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Boundary behavior of subharmonic functions
in nontangential accessible domains

by

SHIYING ZHAOQO (St Louis, Mo.)

Abstract. The following results concerning boundary behavior of subharmonic func-
tions in the unit ball of R™ are generalized to nontangential accessible domains in the sense
of Jerison and Kenig [7]: (1) The classical theorem of Littlewood on the radial limits. (ii)
Ziomek’s theorem on the LP-nontangential limits. (iii} The localized version of the above
two results and nontangential limits of Green potentials under a certain nontangential
condition.

1. Introduction. In [7], Jerison and Kenig defined a class of bounded
domains, the so-called nontangential accessible (NTA) domains, in B™ for
which nontangential approach regions are meaningful, and extended certain
classical results on the boundary behavior of harmonie functions in the upper
half-space of R™ to this type of domains. In this paper we consider subhar-
monic functions and generalize three types of classical results on houndary
behavior of subharmonic functions in the unit ball or the upper half-space
of R™ to NTA domains.

First, a classical theorem of Littlewood (9] states that if u is subharmonic
in the unit disc and has a nonregative harmonic majorant then u has a
finite radial limit almost everywhere on the unit circle. The generalization
to balls or upper half-spaces in higher dimensions is standard. In [3], Dah]-
berg studied this problem in Lipschitz domains and proved that the same
conclusion is true for “radials” consisting of nomtangential straight lines so
that the directions of these lines vary Lipschitz continuously. In order to
generalize this result to more general nonsmooth domains, the first question
one needs to answer is what is the appropriate analogue of radial approach.
In Definition 3.1 we define nontangential radials in NTA domains. Radials
of this type, in general, are twisting (but not too much) and are possibly.
disconnected. :
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The generalized Littlewocod theorem (Theorem 4.1) in our setting reads
as follows: If a subharmonic function in an NTA domain D has a nonnega-
tive harmonic majorant, then it has a finite radial limit almoest everywhere
with respect to the harmonic measure of D on the subset of D on which a
nontangential mapping is defined. The basic idea of the proof of this result
goes back to Littlewcod’s original paper [9], that is, by use of the Riesz
decomposition theorem and Fatouw’s theorem, one can reduce the matter to
showing that every Green potential has radial limit zero. In doing this it
is necessary to consider “nonsingular” and “gingular” parts of a Green po-
tential separately (see §4 for this terminology). For the “nonsingular” part,
the argument of Dahlberg in [3] continues to work in our case. However, the
unit normal vector field of the boundary of a Lipschitz domain was heavily
used there in order to deal with the “singular” part, and thus the extension
to NTA' domains requires a new approach. The idea of handling this part
comes from Ullrich’s paper [14], where the radial limits of M&bius invari-
ant subharmonic functions in the unit ball of C”® are studied. On the other
hand, it is Jerison and Kenig’s work [7] on the estimates for the harmonic
measure of an NTA domain that opens the way for us to carry out Ullrich’s
idea.

Secondly, it is well-known that subharmonic functions in a domain, in
general, have no nontangential limits on the boundary. However, some types
of limits between radial limit and nontangential limit exist. One of the ex-
amples is the so-called nontangential limit in the LP metric (with respect
to the Lebesgue measure), or, in short, LP-nontangential limit (see Defini-
tion 6.1), which was first studied by Ziomek [18]. (For some other types of
limits of subharmonic functions we refer to [17].) Our second result is an
extension of Ziomek’s theorem (Theorem 6.2} which states that if a subhar-
monic function in an NTA domain has a nonnegative harmonic majorant
then it has LP-nontangential limit almost everywhere with respect to the
harmonic measare for the p in the range of 1 < p < n/(n — 2).

Finally, a remarkable result of Carleson [1] is that the nontangential
lower (or upper) boundedness of a haimonic function in the upper half-space
implies that it has a nontangential limit almost everywhere on the boundary.
The same result is true for NT'A domains (see [7]). The key technique is to
construct a so-called sawtooth region over the boundary. For a subharmonic
function, the similar result holds if nontangential limits are replaced by
radial limits as shown in (3] for Lipschitz domains. On the other hand, as we
mentioned above, a Green potential (and hence a subharmonic function) has
no nontangential boundary limit in general, because of the wild behavior of
“singular” parts of Green potentials. But if some condition is imposed to
control this kind of behavior then it will have nontangential boundary limits.
Several authors have studied these problems in various domains (see [15] for
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upper half-spaces and [3] for Lipschitz domains, for example). In the last part
of this paper, we consider these two problems in NTA domains. The first
one (Theorem 8.3) can be considered as a localized version of Theorems 4.1
and 6.2 and the second is given in Theorem 8.5.

This paper is organized as follows. In §2, we recall the definition of an
NTA domain in R™ and two important facts about the harmenic measure of
an NTA domain, which we need in the sequel. In §3, we give the definition of
nontangential radial mappings, and we show that the radials of straight lines
in Lipschitz domains studied in [3] are nontangential radials in our sense.
The generalized Littlewood theorem is proved in §4, where a key estimate
(Lemma 4.4) is assumed. In §5, we prove Lemma 4.4, which states that
the radial maximal function of the “singular” part of a Green potential is
weak-L! with respect to the harmonic measure. §§6 and 7 are devoted to
proving the generalization of Ziomek’s theorem. Finally, in §8, we consider
Carleson’s type results, namely, boundary limits of subharmonic functions
under nontangential conditions.

Acknowledgements. The author thanks Professors R. Howard and
M. Stoll for their useful advice, and thanks Professors B. E. J. Dahlberg
and C. E. Kenig for suggestive conversations.

