C = Gδσδ, the Borel class of absolute Gδσδ-sets, in the
respective copy M = 2Dn or M = C(Dn) of the Hilbert cube Q.

By 2.3, ANR(Rn), ARf(Rn) and ANRc(Rn) are absoluteGδσδ-sets; hence
(1) is satisfied.

Since every element of ANR(Rn) is either a finite set or is of dimension
≥ 1, we have

ANR(Rn) ⊂ F(Rn) ∪ dim≥1(Rn),

where F(Rn) is the hyperspace of finite subsets of Rn, and dim≥1(Rn) is
the hyperspace of compacta in Rn with dimension ≥ 1. Both F(Rn) and
dim≥1(Rn) are σZ-sets in 2Dn (see [Cu1], [DvMM], [DR]). Consequently,
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the spaces ANR(Rn) and ARf(Rn) ⊂ ANR(Rn) are contained in a σZ-set
in 2Dn .

Consider the hyperspace L(Rn) consisting of locally connected continua
in Rn. We have ANRc(Rn) ⊂ L(Rn). By a result of [GvM], the space L(Rn)
for n ≥ 3 is contained in a σZ-set in C(Dn); hence ANRc(Rn) also is
contained in a σZ-set in C(Dn). The verification of (2) is complete.

We will verify condition (3) in Section 6; more exactly, condition (3)
follows from the condition (abs) (formulated in Proposition 3.2) which will
be proved in Section 6.

3.2. Proposition. Let M be a copy of the Hilbert cube and C be a topo-
logical class which is hereditary with respect to open sets. A set X ⊂ M is
strongly C-universal provided the following holds:

(abs) given open sets U ⊆ Q and V ⊆M , an element C ∈ C with C ⊆ U
and a map ε : V → (0, 1), for every map f̃ : U → V there exists
an injective map g : U → M such that d(g(x), f̃(x)) < ε(f̃(x)) for
x ∈ U , g(U) is locally homotopy negligible in M and g−1(X) = C.

P r o o f. Suppose we are given an element C ∈ C, C ⊂ Q, and a map
f : Q→M which restricts to a Z-embedding on a compact set K ⊂ Q. We
may assume that K 6= ∅. Since f(K) is a Z-set, we can approximate f by f̃
such that f̃(Q\K)∩ f̃(K) = ∅ and f̃ |K = f |K. For given ε > 0, set ε̃(m) =
εd(m, f(K)) for m ∈M . We may assume that ε < 1 and d is bounded by 1.
Now apply the condition (abs) with U = M\K, V = M \ f(K), C replaced
by C\K, and f̃ |U to find an injective map g : U →M such that

d(g(x), f̃(x)) < ε̃(f̃(x)) = εd(f̃(x), f̃(K)), x ∈ U,
g(U) is locally homotopy negligible in M , and g−1(X) = C\K. Since ε < 1,
actually g maps U into V = M\f(K). Extending g by f over K we see
that g : Q → M is injective and continuous, and g−1(X)\K = C\K. Since
g(Q) = f(K) ∪ g(U) is the union of a Z-set and a locally homotopy negli-
gible set, it is a Z-set. The assumption that d is bounded by 1 yields that
d(g(x), f̃(x)) ≤ ε; the proof is complete.

Let P0 = (((Q∞)∞)∞, P∞)\{0}, where 0 ∈ P∞ is the point all of whose
coordinates are 0. The symbol (Q,Ω3) will stand for (((Q∞)∞)∞, P∞).

3.3. Proposition. (a) A pair (M,X) is homeomorphic to the pair P0 if
and only if

(i) M is homeomorphic to Q \ {pt};
(ii) X ∈ Gδσδ;
(iii) X is contained in some σZ-set of M ;
(iv) X is strongly Gδσδ-universal in M .
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(b) For every q ∈ Ω3, the pairs (Q,Ω3) \ {q} and P0 are homeomorphic.

P r o o f. It is standard that P0 satisfies (i)–(iv). Conversely, suppose that
a pair (M,X) satisfies (i)–(iv). Let M̃ = M∪{∞} be the one-point compact-
ification of M . Obviously, M̃ is a topological copy of Q. Write X̃ = X∪{∞}.
We deduce that X̃ is contained in some σZ-set of M̃ and that X̃ ∈ Gδσδ.
Moreover, using (iv), it can easily be checked that X̃ is strongly Gδσδ-
universal in M̃ . By [CDGvM, Theorem 2.5], there exists a homeomorphism
h : M̃ → ((Q∞)∞)∞ such that h(X̃) = P∞. Further, one can choose h in
such a way that h(∞) = 0 ∈ P∞. As a result, h(X) = P∞ \ {0}, and the
proof of (a) is complete.

Part (b) follows from the fact that (Q,Ω3)\{q} satisfies (i)–(iv) of (a).

3.4. Corollary. For every n ≥ 3, the spaces ANR(Rn), ARf(Rn) and
ANRc(Rn) are homeomorphic to P∞. More precisely , the pairs (2R

n

,
ANR(Rn)), (2R

n

,ARf(Rn)), and (C(Rn),ANRc(Rn)) are homeomorphic to
(Q,Ω3) \ {q} independently of the choice of q ∈ Q.

P r o o f. We will apply 3.2(a) and (b). By results of [Cu2], the spaces
M = 2R

n

and M = C(Rn) are homeomorphic to Q \ {pt}. By 2.3, X =
ANR(Rn), X = ARf(Rn), and X = ANRc(Rn) are absolute Gδσδ-sets. An
argument of the proof of 3.1 shows that each X is contained in a σZ-set
in the respective M . The strong Gδσδ-universality of X in 2Dn (resp., in
C(Dn)) implies the strong universality of X in the suitable M .

We close this section with a remark concerning one property of C which
is usually required in the definition of a C-absorber. Namely, the uniqueness
theorem on absorbers was stated and proved in [DvMM] for a class C which
is closed hereditary, i.e., every closed subset of an element of C also belongs
to C. It is obvious that the class Gδσδ is closed hereditary and the version
of the uniqueness theorem from [DvMM] applies to conclude 3.4. Let us,
however, observe that the closed hereditary assumption is superfluous.

3.5. Lemma. Let C be a topological class. If a subset X of a copy M of
the Hilbert cube is strongly C-universal then X is also C̃-universal , where
C̃ = {C0 | ∃(C ∈ C) (C0 is a closed subset of C )}.

P r o o f. Let C ∈ C, C0 be a closed subset of C and suppose C0 ⊂ Q.
Choose a homeomorphism h : C → C ′ such that h(C0) = C0 and C ′ ∩Q =
C0. There exists a copy Q′ of Q such that Q ∪ C ′ ⊂ Q′.

Given a map f : Q → M which restricts to a Z-embedding on some
compactum K ⊂ Q, extend f to a map f : Q′ → M . Approximate f by
g such that g|K = f |K, g−1(X)\K = C ′\K, and g is a Z-embedding. Set
g = g|Q, and notice that g−1(X)\K = C0\K.
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4. Allowable sequences and universality of ANR(Rn). In this sec-
tion we make the first step towards verification of the strong universality of
ANR(Rn) in the version contained in 3.2(abs). We shall show that the space
ANR(Rn) (resp., AR(Rn)) for n ≥ 3 is universal for the class Gδσδ, that is,
every B ∈ Gδσδ admits a closed embedding in ANR(Rn) (resp., AR(Rn)).
This will be achieved by using the notion of allowable sequence and the op-
eration X → Z(X) which to every allowable sequence X assigns an element
Z(X) ∈ 2I

3

0 = {Y ∈ 2I
3 | 0 ∈ Y }. Placing B in the Hilbert cube Q, we will

describe an embedding of Q in C(I3) ⊂ 2I
3

which precisely sends B into
AR(I3) and Q \ B into C(I3) \ ANR(I3). Write Q \ B =

⋃∞
n=1An, where

each An is an Fσδ-subset of Q. Roughly speaking, to each x ∈ Q we assign
an allowable sequence X = {Xi}∞i=1 with Xi ∈ 2I

2
so that the local struc-

ture of
⋃∞
i=1Xi is determined by the fact that x ∈ An or x ∈ Q \An. (Here

we employ in an essential way a construction appearing in a preliminary
version of [CDGvM].) Finally, the use of the operation X → Z(X) makes
it possible to code the fact that whenever x ∈ B then Z(X) ∈ AR(I3), and
whenever x ∈ Q \B, then Z(X) ∈ C(I3) \ANR(I3).