2. Notation and preliminaries. The ball centered at X € R™ with
radiug r > 0 will be denoted by B(X,r) ={¥ € R* : |X - Y| < r}. For a
bounded domain D in R™, the surface ball centered at @ € 8D with radius
r > 0 is defined by A(Q,r) = B(Q,r)N 8D. For a point X € D, we shall
denote by §{X) = d(X, 8D), the Euclidean distance from X to the boundary
8D of D. '

We now recall the definition of NTA domains (see [7; 16]): A bounded
domain D in R™ is said to be nontangential accessible (or NTA) if there
exist constants Cp > 1 and r5, > 0 such that the following three conditions
are satisfied:

(1) Corkscrew condition. If Q € 9D and 0 < r < rp, then there is a
point 4,.{Q) € D such that

(2.1) 4@~ Ql <7, 8(A(Q) > Cplr.

(2) Complement condition. The complement of I satisfies (1).
(3) Harnack chain condition. If X, Y € D with

X - Y] < 2 min{6(X), 5(¥)},
for some positive integer k, then there is a positive integer m < Cpk and
a sequence {Z;}7ty C D such that Zy = X, Z, = Y and (21— 2] <
36(Z5).
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- For a fixed NTA domain D, let G{X,Y) denote the Green function of D.
We shall use the convention that the Green function is positive and hence
superharmonic. For X € D, we let w® be the harmonic measure of D at X,
that is, the unigue probability Borel measure on 8D so that for each Borel
subset B of 8D, w*(E) is the value at X of the solution of the Dirichlet
problem with the boundary data x , where x 5, is the characteristic function
of E. (It is known that NTA domains are regular for the Dirichlet problem,
see [7].)

The following two estimates for the harmonic measure of an NTA do-
main D are extremely useful for us: The first one is known as Dahlberg’s
comparison theorem ({7, Lemma 4.8]), which states that if X € D\B(Q, 2r),
then

(22)  C'GIX,4,(Q)) £ P T (A(Q, 1) < CO(X, A(Q)),

for some constant C' depending only on Cp.

The second one is the doubling property ([7, Lemma 4.9]), that is, for
all @ € 8D and r >0,

(2.3) W (A(Q,2r) < Cw*(AQ, 7)),

for some constant C' depending only on C'p and X.

In what follows we shall use ¢ and ¢ to denote positive constants which
are not necessarily the same at any two occurrences, and the dependency
of a constant will be specified in the appropriate context. For an NTA do-
main ) C R™, by the phrase “a constant depends on D" we mean that
the constant depends on the structure constant Cp in the definition of
NTA domains, on the dimension n, and sometimes also on a fixed point
O € D. We also use the notation ¢, < g, to mean that there is a con-
stant ¢, depending only on D (or the dependency of the constant is clear
from the context), such that ¢; < cg,, and the notation ¢, =~ g, to mean
that ¢ < gp and ¢ $ ¢,- For instance, (2.2) and (2.3) could be rewrit-
ten as 14 WX (A(Q,1) = G(X, A,:(Q)) and wX (A(Q, 21) S w  (AWQ, 7)),
respectively.

3. Nontangential radial mappings

DEFINITION 3.1. Let D be an NTA domain in R™ with constants Cp
and 7p,. Let B C 4D be a Borel set, and ¢ be a number depending only on
E such that 0 < ¢ € C5'r. A mapping

vy:Ex[0,0)~ D

is called nontangentially radial (abbreviated NTR) if the following two con-
ditions are fulfilled:
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(1) Corkscrew condition. For any Q € E, if we set yo(t) = v(Q, ), then
the locus of vg, {vq(t) : t € [0, 9)}, is a corkscrew at Q, that is, vo(0) = @
and

(3.1) lve(t) — QI <t, 6(ve(¥) > Cp't
for all ¢ € (0, o).
(2) Radial condition. There exists a constant I, > 0 such that

(3.2) lvQ(t) —vp(s)| = L7Q — P
for all @, P € E and 5,1 € [0, o).

We can piece local NTR mappings together to obtain a global one on
0D in the following way:

DEFINITION 3.2. We say that an NTA domain D C R™ is nontangential
radial (abbreviated NTR) if there are countably many Borel sets Ejp C
0D,k =1,2,..., such that

(1) {Ey} are mutually disjoint and the set 8D\ By has w-measure zero.

(2) On each Ej there is an NTR mapping vx : Ex x [0,0,) — D.

(3) The family of NTR mappings v = {vx}32, is compatible in the fol-
lowing sense: There exists a constant L > 0 such that if @ € E;, ¢t € [0, g5)
and P € Ey, s € [0, oi) then

(3.3) i (@,8) — w{P,8)| = L7HQ — P
for any pair of indices 7 and k.

Remarks 3.3. (a} The mapping vg is not necessarily continucus and
hence its locus is possibly disconnected.

(b) For technical reasons we shall assume that p is small enough so that
there is a point O € D such that §(0) > 2CHe.

(c} It is obvious that the class of NTR domains is invariant under bi-
Lipschitz homeomorphisms of R™, This fact implies that every chord-arc
domain in R? is an NTR domain, since it has been proved in [8] that any
chord-arc domain is the image of the unit disk (or the upper half-plane in
the unbounded case) under a global bi-Lipschitz homeormorphism. However,
chord-arc domains are not Lipschitz in general.

(d) The radial condition (2) in Deflnition 3.1 is equivalent to the condi-
tion (2’) below, which is more geometrical and is also in the form we actually
want to use in obtaining radial limits of subharmonic functions.

In order to introduce the condition (2') we need some notation: For a
fixed NTR mapping v, let RY be the image of v, l.e.,

(3.4) RY={X € D; X =g(t) for some Q@ € Eand t € (0,0)},
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and let 7 : RY — F be the projection along -y, which is defined by

Tt)=Q, Q€E,tc(0eo).
For any subset F' C 1), we define 7' = «w(F N R7).
It is easy to verify the following
LEMMA 3.4. Let D, E and v be as in Definition 3.1. Then the condition
(2) is equivalent fo the following condition:

(2} The projection m : R7 — E is well-defined and there is o constant
L' > 0 such that if @ € F then
(3.5) 7B(vo(t),r) C A(Q,L'r)
for allr > 0.

Moreover, the two constants, L in (3.2) and L' in (3.5), coincide.

In [3], Dahlberg studied nontangential radials of straight lines on Lip-

schitz domains. The following proposition shows that these are indeed NTR
mappings in our sense.

ProOPOSITION 3.5, Let D be a Lipschitz domain in R™, and E C 8D be
Borel measurable. Suppose for some 0 > 0, v: E x [0, 9) — D 145 given by

{3.6) ¥(Q,t) = Q +te(Q),

where e is a Lipschitz continuous mapping from E to the unit sphere S™1
in R™ so that e(Q) is the azis of symmelry of an open truncated circular
cone I'8(Q) in D at Q € E. Then vy is an NTR mapping on E, provided o
is small enough.

Proof. The corkscrew condition (1) is obvious. We now verify the radial
condition (2).

Ilet Q, P € Fand 0 < s <t < p be given. It follows from the interior
and exterior conditions of Lipschitz domains that there is a number o with
0 < o < 1 such that [{(e(P),Q — P}| < ¢|@Q — P|. Writing ¢t = l|@ — P| for
some [ > 0, we have

[te(@) +Q = P| = (£ + 24(e(Q), @ ~ P) + |Q ~ P})!?
> (141 =200)2Q - P| 2 (1~ 0")|Q — P|.
Next, using the fact that e is Lipschitz continuous, i.e., there is a constant
k > 0 such that |e(Q) — e(P)| < &|Q - P|, we then get
[¥a(t) = vp(s)l = |Q + te(Q) — P — se(P)]
2@+t — s)e(@) — P| - 5(e(Q) —e(P)]
> (1o - gr)|@ — P|.
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This gives condition (2) with I, = 1 — 6% — px, if p is sufficiently small so
that 1 — o2 —pr > 0. =

4. Radial boundary limits

TueoreM 4.1. Let D be an NT4 domain in R™ ond v be o subharmonic
function on D which has a nonnegative harmonic majorant. If E C 8D
is Borel measurable such that there is an NTR mapping v on E, then the
y-radial tmit limpe o u(vg(t)) esists and is finite for w-almost all Q € F.

In order to prove this theorem, we need to introduce a splitting of the
Green function G of the NTA domain D: For a fixed number 0 < 3 < 1/2,
we define

(4.1} GD,X(Xa Y) - G(X:Y)XB(XSZE(X))(Y) )

and

(4.2) G1(X,Y) = G(X, Y)XD\B(X,zE(X))(Y) ]

where X,V € D.If Gu is a Green potential in D, we set

(4.3) Gipett(X) = [ Gi o X,Y)du(Y), i=0,1.
D

We then have Gu = Go.pt + G sept. We shall call Go e the singular pari
and G .4 the nonsingulor part of the Green potential Gu, respectively.

We next recall that for an NTA domain D in R", a noniangential region
at @ € 8D of opening « > 1 is defined by _

(4.4) (@) ={XeD:|[X-Q| <af(X)}.

We say that a function u defined in D has nontangential lemit £ if for any
o > 1, u(X) restricted to I',(Q) converges to £ as X - . It was shown
in [7] that every positive harmonic function in an NTA domain has finite
nontangential limit w-a.e. on 8.0,

‘We remark that our notation of I', (@) is slightly different from the one
used in [7]. We also notice that I'n((?) might be empty if o is close enough
to 1. But, for large o, say @ > Cp, the nontangential region I, (@) is always
nonempty for all @ € d.D.

As far ag boundary limits are concerned, the nonsingular part of a Green
potential behaves like a harmonic function, as is shown in the following
lemma, the proof of which is taken from [3].

LemMA 4.2, Let D be an NTA domoin and Gy be o Green potential on
D. Then for any 3 with 0 < 2 < 1/2, the nonsingulor part G1 .4 as defined
above has nontangential limit 0 w-a.e. on 8D.

Proof. It was shown in [10] (see also [4, Theorem 1.XII.18]) that G
has fine limit 0 w-a.e. on the Martin boundary of D and hence on the
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topological boundary 8D of D, since it has been proved that these two
boundaries coincide for the NTA domain D (see (7, Theorem 5.9]).

Let X € D and denote by v the restriction of 4 to the set DAB{X, »6(X)).
Then Gv is harmonic in B(X, #5(X)). It follows from Harnack’s inequality
that Gv 2 GU(X) = G ..p(X) in B(X, §56(X)). Since G > Gv we have

(4.5) Gu(Y) 2 Gr.u(X) forall Y ¢ B(X, 5x6(X)).

Suppose now that there is a sequence { X}z, of points in D such that
X, — Q € 8D nontangentially but Gy ,.p(Xx) = m > 0 for all k. Then
it follows from (4.5) that Gu = m in | By, where By = B(X, 56(X4))-
However, the “bubble set” {J By, is not semi-thin at @ as shown in [13] for
NTA domains, so Gu cannot have fine limit 0 at @, which is a contradic-
tion. =

In the rest of the section, we shall fix s = (2Cp)~" and write G = Gy »
and G1 = Gl:’f'

To control the boundary behavior of the singular part of a Green poten-
tial we need the following:

DEFINITION 4.3. Let D, E, v and p be as in Definition 3.1. For a Green
potential Gu in D, we define the (nontangential) radial mozimal function
Mo of the singular part Gou of Gu by

(4.6) Mou(Q) = DS{ggfoﬂ(%e(ﬂ% QekE.

The major step of the proof of Theorem 4.1 is the following:

LEMMA 4.4. Let D, K, v and o be as in Definition 3.1 and let O € D be
as in Remarks 3.3(b). Suppose that Gu is a Green potential on D). Then the
radial mazimal function Mop of Gop 18 weak-L' (w©®). More precisely, there
exists o constant O > 0, depending only on D, such that

(4.7) WOUQ € B: Mop(@) > N}) < S0u(0)
Jorall A > 0.