In this section we mostly deal with R3 and I3 ⊂ R3. When appealing to
R, R2, I and I2 we mean these objects are subsets of R3 in the way that
R = R×{0}× {0} ⊂ R2 = R×R×{0} ⊂ R3 and I = I ×{0}× {0} ⊂ I2 =
I × I × {0} ⊂ I × I × I ⊂ R3.

Choose a sequence {Ii}∞i=1 of closed intervals Ii = [ai, bi] so that 0 <
bi+1 < ai < bi < 1 and bi+1 − ai+1 < bi − ai for i ≥ 1, and lim ai = 0. Let
Di = [ai, bi]× [0, a2

i ] ⊂ I2. We have

(i) Ii ∩ Ij = ∅ when i 6= j,
(ii) the sequence {Ii}∞i=1 converges to {0} in 2I ,

(iii) for each line L ⊂ R2 containing the origin, either L ⊂ R× {0} or L
intersects Di for at most finitely many i.

We shall now describe three classes of one-dimensional continua Λ1
i , Λ

2
i ,

Λ3
i (i ∈ N). Write ci for the midpoint of Ii. Then Λ1

i ⊂ 2Di consists of
those elements of the form {c} × [0, a2

i ] where c ∈ Ii. We define Λ2
i ⊂ 2Di

to be those elements ({a, d} × [0, ε]) ∪ ([a, b] × {ε}) ∪ ([c, d] × {ε}) where
ai ≤ a ≤ b < c ≤ d ≤ bi and 0 ≤ ε ≤ a2

i . Finally, Λ3
i ⊂ 2Di will be all those

elements ([a, b] × {ε}) ∪ ({a, b} × [a, ε]) with ai ≤ a < b ≤ bi, 0 < ε ≤ a2
i .

We let

Λi = Λ1
i ∪ Λ2

i ∪ Λ3
i ⊂ 2Di , i ≥ 1.

Fix a decomposition

(iv) N =
∞⋃

j=0

Nj
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of N into infinite sets Nj , with Ni ∩ Nj = ∅ when i 6= j. We retain this
decomposition throughout the paper.

4.1. Definition. An element X of
∏∞
i=1 Λi ⊆

∏∞
i=1 2Di will be treated

as a sequence {Xi}∞i=1 and will be called an allowable sequence if Xi ∈
Λ1
i whenever i ∈ N0. We assign to such an X a 2-dimensional continuum

Z(X) ∈ 2I
3

0 in the following manner. Write Dxz = I × {0} × I and Dxy =
I × I × {0}. Let

Zj(X) = Dxz ∪Dxy ∪
⋃
{Xi × [0, 1/(j + 1)] | i ∈ N0 ∪ . . . ∪Nj},

and

Z(X) =
∞⋃

j=0

Zj(X).

Geometrically, Z(X) is the union of two planar disks Dxz and Dxy along
with the cylinders over each Xi of height 1/(j + 1), i ∈ Nj .

The lemma below collects certain properties of Z(X).

4.2. Lemma. Let X = {Xi}∞i=1 and Y = {Yi}∞i=1 be allowable sequences.
Then

(a) Dxz is the only square in Z(X) containing {0} × {0} × I as one of
its edges;

(b) if i ∈ N0 and ai ≤ x ≤ bi, then Z(X) is locally a 2-manifold at
(x, 0, 0) if and only if (x, 0) 6∈ Xi;

(c) relative to the rectilinear PL structure on R3, Z(X) is locally poly-
hedral at the points not in {0} × {0} × I and is not locally polyhedral at all
points of {0} × {0} × I;

(d) Z(X) is contractible;
(e) Z(X) is locally contractible at 0 ∈ Z(X);
(f) if for each j ≥ 0, Xi belongs to Λ3

i for at most finitely many i ∈ Nj ,
then Z(X) is locally contractible at each p = (0, 0, t) with 0 < t ≤ 1;

(g) if for some j ≥ 0, Xi belongs to Λ3
i for infinitely many i ∈ Nj , then

Z(X) is not locally simply connected at p = (0, 0, t) whenever 1/(j + 2) <
t < 1/(j + 1);

(h) for each line segment [a, b] in R3, [a, b] ∩Z(X) is an absolute neigh-
borhood retract ;

(i) the local topological structure of Z(X) at (0, 0, 0) is different from that
of Z(Y ) at (0, 0, 1) and from that of (I × [−1, 0]× {0}) ∪ Z(Y ) at (0, 0, 0);

(j) if i ∈ N0, ai ≤ x ≤ bi, and (x, 0) ∈ Xi ∩ Yi, then Xi = Yi.

P r o o f. The statements (a), (b), (c), (j) are evident. The formula
(x1, x2, x3) → (x1, x2, (1 − λ)x3), λ ∈ I, establishes a strong deformation
retraction of Z(X) onto the disk Dxy. The same formula restricted to a
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cubical neighborhood U of 0 witnesses a strong deformation retraction of U
onto a disk contained in U ∩ I2. This concludes (d) and (e).

To get (f), (g), use the fact that for 1/(j+2) < t ≤ 1/(j+1), (0, 0, t) has
a neighborhood in Z(X) which admits a strong deformation retraction onto
Z(X)∩ (I2×{t}), the latter being a copy of I ∪ (

⋃{Xi | i ∈ N0∪ . . .∪Nj}).
In the case of (f), the latter is topologically a continuum consisting of I,
a finite union of copies of S1, each intersecting I in exactly one arc, and
a null sequence of nonintersecting arcs each with precisely one point on I,
and which converges to {0}. In the case of (g), infinitely many of the arcs
become copies of S1 each intersecting I in exactly one arc.

Turning to (h), it is sufficient to prove that for each line segment [a, b]
in R3 such that a ∈ Z(X), there exists c between a and b such that either
[a, c] ⊆ Z(X) or [a, c] ∩ Z(X) = {a}. If a is not in {0} × {0} × I, then
(c) shows that Z(X) is locally polyhedral at a, and so (h) is certainly true.
Hence assume that a ∈ {0} × {0} × I. If [a, b] lies in the xz-plane then (h)
is true. If not, then the projection [a0, b0] of [a, b] to the xy-plane is a line
segment with a0 = 0 and b not in R. Using (iii), find c0 between a0 and b0
so that [a0, c0] intersects no Di. Let c ∈ [a, b] be the point that projects to
c0. Then either [a, c] ∩Dxy is nontrivial or [a, c] ∩ Z(X) = {a}.

Lastly, to see why (i) is true, let W be a neighborhood of (0, 0, 0) in
Z(X). Then there exists a 2-cell D ⊆ W with (0, 0, 0) ∈ ∂D and such that
D\∂D is an open subset of Z(X). On the other hand, if W is a neighborhood
of (0, 0, 1) in Z(Y ), then there is no such 2-cell D ⊆W . We leave the proof
of the other part to the reader.

4.3. Proposition. (a) For an allowable sequence X = {Xi}∞i=1, Z(X)
is an absolute retract if and only if for each j ≥ 0, Xi ∈ Λ3

i for at most
finitely many i ∈ Nj ; in case Z(X) is not an absolute retract , it is also not
an absolute neighborhood retract.

(b) The assignment X → Z(X) is continuous and injective from
∏∞
i=1 Λi

into 2I
3

0 .

P r o o f. (a) Suppose that for each j ≥ 0, Xi ∈ Λ3
i for at most finitely

many i ∈ Nj . Then from 4.2(d)–(f), Z(X) is locally contractible at all points.
Since Z(X) is finite-dimensional (actually 2-dimensional) and contractible
(4.2(d)), it is an absolute retract. Conversely, if there is j ≥ 0 such that
Xi ∈ Λ3

i for infinitely many i ∈ Nj , then by 4.2(g), Z(X) is not an absolute
retract. The same argument shows that if Z(X) is not an absolute retract,
then it is not an absolute neighborhood retract.

(b) The injectivity is obvious. Let {Xn}∞n=1 be a sequence in
∏∞
i=1 Λi

converging to X0 ∈ ∏∞i=1 Λi. Then, for each j ≥ 1 the sequence {Z(Xn) ∩
(I × I × [1/j, 1])}∞n=1 converges to Z(X0) ∩ (I × I × [1/j, 1]). Moreover, for
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each ε > 0 there exists j ∈ N such that for all n,

(1) Dxy ⊂ Z(Xn) ∩ (I × I × [0, 1/j]) ⊂ B(Dxy, ε).