The proof of this lemma will be given in the next section. We now assume
it to prove Theorem 4.1.

Proof of Theorem 4.1. Let u be a subharmonic function on D
with a nonnegative harmonic majorant h. Then by the Riesz decomposition
theorem for subharmonic functions ([6, Theorem 6.18]) there is a Green
potential G such that v = hy—Gu, where hg is the least harmonic majorant
of u. Since hy < h, it follows from [7, Theorem 6.4] that ho has finite
nontangential limit w-a.e. on 8D. Now, we split G = Gou+ G1u as before,
and Lemma 4.2 tells us that Giu has nontangential limit 0 w-a.e. on 8D
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Thus the theorem will follow if we can prove that lims~ o Gop(vo(t)) = 0
for w-almost all ( € E. To prove this we need to show that for any £ > 0,

(4.8) wo{QeE: lim sup Gop(ye(t)) > e}) <=

for some point O € D.

Now, let O € D be as in Remarks 3.3(b). Without loss of generality, we
may assume that Gu(Q) < oo, since the Green potential is finite in a dense
subset of D. Let £ > 0 be given. Choose a relatively compact subdomain 2

of D so that
O e
& < -,
»(0) C

where v is the restriction of p to the set D\ {2 and C is as in Lemma 4.4.
Since the Green potential G(u|£2) has uniform boundary limit 0 by [6, The-
orem 6.23], we have :

{Q ¢ E :limsup Goplyo(t)) > £} = {Q € E : limsup Gor{v(t)) > €}
N0 0

c{QeB: Mu(Q) > e}

Therefore, applying Lerama 4.4 to the measure v, we obtain
w?({Q € B limsup Gou(yq(t) > €)) <w({Q € B+ Mov(Q) > ])
< gGu(O) <.
Thus, (4.8) is established and hence the theorem follows. m

An immediate consequence of Theorem 4.1 and the definition of NTR
domains (Definition 3.2) is the following:

COROLLARY 4.5. If D is an NTR domain with an NTR mapping v on 8D,
then every subharmonic function on D which has a nonnegative harmonic
majorant has a finite y-radial limit w-a.e. on 0D.

5. Proof of Lemma 4.4. We shall consider the case of n > 3 only, but
when 7 = 2 all of the results in this section remain true and the proofs are
similar. We keep the notation of the last section.

We need several additional lemmas on which the final proof will be
based. We always assume the hypothesis of Lemma 4.4 and recall that
¥ = (2CD)_1.

LEMMA 5.1. For o > 0, define
(5.1) Mop(@Q) = sup t2 " u(B(yg(t),0t)), QeE.
O<Lt<p
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Then
s .

(5.2) Mop(Q) S > ¥ My u(Q), Q€EE,
i=0

where o = 321/} 5 =0,1,2,...
Proof Let @ € F and 0 <t < g be fixed. We notice
Clra®),¥) S Ivalt) — Y2
for all ¥ € B{vg(t), »t). Therefore, a simple calculation gives

Goulro®) S [ lve®) =Y " dp(¥)
B{yg(t),st)

f [ rrdrdp(y)
Bl (t)#t) [1a(8)-Y]

= [ v u(B(rg(t), »t) N Blyg(t),r)) dr
Q

oG ot
Yo [ Blele), r)dr

J=0 o541t

U

=]

+u(Blya(t), =t)) [riadr

et
= > P u(Blrg(t),05t))
i=0

where Fubini’s theorem was used to change the order of integration. (5.2)
follows from this by taking the sup over 0 < ¢ < g. m

LEMMA 5.2, Let A > 0,0 < o < 1, and set

(5.3) E,(A) ={Q € F: M,u(Q) > A},
and
(5.4) Ro(A) = {vq(t) € B : *""u(B(yq(t), o)) > A},

where RY is given by (3.4). Then
T(Re(A)) = Es (V).

Moreover, there are countably many points {A; € Ro(N) : A; = vg,(t:),
i=1,2,...} such that {B(4;,ot;)} are mutually disjoint and

R3¢ | B(Ai,50t) N D.

i=1
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Proof. The first statement is obvious and the second is the standard
covering lemma of Vitali type {see [12], for example). ®

LEMMA 5.3. Let A > 0 and 0 < ¢ < 1. Then there is a constant 3 > 0,
depending only on D, such that

1 -
(5.5) WO (B, (V) § 30™P2GU(0),
where O € D is as in Remarks 3.3(b).

Proof. First we claim that there is a constant § > 0 such that if Q €
then

(5.6) G(0,7q(0t) S o#G(0,Y),

for all Y € B(yg(t), »ot).

To prove (5.6), we fix @ € E and let 0 < ¢ < g. According to the
localization theorem of NTA domains ([7, Theorem 3.11]), there is an NTA
domain 2 C D, whose constant Cy, is independent of ¢}, such that

B(Q,20)ND C Q< B(Q,2Ch0)ND.

Then G(0,-) is a positive harmonic function in the NTA domain {2 by
the choice of the point O € D, and vanishes identically on 82 N B(Q,20)
(= 8D N B(Q,20)). By Lemma 4.4 of [7] and the Harnack chain condition
for the NTA domain {2, we find, since 0 < ¢ < g, that

G{0,X) £ G(0,4:(Q)) S GOY)

for all X € B(Q,t) N D and Y € B{vg(t),sot), where A4(Q) is a ¢-
nontangential point of Q in §2 as in the definition of NTA domains. However,
Lemma 4.1 of [7] states that there exists 8 > 0 which depends only on D
such that

_ 8
G(O,vqlot)) 5 (w) sup{G(0,X) : X € 8B(Q,t)N D}.
Therefore, (5.6) follows from the above two estimates, since [yg(ot) — Q| < ot.
Next, if v (t) € Re{A}, then
#(Blrglt), o)) > A",
This together with (5.6) implies that