Let α0 : N0 → N be a bijection.

4.4. Proposition. Let A be an Fσδσ-subset of the Hilbert cube Q. There
exists an embedding Θ = (Θi) : Q→∏∞

i=1 Λi such that

(a) if q ∈ A, then for some j ≥ 0 there are infinitely many i ∈ Nj such
that Θi(q) ∈ Λ3

i ,
(b) if q ∈ Q \ A, then for each j ≥ 0 there are at most finitely many

i ∈ Nj such that Θ(q) ∈ Λ3
i ,

(c) for each q ∈ Q and i ∈ N0, Θi(q) = {2−1(bi + ai) + 2−1qj(bi− ai)}×
[0, a2

i ] ∈ Λ1
i , where j = α0(i).

Let us postpone the proof of Proposition 4.4 and formulate our main
result of this section which is a direct consequence of 4.3, 4.4 and 4.2.

4.5. Theorem. Let A be an Fσδσ-subset of Q and Θ be an embedding as
in Proposition 4.4. The map ϕ = Z ◦Θ : Q→ 2I

3

0 is an embedding such that

(a) ϕ(q) is contractible for q ∈ Q,
(b) if q ∈ A, then ϕ(q) is not an absolute neighborhood retract ,
(c) if q ∈ Q \A, then ϕ(q) is an absolute retract.

A standard immediate consequence of 4.5 and 2.3 is

4.6. Corollary. For every n ≥ 3, the spaces ANR(Rn), AR(Rn),
ARf(Rn) and ANRc(Rn) are essential absolute Gδσδ-sets.

P r o o f. Let Y ⊂ 2Dn be one of these spaces. From 2.3, Y is a Gδσδ-subset
of the Hilbert cube 2Dn . We need to show that Y is essential, i.e., that Y is
not an Fσδσ-subset.

There exists a Gδσδ-subset B of Q such that B is not an Fσδσ-subset.
Let A = Q \ B, and apply Theorem 4.5 to obtain a map ϕ : Q → 2I

3

0 such
that ϕ−1(Y0) = ϕ−1(ϕ(Q) ∩ Y0) = B, where Y0 = Y ∩ 2I

3

0 . If Y were an
Fσδσ-subset of 2Dn , then ϕ(Q) ∩ Y0 would be an Fσδσ-subset of 2I

3

0 , which
in turn would imply that B is an Fσδσ-subset, a contradiction.

The next lemma will help us prove Proposition 4.4. It exists in a prelim-
inary version of [CDGvM]; we include its proof because [CDGvM] is only a
preprint now.

4.7. Lemma. Suppose A is an Fσδ-subset of Q. There exists a map ψ =
(ψi) : Q→∏∞

i=1 Λi such that

(a) if q ∈ A, then ψi(q) ∈ Λ3
i for infinitely many i ,

(b) if q ∈ Q \A, then ψi(q) ∈ Λ1
i ∪ Λ2

i for almost all i.
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P r o o f. Write A =
⋂∞
n=1

⋃∞
m=1A

n
m, where each Anm is compact and

(1) An1 ⊆ An2 ⊆ . . . for every n ≥ 1, and
(2)

⋃∞
m=1A

1
m ⊇

⋃∞
m=1A

2
m ⊇ . . .

Let ci be the midpoint of [ai, bi] and di = 2−1a2
i (bi−ai). Choose a bijection

γ : N × (N ∪ {0}) → N such that γ(n,m) < γ(n,m + 1) for every (n,m).
Define maps αnm : Q→ I by

αnm(q) =
{
dγ(n,m) distd(q,Anm) if n,m ≥ 1,
dγ(n,m) if m = 0.

Here d is a metric for Q which is bounded by 1. Note that since bi+1−ai+1 <
bi − ai and ai+1 < ai, we have dj < di whenever i < j; consequently,
dγ(n,m+1) ≤ dγ(n,m). By (1) (Anm ⊂ Anm+1), we now have 0 ≤ αnm+1(q) ≤
αnm(q) for all q.

Fix n,m and q. Write γ = γ(n,m) and αnm = αnm(q) and let Tnm = Tnm(q)
be ({cγ − αnm, cγ + αnm} × [0, a2

γ ]) ∪ ([cγ − αnm, cγ − αnm+1] × {a2
γ}) ∪ ([cγ +

αnm+1, cγ + αnm]× {a2
γ}).

We see that Tnm(q) ∈ Λγ(n,m) for q ∈ Q. The map Tnm has the following
properties:

(3) If q ∈ Q and n ≥ 1, then the sequence {Tnm(q)}∞m=1 consists entirely
of elements Tnm(q) ∈ Λ2

γ(n,m) if and only if αnm(q) > 0 for m ≥ 0 if and only
if q 6∈ ⋃∞m=1A

n
m.

(4) If q ∈ Q and n ≥ 1, then for exactly one j ≥ 0, Tnj (q) ∈ Λ3
γ(n,j),

whereas for all other m, Tnm(q) ∈ Λ1
γ(n,m) ∪ Λ2

γ(n,m); this is true if and only
if there exists M ≥ 1 such that for all m ≥M , αnm(q) = 0, or, equivalently,
if and only if q ∈ ⋃∞m=1A

n
m.

Now we put ψi(q) = Tnm(q), where i = γ−1(n,m). The requirements (a)
and (b) are readily checked using (3) and (4).

P r o o f o f 4.4. For i ∈ N0, define Θi as in (c). Now write A =
⋃∞
k=1Ak

where each Ak is an Fσδ-subset of Q. For each k ≥ 1, with the help of 4.7,
find (Θi) : Q→∏

i∈Nk Λi satisfying 4.7(a), (b).
Our map Θ is (Θi)i∈∪∞k=0Nk

= (Θi)i∈N. Items (a) and (b) follow from the
conditions 4.7(a), (b): if q ∈ A then q ∈ Ak for at least one k; if q ∈ Q \ A
then q ∈ Q \Ak for all k.

5. Finite unions of Z(X). This section contains some auxiliary facts
relating to Z(X) which will be used in Section 6.

For a set K ⊂ R3, u ∈ R, and positive numbers λ, δ, we define

K(λ,u,δ) = {(δx1, λx2 + u, δx3) | (x1, x2, x3) ∈ K}.
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For an allowable sequence X we define

U(X) = {Z(X)(λ1,u1,δ) ∪ . . . ∪ Z(X)(λk,uk,δ) | u1 < . . . < uk, k ∈ N}.
Our objective here is to lay out the important properties of the 2-dimensional
compacta which are elements of U(X).

5.1. Lemma. Let X = {Xi}∞i=1 and Y = {Yi}∞i=1 be allowable sequences,
F ∈ U(X) and G ∈ U(Y ). Then

(a) if C is a component of F , then C is contractible, everywhere locally
2-dimensional , not a square, and C ∈ U(X);

(b) F is an absolute neighborhood retract if and only if Z(X) is;
(c) if F and G are connected and there exists an affine isometry h : R3 →

R3 carrying F onto G , then Xi = Yi for each i ∈ N0 ⊆ N.

P r o o f. Since the formula of the proof of 4.2 yields a strong deformation
retraction of C onto a 2-cell in R2, C is contractible. The other statements
of part (a) easily follow from the definition of U(X).

Let F =
⋃r
k=1 Z(λk,uk,δ) and G =

⋃s
l=1 Z(µl,vl,%), where u1 < . . . < ur

and v1 < . . . < vs, IXk = {0} × {uk} × [0, δ], and IYl = {0} × {vl} ×
[0, %]. We see that, relative to the triangle PL structure of R3, F (resp., G)
is not locally polyhedral precisely at the points of SF =

⋃r
k=1 I

X
k (resp.,

SG =
⋃s
l=1 I

Y
l ). Let πk : R3 → R3 be the affine isomorphism given by

πk(x1, x2, x3) = (δx1, λkx2 + uk, δx3). For each 1 ≤ k ≤ r, there exists
εk ∈ {0, 1} such that πk carries some neighborhood of {0} × {0} × [0, 1] in
Z(X) ∪ ([0, 1]× [−εk, 0]× {0}) onto a neighborhood of IXk in F ; we always
have ε1 = 0 and if F is connected, then εk = 1 for each k > 1.

Now we are in a position to show (b). Assume that Z(X) is an absolute
neighborhood retract. It follows that Z(X) and Z(X)∪([0, 1]×[−εk, 0]×{0})
are locally contractible. Consequently, F is locally contractible at the points
of SF . Since, in addition, at every point p ∈ F \SF , F is locally polyhedral, F
is locally contractible everywhere; hence F is an absolute neighborhood re-
tract. Conversely, suppose F is not an absolute neighborhood retract. Then,
according to 4.2(e)–(g), Z(X) is not locally simply connected at (0, u1, t)
for 0 < t ≤ δ; the proof of (b) is complete.

Now suppose that F , G, and h : R3 → R3 are as in (c). We have
h(SF ) = SG. This easily shows that δ = % and r = s. Moreover, there exists
1 ≤ l0 ≤ r such that h(IX1 ) = IYl0 . Suppose l0 > 1. The local topological
structure of F at (0, u1, 0) ∈ IX1 is that of Z(X) at (0, 0, 0), while the local
topological structure of G at (0, vl0 , 0) ∈ IYl0 and at (0, vl0 , δ) ∈ IYi0 is that of
Z(Y )∪([0, 1]×[−1, 0]×{0}) at (0, 0, 0) and (0, 0, 1) (use the fact thatG is con-
nected). Since the local topological structure of Z(Y )∪([0, 1]× [−1, 0]×{0})
at (0, 0, 1) coincides with that of Z(Y ) at (0, 0, 1), an application of 4.2(i)
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leads to a contradiction. Consequently, we have h(IX1 ) = IY1 ; the above
argument also shows that h(0, u1, 0) = (0, v1, 0).

Applying 4.2(a) we see that [0, δ]×{u1}×[0, δ] (resp., [0, δ]×{v1}×[0, δ])
is the only square in F (resp., in G) with IX1 (resp., IY1 ) as one of its edges.
We conclude that h([0, δ] × {u1} × [0, δ]) = [0, δ] × {v1} × [0, δ]; and since
h(0, u1, 0) = (0, v1, 0), we have h(x, u1, 0) = (x, v1, 0) for 0 ≤ x ≤ δ. Now, if
i ∈ N0 and ai ≤ x ≤ bi then, applying 4.2(b), we see that F is not locally
a 2-manifold at (δx, u1, 0) if and only if G is not locally a 2-manifold at
(δx, v1, 0) if and only if (x, 0) ∈ Xi ∩ Yi. From 4.2(j), we get Xi = Yi.

5.2. Corollary. Let X be an allowable sequence, Fi ∈ U(X) and hi :
R3 → Rn be affine isometric embeddings with n ≥ 3, 1 ≤ i ≤ k, and
hi(Fi) ∩ hj(Fj) = ∅ when i 6= j. Suppose that G is a finite one-dimensional
polyhedron in Rn. Then M = h1(F1) ∪ . . . ∪ hk(Fk) ∪ G is an absolute
neighborhood retract if and only if Z(X) is.

P r o o f. Suppose Z(X) is an absolute neighborhood retract. By 5.1(b),
each hi(Fi) is an absolute neighborhood retract, hence so is

⋃k
i=1 hi(Fi).

By an application of 4.2(h), G ∩ ⋃ki=1 hi(Fi) is an absolute neighborhood
retract. A standard fact yields that so is M .

Suppose Z(X) is not an absolute neighborhood retract. Then from 5.1(b),
neither is h1(F1). From 4.2(h) it follows that there is an open neighborhood
of h1(F1) in M which retracts onto h1(F1). If M were an absolute neighbor-
hood retract, this would imply that so is h1(F1).

6. Verification of strong universality. This section is entirely devoted
to verification of the condition (abs) of 3.2 for the spaces ANR(Rn), ARf(Rn)
and ANRc(Rn) with n ≥ 3. This will complete the proof of 3.1.

Let us recall that we identify Rn with (−1, 1)n ⊂ [−1, 1]n = Dn. We are
supposed to prove the following fact.

6.1. Theorem. Let U ⊆ Q and V ⊆ 2Dn , with n ≥ 3, be open sets,
and let C be a Gδσδ-subset of U . Given maps f : U → V (resp., f : U →
V ∩ C(Dn)) and ε : V → (0, 1), there exists an injective map g : U → 2Dn

(resp., g : U → C(Dn)) such that H̃(f(q), g(q)) < ε(f(q)) for q ∈ U ,
g−1(ANR(Rn)) = C and g−1(ARf(Rn)) = C (resp., g−1(ANRc(Rn)) = C),
and g(U) is locally homotopy negligible in 2Dn (resp., in C(Dn)).

Here by H̃ we mean the Hausdorff metric generated by a fixed metric
on Dn.

A standard way of proving a statement like 6.1 is to “replace” U by
a polyhedron P and then verify the assertion for f defined on P . We will
slightly modify this strategy.
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Let P be a locally finite countable polyhedron and let α : U → P
and β : P → V (resp., β : P → V ∩ C(Dn)) be maps so that β ◦ α is
as close to f as we wish (see, e.g., [MS, p. 316]). Since 2Dn \ 2R

n

(resp.,
C(Dn) \ C(Rn)) is a Z-set in 2Dn (resp., in C(Dn)) we can additionally
require that β : P → V ∩ 2R

n

(resp., β : P → V ∩ C(Rn)) (see [Tor]).
Here is our major technical step.

6.2. Proposition. Given a map δ : V → (0, 1), there exists a map
β̃ : P × 2I

3

0 → 2R
n

such that

(a) H(β(x), β̃(x,K)) < δ(β(x)) for (x,K) ∈ P × 2I
3

0 ,
(b) β̃(x, {0}) ∈ F(Rn) for x ∈ P ,
(c) if K ∈ 2I

3

0 is a continuum and x ∈ P , then β̃(x,K) has only finitely
many components each of which intersects β̃(x, {0}).

Moreover , for x ∈ P and an allowable sequence X, set A = β̃(x,Z(X)).
Then

(d) every nontrivial component of A is either a square or an affine iso-
metric copy of an element of U(X),

(e) there exists a component of A which is an affine isometric copy of an
element of U(X).

Here H is the Hausdorff metric on 2R
n

induced by the Euclidean metric
d on Rn. Assuming 6.2, the proof of 6.1 goes as follows.

P r o o f o f 6.1. Since 2Dn \ 2R
n

(resp., C(Dn) \ C(Rn)) is a Z-set, we
can assume that f : U → V ∩ 2R

n

(resp., f : U → V ∩ C(Rn)).
There exists ε̃ : V ∩ 2R

n → (0, 1) so that whenever h : U → V ∩ 2R
n

and
H(f(x), h(x)) < ε̃(f(x)) for x ∈ U , then H̃(f(x), h(x)) < ε(f(x)) for x ∈ U .
In view of this, it is enough to restrict our attention to maps into 2R

n

and
the metric H.

Let ϕ = Z ◦Θ be the map of 4.5. Define

g(q) = β̃(α(q), ϕ(q)), q ∈ U.
Using 6.2(a), one sees that H(f(q), g(q)) < ε̃(f(q)) for q ∈ U provided δ is
sufficiently small and β ◦ α is suitably close to f .

To show that g is injective, fix p, q ∈ U with p 6= q. Write X = Θ(p),
Y = Θ(q), A = β̃(α(p), Z(X)), and B = β̃(α(q), Z(Y )). By Proposition 4.4,
Θ is an embedding, so X 6= Y . To show that g(p) = A and g(q) = B
are different sets, it is enough to argue that they have different sets of
components. Using 6.2(e), select A′, a component of A which is an affine
isometric copy of an element F of U(X). Let B′ be any component of B and
suppose that B′ = A′; we may assume that B′ is nontrivial. Using 5.1(a), we
see that B′ is not a square. By 6.2(d), we find that B′ is an affine isomorphic
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copy of an element G of U(Y ). Using 5.1(c), one concludes that Xi = Yi for
all i ∈ N0. But Xi = Θi(p) and Yi = Θi(q), so (c) of 4.4 shows that pj = qj
for all j ∈ N, i.e., p = q.

Applying the fact that ϕ−1(ANR(Rn)) = C (use 4.5 with A = Q \ C)
together with 6.2(d), and a special case of 5.2 (when G = ∅), we infer
that g−1(ANR(Rn)) = C. Moreover, if q ∈ C then, by 6.2(d) and 5.1(a),
every component of g(q) is contractible; hence g(q) ∈ ARf(Rn). This shows
g−1(ARf(Rn)) = C.