[ GOXY)aY) 2 =560 1alet M(Blre(t) o1))
By, (0),)

A e
>E_-ﬁ—t 2¢(0,vg(ot)).
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Thus, if A; € R,(A) is as in Lemma 5.2, we have
O‘ﬁ
(5.7) #£7°6(0,40) s+ [ GO,Y)duY),

B(A;,0t;)

where we have denoted yg, (ot;) by A7.
Finally, the radial condition (2') of the NTR. mapping ~ implies that

7 B(A;, Bot) C A(Qy, 5Lat;) .
The doubling property of w® and Dahlberg’s comparison theorem give
w (A(Qs,5L0t;)) € w(A(Qi, ots)),
and
wO(A(Q:, o)) = 772 G(0, A7) .
Thus, by using Lernma 5.2 together with the above facts and (5.7), we obtain

WO(EL(N) < iwo(ﬂ’B(Ai,Emt < Zw A(Q;,5Lat;))

i=1

<3 wOAQs 0t) S Z(crtwc(o,ém

=1 i=]

gnth-2 o
S [ GO (Y < 50" Gu(0).
i=1 B(A;,0%;)

The last inequality is because the family {B(A;, ot;)} is mutually disjoint.
This concludes the proof. =

Proof of Lemma 4.4. Pick a number ¢ with 0 < ¢ < 3/(n - 2).
Then by Lemuma 5.1, we have

o o0
Mop < CY Y My p=CY 275204y,
F=0 j=0

< , £ (1-}-5‘)3’ I
g 2;13{2 Mo},

where the constant C depends only on . We next observe that
{Q e E: Myp(Q) > A} C U E,, (C2~(+e)iAy
=0

where B, (A) is given by (5.3). Thus, we are able to apply Lemma 5.3 and
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w?({Q € B: Mou(Q (Ca-(+iry)

) > A} <Zw

C n+3—24(1+2) 3
< XG/.L(O)ZO'J- 2(1+e)

7=0

C > . C
== —(8/(n-2}-e)j _
X Gu(0) ji > 2 3 Gu(0).
The proof is therefore complete. =

6. LP-nontangential boundary limits

DEFINITION 6.1. Let D be an NTA domain in R™, and 1 < p < oo,
We say that a function u defined in D has an LP-nontangentiol limit ¢ at

QedDif

(6.1) f [u{X) = ¢[PdX =0

t\U EI’t
for all @ > 1, where I':(Q) = I‘a(Q) N B(Q,t) and |[I't(Q)| denotes the
Lebesgue measure of the set I}

As was pointed ocut in [18], at least formally, the ordinary nontangential
limit may be viewed as a limiting case of the LP-nontangential limit as

p /" oc. It is also clear that the ordinary nontangential limit is stronger

than the LP-nontangential limit, that is, if v converges nontangentially to
a ¢ at & € 8D then u has LP-nontangential limit ¢ there. Hence, every
positive harmonic function on D has finite LP-nontangential limit w-a.e. on
dD. The same is true for the nonsingular part of a Green potential (see
Lemma. 5.2).

The following theorem is an extension of Ziomek’s result ([18]) to NTA
domains. For the case of Lipschitz domains in the plane see [18] where con-
formal mappings were used. We remark that it has been shown in [18] that
the range of the exponent p which appears in the statement of the theorem
is sharp. We also notice that the LP-nontangential limit of u necessarily
coincides with the ~-radial limit of & w-a.e. on the set on whick the NTR
mapping ¥ is defined.

THEOREM 6.2. Let It be an NTA domain in R™. If u is subharmonic
in D and has a nonnegative harmonic majorant, then u has finite LP-
nontangential limit w-a.e. on 8D, provided 1 < p < nf(n — 2},

In order to prove the theorem, we need to prepare some lemmas. The
first lemma may have some independent interest.
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LEMMA 6.3. Suppose G is a Green potential in D. Then for fited O € D
and & > Cp,

(6.2) [ J s du(X) du®(Q) S Gu(O).
aD Ia(Q)

In particulor,

(6.3) [ (X" dp(X) < o0
I'o(@)
w-a.e. for @ € 0D,
Proof The second assertion follows from the first if we choose O € D
s0 that Gu(O) < .

We now prove (6.2). We shall use the following notation: For X' € D) and
a > Cp, we let

(6.4) F(X)={QedD: X e I.(Q)}.

We denote by X a point of 8D closest to X, that is, X € 8D with | X — X|
= §(X), it then follows from the triangle inequality that I.(X) c B(X,
(1+a)8(X)).

‘We next recall that Dahlberg’s comparison theorem implies that

5(X)* "Wl (A(X, 8(X))) S (O, X)

for all X € D. We notice that the last inequality is trivial on the set {X €
D : §(X) > ry}, where rg = fmin{rp,6(0)}, since on this set G(O,") is
uniformly bounded away from 0 and §(X)2~"w®(A (X (X)) € rz "

Now the above facts together with the doubling property of w® show
that .

(XY "wO(Ta(X)) S 8(X) "®(A(X, 6(X))) £ GO, X).

Therefore, by using Fubini’s theorem, we obtain

S X (X)) (@) = [ 8(X)* MO (Ta(X)) du(X)
8D I'a(Q) D
S [ 6(0,X) du(X) = Gu(0),
D
as we desired. m

Once again, we shall split the subharmonic function u in the theorem into
several parts, and, as before, the interesting part will be the singular part
of the corresponding Green potential in the splitting. The main estimate we
need in the proof of Theorem 6.2 is the following:
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LEMMA 6.4. Given 1 <p < n/{n—2) and & > Cp, there exist constants
C' > 0 and § > o, depending only on «, p and D, such that, if Gu is o
Green potential in D then

1 P
(6.5) T (f )(Gou(X)de<O(rﬁ fQ )5 v)2- d,u(Y))

Jor allt > 0 and Q € 8D, where Gy = Gy ,. is defined by (4.1) with »x =
(80_5&)71

We leave the proof of the lemma to the next section, and now we assume
this to complete the proof of Theorem 6.2.