Finally, note that g(q) is locally two-dimensional at every point q ∈ U
(see 5.1(a)). Since the hyperspace of at most two-dimensional compacta in
2R

n

is homotopy negligible in 2Dn for n ≥ 3, g(U) is locally homotopy
negligible in 2Dn .

The case of ANRc(Rn) needs certain adjustments. First, in this case, we
have f : U → V ∩ C(Rn) and β : P → V ∩ C(Rn). For every x ∈ P and
v, w ∈ β0(x) = β̃(x, {0}), we let

Av,w(x) = [v, w] ∩ (Bd(v, δ(β(x))) ∪Bd(w, δ(β(x)))),

where [v, w] is the segment joining v and w. We let β′(x) =
⋃{Av,w(x) |

v, w ∈ β0(x)} (cf. proof of 5.4 of [DR]). Since H(β0(x), β(x)) < δ(β(x)) (see
6.2(a)) and β(x) is a continuum, so is β′(x). We see that β′ maps P into
C(Rn), and for x ∈ P we have β0(x) ⊆ β′(x) and H(β′(x), β(x)) < 2δ(β(x)).
Let g′(q) = β′(α(q)) ∪ g(q) = β′(α(q)) ∪ β̃(α(q), ϕ(q)) for q ∈ U . Since ϕ(q)
is a continuum (see 4.5(a)), an application of 6.2(c) yields that so is g′(q);
hence g′ : U → C(Rn).

In showing that g′ is injective it is sufficient to note that the set of points
of g′(q) at which g′(q) is locally two-dimensional is the same as that for g(q).

The fact that (g′)−1(ANRc(Rn)) = C and the local homotopy negligi-
bility of g(U) follow as previously (in this case, however, we apply the full
strength of 5.2).

We have

H(β(q), g′(q)) < 2δ(β(α(q))), q ∈ U.
Hence, if δ is sufficiently small and if α◦β is close to f , then g′ is an injective
map as desired in 6.1.

The rest of this section is devoted to proving Proposition 6.2. We start
with the following auxiliary lemma.

6.3. Lemma. There exists a map Φ : I × 2I
3

0 → 2I
3

such that

(a) Φ(t, {0}) = {(0, t, 0)} ⊂ Φ(t,K) for (t,K) ∈ I × 2I
3

0 ,
(b) Φ(t,K) = {(0, t, 0)} for t ∈ [0, 1/16] ∪ [15/16, 1] and arbitrary K,
(c) if K is a continuum, then so is Φ(t,K) for all t ∈ I,
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(d) for every K ′,K ′′ ∈ 2I
3

0 , we have Φ(t,K ′) ∩ Φ(s,K ′′) = ∅ provided
t 6= s and s ∈ I \ (1/8, 7/8).

Moreover , for an allowable sequence X and a finite subset F of I, set
A =

⋃{Φ(t, Z(X)) | t ∈ F}. Then

(e) every nontrivial component of A either belongs to U(X) or is a trans-
lation of a certain cDxz, 0 < c ≤ 1, in the y-direction; if F ∩ (1/8, 7/8) 6= ∅
then there exists a component of A that belongs to U(X).

P r o o f. Fix a map ϕ : I → [0, 1/16] such that ϕ([1/4, 3/4]) = {1/16},
ϕ−1({0}) = I\(1/8, 7/8), and t+ϕ(t) < 7/8 whenever t ∈ [3/4, 7/8). Fix also
a map ψ : I → I so that ψ([1/8, 7/8]) = {1} and ψ(I \ (1/16, 15/16)) = {0}.
Define

Φ(t,K) = {(ψ(t)x1, t+ ϕ(t)x2, ψ(t)x3) | (x1, x2, x3) ∈ K}
for (t,K) ∈ I × 2I

3

0 . (Note that, according to the notation of Sec. 5, if
t ∈ (1/8, 7/8) then Φ(t,K) = K(ϕ(t),t,ψ(t)).) The properties (a)–(d) and the
first part of (e) easily follow from the definition of Φ. For the second part of
(e), use the fact that K(ϕ(t),t,ψ(t)) ∈ U(X) provided ϕ(t) > 0 and ψ(t) > 0,
and the last part of 5.1(a).

Our next lemma contains the construction of “carriers”—straight line
segments in Rn—that will be used to describe β̃ restricted to the 1-skeleton
of P . Let us make some basic assumptions on the polyhedron P that will
be kept throughout the text (one sees that generality will not be lost):

(i) P is infinite,
(ii) the set of vertices P (0) = {vi | i ∈ N} of P is enumerated in the way

that vi 6= vj when i 6= j, and each vi ∈ P (0) is adjacent to some vj ∈ P (0),
(iii) P is subdivided so finely that diamH(β(st(τ))) < 1

32 min{δ(β(x)) |
x ∈ τ} for every simplex τ of P ,

(iv) whenever we write 〈vi, vj〉 for a 1-simplex (i.e., 〈vi, vj〉 ∈ P (1)), we
mean that i < j, and we call (i, j) admissible.

The last condition fixes an orientation of 〈vi, vj〉 and we assign the pa-
rameterization t→ tvj + (1− t)vi, t ∈ I, to 〈vi, vj〉.

6.4. Lemma. One can assign to every v ∈ P (0) a set ϕ(v) ∈ F(Rn),
and to every 〈vi, vj〉 ∈ P (1) a finite collection of straight line segments (=
segments) S(i,j) in Rn so that

(a) the collection {ϕ(v) | v ∈ P (0)} is pairwise disjoint ,
(b) every segment S ∈ S(i,j) has one endpoint in ϕ(vi) and the other in

ϕ(vj); every z ∈ ϕ(vi) ∪ ϕ(vj) is an endpoint of at least one S ∈ S(i,j),
(c) for every S′ ∈ S(i,j) and S′′ ∈ S(k,m), S′ and S′′ intersect in at most

one common endpoint when (i, j) 6= (k,m),
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(d) there exists Σ(i,j) ∈ S(i,j) such that when (i, j) 6= (k,m) then Σ(i,j)∩
Σ(k,m) = ∅,

(e) for every simplex τ of P , every x ∈ τ , every 〈vi, vj〉 ∈ (st(τ))(1)

and every S ∈ S(i,j), we have diamd(S) < 1
5δ(β(x)) and H(ϕ(vi), β(vi)) <

1
16δ(β(x)).

P r o o f. For each v ∈ P (0) let δ(v) = 1
16 min{δ(β(x)) | x ∈ st2(v)}.

Suppose inductively that for 1 ≤ i ≤ r, ϕ(vi) = ϕi ∈ F(Rn) have been
chosen so that:

(1) the cardinality of ϕi is greater than the number of vertices of P that
are adjacent to vi,

(2) H(β(vi), ϕi) < δ(vi),
(3) ϕi ∩ ϕj = ∅ whenever 1 ≤ i < j ≤ r.

Suppose also that for all admissible pairs (i, j) with 1 ≤ i < j ≤ r, a set
S(i,j) has been assigned to satisfy (b)–(d) and

(4) diamd(S) ≤ 3
2H(β(vi), β(vj)) + δ(vi) + δ(vj) , S ∈ S(i,j).

Choose ϕ(vr+1) = ϕr+1 ∈ F(Rn) so that (1)–(3) hold for r + 1. We
will adjust this choice if necessary. Suppose that for all admissible (k, r +
1), S(k,r+1) has been defined to satisfy (b)–(d) and (4) for all k with 1 ≤
k ≤ i − 1. Let (i, r + 1) be admissible and x ∈ ϕi be arbitrary. From (2)
there exists x1 ∈ β(vi) so that d(x, x1) < δ(vi). Pick x2 ∈ β(vr+1) with
d(x1, x2) ≤ 3

2H(β(vi), β(vr+1)). Applying (2) again, find y ∈ ϕr+1 with
d(x2, y) < δ(vr+1). It is now clear that the segment S joining x and y
satisfies (4) with j = r + 1. Reverse this procedure starting from arbitrary
y ∈ ϕj and ending with some x ∈ ϕi so that the collection S(i,r+1) will
satisfy (b) and (4).

To get (c), just slightly revise the choice in ϕr+1 if necessary. To obtain
(d), use (1) to find x ∈ ϕi so that x lies in no previously defined Σ(i,j) and
look at a segment S joining x ∈ ϕi with some y ∈ ϕr+1. In case y is already
an endpoint of some Σ(k,r+1) with k < i, add y∗ to ϕr+1 near y to serve
as the endpoint for S = Σ(i,r+1). Find y∗ so that the previously indicated
procedures with new data ensure that (a)–(c) and (4) are still true. The
inductive construction is complete.

The second inequality of (e) is a direct consequence of (2) and the defi-
nition of δ(v) for v = vi. Using (4), (iii) and the definition of δ, we have

diamd(S) ≤ 3
2H(β(vi), β(vj)) + δ(vi) + δ(vj)

≤ 3
2 · 1

32δ(β(x)) + 1
16δ(β(x)) + 1

16δ(β(x)) < 1
5δ(β(x))

for every S ∈ S(i,j) with 〈vi, vj〉 ∈ (st2(τ))(1) and x ∈ τ . This shows the rest
of (e).
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For each (i, j) and S ∈ S(i,j), let us orient S by the following parameter-
ization. Let x ∈ ϕ(vi) and y ∈ ϕ(vj) be the endpoints of S; we set

(v) κS(t) = ty + (1− t)x for t ∈ I.

The next lemma uses the “carriers” Σ = Σ(i,j), and κΣ to continuously
assign to each (t,K) ∈ I × 2I

3

0 a compressed copy κ̃Σ(t,K) of K which
“emanates” from p = κΣ(t) ∈ Σ. Moreover, κ̃Σ(t,K) will be an affine
injective copy of K when t ∈ (1/8, 7/8), a planar compactum when t ∈
(1/16, 1/8] ∪ [7/8, 15/16), and {p} when t ∈ [0, 1/16] ∪ [15/16, 1].

Let us introduce a notation. For l ∈ N, we let

(vi) Sigl = {Σ(k,m) | 〈vk, vm〉 ∈ (st2(vl))(1)}.
6.5. Lemma. To every Σ = Σ(i,j), one can assign a map κ̃Σ : I × 2I

3

0 →
2R

n

such that

(a) κ̃Σ(t, {0}) = {κΣ(t)} ⊂ κ̃Σ(t,K) for (t,K) ∈ I × 2I
3

0 ,
(b) κ̃Σ(t,K) = {κΣ(t)} for t ∈ [0, 1/16] ∪ [15/16, 1] and arbitrary K,
(c) if K is a continuum, then so is κ̃Σ(t,K) for all t ∈ I,
(d) for any simplex τ of P , x ∈ τ and 〈vk, vm〉 ∈ (st(τ))(1), we have

diamd κ̃Σ(k,m)(t,K) < 1
4δ(β(x)) for (t,K) ∈ I × 2I

3

0 .

Moreover , for an allowable sequence X, l ∈ N, and a finite set F ⊂
Sigl×I, set A =

⋃{κ̃Σ(t, Z(X)) | (Σ, t) ∈ F}. Then

(e) A satisfies 6.2(d), and
(f) if (Σ, t) ∈ F for some Σ ∈ Sigl and 1/8 < t < 7/8, then A satis-

fies 6.2(e).

P r o o f. Using 6.4(d), for each l ∈ N we choose δl with 0 < δl < 1 so that

(1) B(Σ′, 2δl) ∩B(Σ′′, 2δl) = ∅, Σ′, Σ′′ ∈ Sigl, Σ
′ 6= Σ′′.

We may assume that

(2) δl <
1
16 min{δ(β(x)) | x ∈ st2(vl)}.

Fix Σ = Σ(i,j) and let

xΣ = κΣ(0) ∈ ϕ(vi) and yΣ = κΣ(1) ∈ ϕ(vj)

be the endpoints of Σ. Write tΣ = d(xΣ , yΣ). Define a map cΣ : R3 → R3 by

(3) cΣ(x) = (δix1, tΣx2, δix3), x = (x1, x2, x3) ∈ R3.

We see that for any allowable sequence X and A ∈ U(X), cΣ(A) also lies in
U(X). Fix an affine isometric injection τΣ : R3 → Rn sending 0 ∈ R3 onto
xΣ and (0, tΣ , 0) ∈ R3 onto yΣ . We let aΣ = τΣ ◦ cΣ : R3 → Rn and

(4) κ̃Σ(t,K) = aΣ(Φ(t,K)), (t,K) ∈ I × 2I
3

0 ,

where Φ is that of 6.3.
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The conditions (a)–(c) are consequences of 6.3(a)–(c). To get (d), let τ
be a simplex of P , x ∈ τ and 〈vk, vm〉 ∈ (st(τ))(1), and write Σ = Σ(k,m). By
(3), cΣ(I3) lies in [0, δk]× [0, tΣ ]× [0, δk], so diamd cΣ(I3) ≤

√
2δ2
k + t2Σ . By

(2), δk < 1
16δ(β(x)) and by 6.4(e), tΣ < 1

5δ(β(x)). Hence diamd cΣ(I3) <
1
4δ(β(x)). Since τΣ preserves distance and κ̃Σ(t,K) = τΣcΣ(Φ(t,K)) ⊂
τΣcΣ(I3), we get (d).

The map τΣ is defined in such a manner that the segment {(0, t, 0) | 0 ≤
t ≤ tΣ} ⊂ R3 is transformed affinely onto Σ by τΣ . Hence any point in
[0, δl]× [0, tΣ ]× [0, δl] is mapped by τΣ into the 2δl-neighborhood of Σ. We
conclude that

(5) κ̃Σ(t,K) ⊂ B(Σ, 2δl) for any Σ ∈ Sigl and any (t,K) ∈ I × 2I
3

0 .

By (1) and (5), we get

(6) if Σ′, Σ′′ ∈ Sigl and Σ′ 6= Σ′′, then κ̃Σ′(t′,K ′) ∩ κ̃Σ′′(t′′,K ′′) = ∅
for any choices of (t′,K ′) and (t′′,K ′′) in I × 2I

3

0 .
Let A be as in the statement of the lemma and let us examine the

structure of A. For each Σ ∈ Sigl, let AΣ be the subset of A consisting
of
⋃{κ̃Σ(t, Z(X)) | ∃(t ∈ I) ((Σ, t) ∈ F )}. As a result of (6), one sees

that AΣ
′ ∩ AΣ′′ = ∅ whenever Σ′ 6= Σ′′ and that {AΣ | Σ ∈ Sigl} is

a partition of A into closed sets (note that possibly AΣ = ∅ for a given
Σ ∈ Sigl). Moreover, for each Σ with AΣ 6= ∅, there exists a finite set
0 ≤ t1 < . . . < tr ≤ 1 such that

(7) a−1
Σ (AΣ) =

⋃
{Φ(tq, Z(X)) | 1 ≤ q ≤ r}.

From this discussion, one concludes that if A′ is a component of A, then
there exists Σ ∈ Sigl such that A′ is a component of AΣ . Hence there exists a
component A∗ of T =

⋃{Φ(tq, Z(X)) | 1 ≤ q ≤ r} such that A′ = aΣ(A∗).
By the first part of 6.3(e), A∗ ∈ U(X) or A∗ is a square, which yields
(e) of this lemma. If 1/8 < tq < 7/8 for some q, then the second part of
6.3(e) shows that there is a component A∗ of T with A∗ ∈ U(X). Then
the component A′ = aΣ(A∗) satisfies (e) of 6.2, and this proves (f) of the
current lemma.

We are now ready to prove Proposition 6.2. An essential step in our proof
will be the following fact, which is a consequence of [CN, Lemma 3.3].

6.6. Lemma. There exists a map h : P → F(P (1)) such that

(vii) h(x) ∈ F(τ (1)) for every simplex τ of P and x ∈ τ ; h(x) = {x}
whenever x ∈ P (1).

This lemma suggests a way of defining β̃ : P × 2I
3

0 → 2R
n

. Assume for
a moment that a certain map χ̃ : P (1) × 2I

3

0 → 2R
n

has been defined. Then
we would obtain an extension β̃ : P × 2I

3

0 → 2R
3

by using Lemma 6.6 as
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follows. For (x,K) ∈ P × 2I
3

0 , consider the finite subset h(x) ⊂ P (1). For
each p ∈ h(x), we have (p,K) ∈ P (1) × 2I

3

0 , and thus χ̃(p,K) ∈ 2R
n

. We
shall define β̃(x,K) =

⋃{χ̃(p,K) | p ∈ h(x)}.
In order to produce β̃ as required by 6.2, it will be necessary to make a

suitable choice of the map χ̃ indicated above. Let us first indicate how we
could construct a certain map κ̃ : P (1) × 2I

3

0 → 2R
n

which would extend, by
the method indicated above using Lemma 6.6, to a map β∗ : P ×2I

3

0 → 2R
n

.
This map β∗ will satisfy (a)–(d) of 6.2 but not (e). We shall then show how
to adjust κ̃ to produce χ̃ in such a manner that the map β̃ induced by χ̃
will still satisfy (a)–(d) of 6.2, but now also (e).