Proof of Theorem 6.2. Let @ > Cp be fixed. By the same consid-
eration as in the proof of Theorem 4.1, it suffices to prove that every Green
potential Gp has LP-nontangential limit 0 w-a.e. on 8D. To this end, we
use the splitting Gu = Gopu + Gap, where Gy = Gy and G1 = Gy, are
defined by (4.1) and (4.2), respectively, with the choice of » = (8Cpa)~?.
By Lemma 4.2, G1p has nontangential limit 0 w-a.e. and hence has LP-
nontangential limit 0 w-a.e. We now look at Gop. We need to show that
there is @ € D such that

(oo e v
({Q € DAllT\félp |F3(Q)ipt;:{Q)(Gou(X)) dX e, | <e

for any £ > 0.

Now, let O € D be fixed such that Gu{Q) < oco. For a given £ > 0, the
same reason as in the proof of Theorem 4.1 allows us to assume that

au(0) < e(%)l/p,

where the constant C is as in Lemma 6.4. We set

E; = {Q ¢ 8D f VY™ du(Y) > (%)1/;9}?

Te(@)

where 8 > « corresponds to the given o as in Lemma, 6.4. Applying Lem-
mas 6.4 and 6.3, we finally obtain

o({Q eD: limsuppt—q)-i J (Gou(x))" X > 8})

o Il ri@)

o ({Q cop: o( [ sy a!,u(Y))P > a})

(@)
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Therefore the theorem is established. =

7. Proof of Lemma 6.4. The following covering lemma for a truncated
nontangential region is needed in order to prove Lemma 6.4. The idea behind
this is quite simple, that is, a nontangential region I':(Q) is roughly the
union of nontangential balls of the boundary point @ & 8D.

LEMMA 71 Leta> COp, t >0 and Q € 8D. Then there is a covering B
I'H(Q) consisting of nontangenmal balls centered at points of I'5(Q) such
tha.t

(1) #f B(Z,s) € B then B(X,(8Cpa) t86(X)) C B(Z,\s) for all X €
B(Z,S);

(2) if B(Z,5) € B then B(Z,2)s) C I'3(Q);

(3) if B(Z,s) € B then ¢;s < §(X) < ¢y for all X € B(Z, )s); and

4) X pen|Bl £ CITE(Q)],

for some constants X > 1, f > a, and ¢, ¢y, C' > 0, which depend only on
o and D.

Proof We fix a number & so that 0 < & < (4a(1+ (8Cpa)~1))~*. For
each nonnegative integer 7 put o; = (2Cp) ™7, and define

(71) RJ(Q) = ng_lt(Q)\ngt(Q): i=12,...

We claim that there is a positive integer IV, depending ounly on « and D,
such that, for each 7, there is a covering B; of R;{Q) consisting of at most
N balls with radius £o;t and centered at points of Rs(().

The last claim follows from the well-known argument of the proof of
the Besicovitch covering theorem (see [5], for example), but is somewhat
simpler. We let j be fixed. By induction, we can choose a finite family
{X,}H2L, so that X1 € R;(Q) and Xgp1 € R Q@ )\U1 1 Bi, 1 <k <M, and
so that R;(Q) € UM, By, where By = B(Xy, ko;t). We shall prove that
the covering B; = {Bx}2L, of R;(Q) meets our requirement. To see this, we
notice that the collection {%B;ﬁ}fc";l is disjoint, where %Bk = B(X,, %I‘Eﬁj t),
and {37, $ By C B(Q, (6j-1+3k0;)). Therefore, the number M is less than
or equal to the number '
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v=[(=pae) ] - (2

where [q] denotes the largest integer dominated by g.

We now verify the properties of B = U | B; listed in the lemma:

(1) To choose A, let J be fixed and let B(Z s) € B;, e, Z € Rj(Q) and
s=rost. f X € B(Z 8} then, since ot < |Z - Q| < aé(Z) and k& < a7,
we have

§(X)2 82— |X - 2> (et — K)ot > 0.
On the other hand, we have
S(X) <X -Q| < |X —Z|+|Z - Q| £(2Cp + K)ot

as |Z — Q| < j—1t = 2Cpo;t. Thus,

B(X, (8Cpa)~t6(X)) C B(X, (8Cpa) H(2Cp + w)ayt) C B(Z,As),
where we have chosen
(7.2) A=1+4 (4ka) "t + (8Cpa)™".

A similar estimate shows that (2) is valid if we choose

-1

) = R e

(3) follows from (1) and (2) immediately. One can easily check that, if
B(Z,s) is as above and X € B(Z,As), then
(7.4) 201+ (8Cpa) s < 6(X) < [1+2Cp + (4ka) ™" + (8Cpa) s

To prove (4), it suffices to show that there is a constant C, depending
only on o and D, such that

(7.5) > 1Bl <CIR;(Q)]

BeB;
for all j = 1,2, ... The last inequality will follow if we can show that R;(Q)
contains a ball W].th radius comparable with ojt. But this fact is a conse-
quence of the definition of NTA domains. To be precise, first we take an
integer k > 1 large enough so that

Cp -+ g~k
1— 2k
This is possible since o > Cp by our assumption. Next, we choose £ with
0 < e < 1 close enough to 1 so that
2€(1—-2"F)y > 1,

and finally we take k even larger to make

QS(OD + Q-k) < 2Cp.

<.
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Now, by the definition of NTA domains, for ¢ € 8D, and r = 2°Cpoyt,
there is A € D with

|4 — Q| < 2°Cpojt, &(A) > 20;t.

We claim that B(A, 25 %o;t) C R;(Q). To see this, let X' € B(4, 26 Fo,1).
Then

8(X) > 8(A) — A — X| >2°(1 —~27%)gyt.