To obtain κ̃, consider an admissible (i, j), and for (t,K) ∈ I × 2I
3

0 let

(viii) κ̃(i,j)(t,K) = κ̃Σ(i,j)(t,K) ∪ {κS(t) | S ∈ S(i,j) \ {Σ(i,j)}}.
The maps κ̃(i,j) induce a map κ̃ : P (1) × 2I

3

0 → 2R
n

via the formula

κ̃(p,K) = κ̃(i,j)(t,K), p = tvj + (1− t)vi, p ∈ 〈vi, vj〉.
Using 6.5(b), one can check that, indeed, κ̃ is well defined.

Let us indicate why β∗ will not satisfy (e) of 6.2, and hence why we shall
need to introduce adjusted versions χS of the maps κS in order to produce
the needed χ̃ and in turn its extension β̃.

Suppose p is a vertex of P , say p = vi ∈ 〈vi, vj〉. For any K ∈ 2I
3

0 ,
κ̃(p,K) = κ̃(i,j)(0,K) = κ̃Σ(i,j)(0,K) ∪⋃{κS(0) | S ∈ S(i,j) \ {Σ(i,j)}}. By
6.5(b), κΣ(i,j)(0,K) is a singleton and of course {κS(0) | S ∈ S(i,j)\{Σ(i,j)}}
is a finite set. Hence β∗(p,K) = κ̃(p,K) is a finite set which cannot satisfy
6.2(e) because dimZ(X) = 2 for every allowable sequence X.

P r o o f o f P r o p o s i t i o n 6.2. First, for every admissible (i, j) and
every S ∈ S(i,j) we prescribe a parameterization χS : I → Rn so that
imχS ⊂ S ∪

⋃{Σ(k,m) | Σ(k,m) ∩ S 6= ∅}. For Σ = Σ(i,j), we let

(1) χΣ(s) = sκΣ(3/4) + (1− s)κΣ(1/4), s ∈ I.
Observe that imχΣ ⊂ κΣ([1/4, 3/4]) ⊂ Σ, and further that χΣ preserves
orientation. A description of χS for S ∈ S(i,j) \ {Σ(i,j)} requires some aux-
iliary preparation.

Let x = κS(0) ∈ ϕ(vi) and y = κS(1) ∈ ϕ(vj) be the endpoints of S. We
fix tx ∈ {0, 1/4} and ty ∈ {3/4, 1} so that tx = 1/4 if x is an endpoint of
some segment Σ(k,m) and tx = 0 otherwise; and ty = 3/4 if y is an endpoint
of some Σ(k,m) and ty = 1 otherwise. Next we select x and y as follows.
We take x = x if tx = 0 and y = y if ty = 1. If Σ′ = Σ(k,m) has x as an
endpoint, we let x = κΣ′(3/4) whenever i = m, and x = κΣ′(1/4) whenever
i = k. Similarly, if Σ′′ = Σ(q,r) has y as an endpoint, we let y = κΣ′′(1/4)
whenever j = q, and y = κΣ′′(3/4) whenever j = r. Finally, χS will be
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the unique piecewise affine map that transforms affinely, in an orientation
preserving fashion, [0, tx), [tx, ty], and (ty, 1] onto [x, x), [x, y], and (y, y],
respectively. Hence, we have

(2) χS(T ) =





[x, x) ⊂ Σ′ = Σ(k,m) if T = [0, tx),
[x, y] = S if T = [tx, ty],
(y, y] ⊂ Σ′′ = Σ(q,r) if T = (ty, 1].

Note that

(3) χS = κS if and only if tx = 0 and ty = 1.

Moreover, for the unique orientation preserving affine map tΣ : I→[1/4, 3/4]
we have

(4) χΣ(s) = κΣ(tΣ(s)), s ∈ I.
For S ∈ S(i,j) \ {Σ(i,j)} there are unique affine mappings tΣ′ , of [0, tx) into
I, tS of [tx, ty] onto I, and tΣ′′ of (ty, 1] into I so that

(5) χS(s) =




κΣ′(tΣ′(s)) if s ∈ [0, tx),
κS(tS(s)) if s ∈ [tx, ty],
κΣ′′(tΣ′′(s)) if s ∈ (ty, 1].

We see that tS preserves orientation; also tΣ′ and tΣ′′ preserve orientation
provided i = m and j = q; otherwise tΣ′ and tΣ′′ reverse orientation.

Given (s,K) ∈ I × 2I
3

0 and S ∈ S(i,j) we define

χ̃S(s,K) = κ̃Σ(i,j)(tΣ(i,j)(s),K) if S = Σ(i,j),

and if S ∈ S(i,j) \ {Σ(i,j)},

χ̃S(s,K) =




κ̃Σ′(tΣ′(s),K) if s ∈ [0, tx),
{κS(tS(s))} if s ∈ [tx, ty],
κ̃Σ′′(tΣ′′(s),K) if s ∈ (ty, 1].

(6)

By an application of 6.5(a), (5) and (6), one has

(7) χ̃S(s, {0}) = {χS(s)} ⊂ χ̃S(s,K) for (s,K) ∈ I × 2I
3

0 .

Applying 6.5(c) and (6) we infer that

(8) χ̃S(s,K) is a continuum if (s,K) ∈ I × 2I
3

0 and K is a continuum.

We see that χ̃S is continuous for each S ∈ S(i,j) as follows. First, if
S = Σ(i,j) then the fact (Lemma 6.5) that κ̃S is continuous and the for-
mulation of χ̃S show the needed continuity. If S 6= Σ(i,j), then continuity
hinges on whether the three formulas describing χS agree in the limit inde-
pendently of K at the places tx and ty. For example, by an application of
6.5(b), lims→t−x χ̃S(s,K) = lims→t−x κ̃Σ′(tΣ′(s),K) = {x} independently of
K, whereas χ̃S(tx,K) = κS(tS(tx)) = κS(0) = {x}. One can make a similar
argument at ty.
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Define

(9) χ̃(i,j)(s,K) =
⋃
{χ̃S(s,K) | S ∈ S(i,j)}.

These maps χ̃(i,j) : I × 2I
3

0 → 2R
n

induce a map χ̃ : P (1) × 2I
3

0 → 2R
n

by

(10) χ̃(p,K) = χ̃(i,j)(s,K) where p = svj + (1− s)vi ∈ 〈vi, vj〉.
We must show that χ̃ is well defined, and this requires checking only

at the vertices of P (1). Suppose vi is a vertex, say of 〈vi, vj〉, and of an-
other simplex, say 〈vk, vi〉. Then for a given K, we have to show that
χ̃(i,j)(0,K) = χ̃(k,i)(1,K). Now, χ̃(i,j)(0,K) =

⋃{χ̃S(0,K) | S ∈ S(i,j)}.
When S = Σ(i,j), χ̃S(0,K) = κ̃Σ(i,j)(1/4,K), since tΣ(i,j)(0) = 1/4. Hence
χ̃(i,j)(0,K) = κ̃Σ(i,j)(1/4,K) ∪⋃{χ̃S(0,K) | S ∈ S(i,j) \ {Σ(i,j)}}.

There is an S1 ∈ S(i,j) \{Σ(i,j)} such that Σ(k,i) has an endpoint in com-
mon with S1 (see 6.4(b)). For any such S1, χ̃S1(0,K) = κ̃Σ(i,j)(3/4,K). We
therefore have χ̃(i,j)(0,K) = κ̃Σ(i,j)(1/4,K)∪ κ̃Σ(k,i)(3/4,K)∪⋃{χ̃S(0,K) |
S ∈ S(i,j) and S ∩ (Σ(i,j) ∪ Σ(k,i)) = ∅}. A similar argument shows that
χ̃(k,i)(1,K) = κ̃Σ(k,i)(3/4,K)∪ κ̃Σ(i,j)(1/4,K)∪⋃{χ̃S(1,K) | S ∈ S(k,i) and
S ∩ (Σ(i,j) ∪Σ(k,i)) = ∅}.