Thus,
|X — Q| < |X —-A‘ + |A— Qi < QE(CD -+ Q_k)o'ji'
Cp+27F .
Moreover,
|X — Q[ < 2%(Cp +2—k)a'jt < ZGDO'jt =oj-t.
Finally,

X —0Q|2A-Q|- X — A 2 8(X) - |A - X|
> 25(1 — 21;'&)0'31 > O'jt.
These show that X ¢ R;{Q). =

Proof of Lemma 6.4. Let B be a covering of I'} (@) as in Lemma 7.1.
We first claim that for each B(Z,s) € B we have

(7.6) [ Copnx)yax 1Bzl [ sv)Padu())”.
B(Z,s) I's(@)

To prove this, we first notice that if X € B(Z, s) then G(X,V) = | X —Y|>~"
for all Y € B(X,(8Cpa)~'6(X)), and if ¥ € B(Z,\s) then B(Z,s) C
B(Y,2)s). Thus, by using Fubini’s theorem and Minkowski's inequality for
integrals, together with the properties of B in Lemma 7.1, we get

J Guoypaxs [

B(Z,s) B(Z,5) B(X,(8Cpa)~'6(X))

< [(f X - YR du(y) ) dx
B(Z,s) B(Z,)s)

<{ (] ix-vemrax)” g
B(Z.7s) B(Z,s)

< X — vyl gx) g !
{B(ZJ,:\S) B(Y{As)! ‘ ) ”(Y)}

X —y|2-" d,u(Y))p ax
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{1 (o) sy

B(ZXs) 0

=(2)\3)“+(2ﬂﬂ)10( I d#m)p

n+(2-n)p B(Z,)s)

<sor( [ s aum))”

B(Z,2s)
»
SB[ ey anm)
T's(Q)
Now, by using (7.6) and property {(4) of B in Lemma 7.1, we obtain

1 » 1 .
i@ ] ConOr X < gy 3 f (Contr X
C 2—n P
< Trar (3,2 ( [ o0 a)
sof [owpram),
Ta(@)

where 3 is as in Lemma 7.1 and the constant C' depends only on o, p and
D as we can see in the proof. =

8. Boundary limits under nontangential conditions. First we re-
call a notation: If D is an NTA domain in R"™ then for a set £ C 6D and
a > 1, we denote the sawtooth region of opening a over £ by

(8.1) 5a(B) = |J Ia(@).
Qel
If more than one domain is under consideration, we shall write Iy p(Q) and
Sa,p(E) to indicate the domain D they belong to.
The following lemma is taken from [7] (Lemmas 6.1 and 6.3).
LEMMA 8.1. Let D be an NTA domain in R", and O € D be a fized point.
(i) For any E C 8D andt,e >0, f > a > Cp, there exisis a closed set
F ¢ E and o number v > 0 such that w?(E\F) < & and S;(F) C S,(E).
(it} For any o > Cp, there exist 3,8 > Cp such that for any closed
set F' — OD there ewists an NTA domain 2 C D which has the following
properties:
(1) 8D N oM = Fy
(2) 2 C Sp,p(F);
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(3) I'a,p(Q) C I's,(Q) for every Q € F; and
(4) the harmonic measures w of D end wg, of 2 are mutually abso-
lutely continuous on F.

We now give the first result of this section; our proof is on the line of one
for harmenic functions (see Theorem 6.4 of [7]). We start with a definition.

DerNiTION 8.2. Let D be an NTA domain in R™. We say that a function
u defined on D is nontangentially bounded from above at @} € 8D if there
exist &« > Cp, r > 0 and C > 0 such that w(X) < C for all X € I'7(Q).

I B C 8D, we say that u is nontangentially bounded from above on E if
u is nontangentially bounded from above at every point of E.

THEOREM 8.3. Let D be an NTA domain in R and E C 8D be o Borel
set. Suppose v is subharmonic in D and nontangentially bounded from above
on E. Then w has L¥ -nontangential limit w-a.e. on E for 1 < p < n/{n-2).
If, in addition, there is an NTR mapping v on E, then u has v-radial limit
w-a.e. on B, Moreover, these two limiis coincide w-a.e. on E.

Proof. Let D, F and « be as in the statement of the theorem and let
O € D be as in Remark 3.3(b). First we observe that, by the corkscrew
condition of -y in Definition 3.1 for each @ € E the locus {vg(¢) : ¢ €[0,0)}
is contained in every nontangential region I',(Q) if & > Cp.

We now fix an @ > Cp, and let 8 > Cp be as in Lemma 8.1(ii). Let
e > 0. Since w is nontangentially bounded from above, there exist conqtants
o > Cp,t >0and C; > 0and aset By C E with w?(E\Ey) < le
such that u(X) < Cy for all X € % (E1). By Lemma 8.1(1), for the given

B > Cp, there exists a closed set F' C By with w?{E\F) < e and r > 0
such that SG(F) C 5, (El) Note that S,(F)\SL(F) is relatively compact
in 0, and thus the upper semi-continuity of « implies that there exists a
constant C' > 0 so that u < C' for all X € Sg(F).

Now, we apply Lemma 8.1(ii) to get an NTA domain {2 with the proper-
ties (1)~(4) listed there. The property (2} implies that « < ' on {2, and by
the properties (3) and (1) we may consider that + is an NTR mapping on
F C 012, Therefore, by Theorem 4.1 we conclude that u has finite n-radial
limit wy-a.e. on F. The second assertion thus follows because of condition
(4) and & being arbitrary.

For the LP-nontangential limit {1 < p < n/(n—2)), the proof is the same
but we need to use Theorem 6.2 instead of Theorem 4.1. =

In order to prove the second result (Theorem 8.5) of this section we need
the following lemma. For the case of upper half-spaces, this lemma is essen-
tially proved by Stein in [11]. Our proof is adapted from {7, Theorem 6.7].

LEMMA 8.4, Let D be an NTA domain, g a nonnegative Borel measurable
Junction on D and E C 8D a Borel set. Suppose that for each Q@ € E there
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exsts 3> Cp (depending on Q) such that

(8.2) [ 9(X)dX < o0,
Lp(@)

Then, for every e > 0 and o > Cp, there exists o closed set F © FE with
wO(E\F) < & such that

(8.3) [ olX)dx < oo
Ta(Q)
w-a.e. for Q € F, where O € D is some fized point.

Proof. Let & > Cp be given. For any £ > 0, by (8.2), there is a constant
' > (0 and a Borel set E; C E with wO(E\El) < %E such that

[ exyax <c
Ta(@)
for all @ € F1. By Lemma 8.1(i), there is a closed set Ey C Fj satisfying
wO B\ Es) < < Z& such that S, (Fa) C Sgs2{F1). Next, by a well-known fact
on points of density, there is a constant ¢ > 0 and a closed set F C o such
that w?(E;\F) < ¢ and
w? (BN A(Q,1) 2 ew?(A(Q,7))

forall @ € Fandr >0, N
Now, let X € Sg/a(F). Choose P-€ F so that X € I'z0(P). Let Tp(X)

be given by (6.4). Since I5(X) > Fan A(P, 1B6(X)), we have
wO(T3(X)) 2 aw?(A(P, 185(X))).

We next notice that A(X, 6( )) € A(P(2 + 18)8(X)) and I3(X) <

A(X,(1+ a)§(X)), where X is a pomt of 8D so that |X —~ X| = §(X).
Thus, by the doubling property of w®, we have

wO(Fp(X)) Z wO(A(P, 356(X)))
2wl (AP, (2+ 38)6(X))) 2 w(A(X, §(X)))
2 wO(AX, (1+0)5(X))) 2 w° (Fa(X) -
Finally, by Fubini’s theorem, we find that
[ Jo@0dxal@= [ [ oXxpq(X)dX d(Q)

F (@) FoSa{

[ #(X)wO (Fa(X)) dX

Se(F)
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S [ e(nwC(Tp(x))dX
Sare(E1)

[ [ eX)ax aw®(@Q)

By Igya(@)

[ [ endxal(@<cC

By I'n(Q)

1A

From this {8.3) follows. =

The following theorem asserts that under certain conditions on the mea-
sure i the Green potential Gu does have nontangential limit w-a.e. on the
boundary. It has been shown in [15] that the range of the exponent p in the
theorem is the best possible.

THEOREM 8.5. Let D be an NTA domain in R™ and let Gu be a Green
potential in D. Suppose that du(X) = f(X)dX for some nonnegative mea-
surable function f defined on D. Suppose that there is o Borel set E C 3D
and & number p > n/2 such that for each @) € E there exists § > Cp such
that

(8.4) [ s(xyemf(X)PdX < o0
Ta(e)
Then Gy has nontangential limit 0 w-a.e. on B.

Proof. Let @ > Cp be given. We want to show that Gy has limit 0 in
I, (Q) w-a.e. for Q € E.

Let O € D be fixed. For any given € > 0, applying the last lemma to

g(X) = (X))~ f(X)? gives a constant C > 0 and a set F C F with
O(E\ F) < ¢ such that

[ s(x)yPrf(X)PAX < C
Taa (@)

for all @ € F.

As before we split Gu into two parts Gou + Gy p, where Gy = Gy ,. and
G1 = G, are given by (4.1) and (4.2), respectively, with s small enough so
that B(X, 56(X)) C I'no(Q) for all X € I',(Q) and @ € F. By Lemma 4.2,
G p has pontangential limit 0 w-a.e. For the singular part Gop, we uge
Holder’s inequality and notice that §(¥) = 8(X) for Y € B(X, #8(X)) and
X € I',(@). We then have

Gy ([ X-YPiyar)”

B(X,»8(XY)
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p—1
< ( [ |x = yie-mee- dy) ( [ sy dY)
B(X,x5(X)) B(X,26(X))
S&xy [ pryrdy
B(X,2=6(X))
< / (V)P f(YVPdY — 0

F2:v (Q)HB(X:"E(X))

as 6(X) ~ 0. Therefore limy _,q Gu(X) = 0 with X € I',(Q) for all @ € F.
The theorem is therefore proved. a
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Operators on spaces of analytic functions
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K. SEDDICGHI (Shiraz)

Abstract. Let A, be the operator of multiplication by z on a Banach space of
functions analytic on a plane domain G. We say that M, is polynomially bounded if
| Mz} < Cliplig for every polynomial p. We give necessary and sufficient conditions for
Az to be polynomially bounded. We also characterize the finite-codimensional invariant
gubspaces and derive some spectral properties of the multiplication operator in case the
underlying space is Hilbert.

Introduction. Consider a Banach space £ of functions analytic on a
plane domain G, such that for each A € G the linear functional e, of eval-
uation at A is bounded on £. Assume further that £ contains the constant
functions and that multiplication by the independent variable z defines a
bounded linear operator M, on £. In case £ = H is a Hilbert space the
continuity of point evaluations along with the Riesz representation theorem
imply that for each A € G there is a unique function k» € H such that
F(A) = {f,kx), f € H. The function k is the reproducing kernel for the
point A.

A complex-valued function ¢ on G for which of € & for every f € &

‘is called a multiplier of £ and the collection of all multipliers is denoted by

M(E). Each multiplier ¢ of £ determines a multiplication operator M, on
Eby Myf = wf, fe& Each multiplier is a bounded analytic function on
G. In fact [l@|lg < || M. A good source on this topic is [7].

Twenty years after the appearance of [7] it is reasonable to expect some
words explaining the motivation of such a study and of any developments in
the area. The description of invariant subspaces in abstract spaces has in fact
appeared under some additional hypotheses and one of the first results (for
simply connected domains) seems to be [6]. This kind of Beurling’s theorem
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