Using 6.4(b) again, we note that if S0 ∈ S(k,i) and S0∩ (Σ(i,j)∪Σ(k,i)) =
∅, then there is at least one S1 ∈ S(i,j) with S1 ∩ (Σ(i,j) ∪ Σ(k,i)) = ∅
and S1 having an endpoint in common with S0. The construction yields
χ̃S0(1,K) = χ̃S1(0,K). The reverse is also true: for such S1 there is S0 with
the same equality. Therefore, finally, we have χ̃(i,j)(0,K) = χ̃(k,i)(1,K).
The other case, that is, the second simplex is 〈vi, vk〉, yields the same
equality.

The continuity of χ̃ follows because P (1) is locally finite and each χ̃(i,j)

is continuous. We define the required β̃ : P × 2I
3

0 → 2R
n

by

(11) β̃(x,K) =
⋃
{χ̃(p,K) | p ∈ h(x)},

where h is the map of Lemma 6.6. The continuity of h and of χ̃ yield that
of β̃.

Throughout the process of verification of (a)–(e) we will maintain the
following notation: x ∈ τ , τ is a simplex of P (dim τ ≥ 1), p ∈ h(x)∩〈vi, vj〉
where 〈vi, vj〉 ∈ τ (1) (h is from Lemma 6.6) and p = svj+(1−s)vi, 0 ≤ s ≤ 1.
We start with verification of (a).

Note that κ̃(i,j)(s, {0}) = {κS(s) | S ∈ S(i,j)} and χ̃(i,j)(s, {0}) =⋃{χ̃S(s, {0}) | S ∈ S(i,j)} = {χS(s) | S ∈ S(i,j)}. Hence H(κ̃(i,j)(s, {0}),
χ̃(i,j)(s, {0})) ≤ max{d(κS(s), χS(s)) | S ∈ S(i,j)}. We see that κS(s) ∈ S
while χS(s) lies in, say, S′ where S′ ∩ S 6= ∅, S′ ∈ S(k,m) and 〈vk, vm〉 ∩
〈vi, vj〉 6= ∅. Using 6.4(e), we get diamd(S) < 1

5δ(β(x)) and diamd(S′) <
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1
5δ(β(x)). Hence d(κS(s), χS(s)) < 2

5δ(β(x)) and we conclude that

(12) H(κ̃(i,j)(s, {0}), χ̃(i,j)(s, {0})) < 2
5δ(β(x)).

We now want to show that

(13) H(χ̃S(s, {0}), χ̃S(s,K)) ≤ 1
4δ(β(x)), S ∈ S(i,j).

Since χ̃S(s, {0}) ⊂ χ̃S(s,K), it is sufficient to prove that diamd χ̃S(s,K) ≤
1
4δ(β(x)). Referring to (6), one sees that χ̃S(s,K) is either a singleton
{κS(tS(s)}, in which case its diameter is 0, or is of the form κ̃Σ(tΣ(s),K).
In the latter instance, we apply 6.5(d).

From (13) we get

(14) H(χ̃(i,j)(s, {0}), χ̃(i,j)(s,K)) ≤ 1
4δ(β(x)).

Now
H(β(x), χ̃(p,K)) = H(β(x), χ̃(i,j)(s,K))

≤ H(β(x), β(vi)) +H(β(vi), ϕ(vi))

+H(ϕ(vi), κ̃(i,j)(s, {0}))
+H(κ̃(i,j)(s, {0}), χ̃(i,j)(s, {0}))
+H(χ̃(i,j)(s, {0}), χ̃(i,j)(s,K))

<
(

1
32 + 1

16 + 1
5 + 2

5 + 1
4

)
δ(β(x)) < δ(β(x))

by respectively applying (iii), the second part of 6.4(e), the first part of
6.4(e), (12) and (14). Since H(β(x), β̃(x,K)) ≤ max{H(β(x), χ̃(p,K)) | p ∈
h(x)}, the estimate (a) follows.

To obtain (b), note that β̃(x, {0}) =
⋃{χ̃(p, {0}) | p ∈ h(x)} =⋃{χ(i,j)(s, {0}) | p ∈ h(x)} =

⋃{χ̃S(s, {0}) | S ∈ S(i,j), p ∈ h(x)}. By (7)
each χ̃S(s, {0}) is the singleton {χS(s)}. Since S(i,j) and h(x) are finite, so
is β̃(x, {0}); hence we have (b).

If we replace {0} in the above argument by a continuum K ∈ 2I
3

0 , then
using (7) and (8) instead of just (7), we get (c).

Before we check (d), (e) let us make some observations on the structure
of β̃(x,K). From (6), (9), (10), χ̃(p,K) is a union of a finite subcollection
of {κ̃Σ(k,m)(t,K) | t ∈ I and 〈vk, vm〉 ∩ 〈vi, vj〉 6= ∅} and a finite set. Hence
χ̃(p,K) = Ω(p,K)∪⋃L(p,K) where Ω(p,K) is a finite set and L(p,K) is a
finite subset of {κ̃Σ(k,m)(t,K) | (Σ(k,m), t) ∈ Sigi× I and 〈vk, vm〉 ∩ τ 6= ∅}.
Indeed, if we choose any vertex vr of τ , then L(p,K) ⊂ {κ̃Σ(k,m)(t,K) |
(Σ(k,m), t) ∈ Sigr × I} because of the definition of Sigr (see (vi)). This,
together with (11), shows that

(15) β̃(x,K) = Ω0(x,K) ∪
⋃
L0(x,K)

where Ω0(x,K) is a finite set and
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(16) L0(x,K) is a finite subset of {κ̃Σ(k,m)(t,K) | (Σ(k,m), t) ∈ Sigi× I}
where vi is a vertex of τ and τ is any simplex of P containing x.

From (15), (16) and 6.5(e), one obtains (d). To prove (e), it is suffi-
cient to show that for Σ = Σ(i,j), we have κ̃Σ(tΣ(s), Z(X)) ⊂ β̃(x, Z(X)),
because tΣ(s) ∈ [1/4, 3/4] ⊂ (1/8, 7/8) and we can apply 6.5(f). By (6),
χ̃Σ(s, Z(X)) = κ̃Σ(tΣ(s), Z(X)). Then one applies (9), (10) and (11) to get
χ̃Σ(s, Z(X)) ⊂ χ̃(i,j)(s, Z(X)) ⊂ χ̃(p, Z(X)) ⊂ β̃(x, Z(X)).

Appendix. Let D = [−1, 1] and identify R with (−1, 1) ⊂ D. Denote
by Kfd the class of spaces that are countable unions of finite-dimensional
compacta.

We have:

Theorem. The space ANR(R) is a Kfd-absorber in 2D.

Since Qf = {(xi) ∈ Q | xi = 0 a.e.} is another Kfd-absorber in Q, the
uniqueness theorem on absorbers yields

Corollary. The space ANR(R) is homeomorphic to Qf .

P r o o f o f T h e o r e m. According to a result of Curtis [Cu1], the space
F(R) is a Kfd-absorber. In order to show that ANR(R) ⊃ F(R) is also a
Kfd-absorber, we use the maximality theorem of Toruńczyk (see [BP, The-
orem 4.2, p. 131]). We only need to check that (1) ANR(R) ∈ Kfd, and (2)
ANR(R) is a σZ-set in 2D.

The subset of ANR(R) consisting of exactly n components can obvi-
ously be identified with {(a1, b1, a2, b2, . . . , an, bn) ∈ R2n | a1 ≤ b1 <
a2 ≤ b2 < . . . < an ≤ bn}. Since the latter set is σ-compact, it fol-
lows that ANR(R) is a countable union of finite-dimensional compacta; this
shows (1).

We will show that every compactum K ⊂ ANR(R) is a Z-set in 2D (then
(2) follows from (1)). Let f : In → 2D be a map of the n-dimensional cube
In and 0 < ε < 1 be given. We let fε(q) = [(1−ε/2)f(q)]∪[sup(1−ε/2)f(q)+
(ε/2)C] for q ∈ In, where C is the standard Cantor set in [0, 1]. We see that
d(f, fε) < ε and fε(q) 6∈ ANR(R) for all q ∈ In. Hence, fε(In)∩K = ∅, and
K is a Z-set.
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