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Finally, the ergodic theorem for measure preserving transformations tells us
that this lagt integral is equal to

[ A Mo

= f lim M (T)(fPw)(z)d

f fPx)w(z) dm.

3. Remarks. 1) If ¢ is not invertible (1) and (2) in Theorem 1 are still
equivalent. To see this one just observes that the proof of (2)=»(1) does
not make use of the invertibility assumption, so it is enough to show that
(1)=>(2). But if (1) holds, then, using again the result of [MT] we conclude
that w* = limsup,_, . M, (T)w' ™7 is finite a.e. This means that X can be
decomposed as the union of invariant sets Xy, where X; = {x : 281 <
w*(x) < 2%}. But for each k the function w'~9 is in L,(Xy, dm) and then
the same argurmnent as in Theorem 1 proves (2) a.e. in X,

2) If ¢ is nonsingular and the operator T maps L,(u) into itself then the
assumption that our measure g is of the form p(A) = | awdmin Theorem 1
is not arestriction, because if (1) holds, i.e., if T" satisfies the P.E.T. in L,(u),
then there exists an invariant measure m equivalent to u [AW]. If (3) holds
then the measure dm = lim M, (T*}1 dy is a finite invariant measure.
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Unique continuation for elliptic equations and an abstract
differential inequality

by

K. SENATOR (Warszawa)

Abstract. We consider a class of elliptic equations whose leading part is the Laplacian
and for which the singularitics of the coefficients of lower order terms are described by a
mixed LP-norm. We prove that the zeros of the solutions are of at most finite order in the
senge of & spherical L%-mean.

1. Introduction. Unique continuation properties of solutions of second
order elliptic equations with bounded coefficients can be studied in detail
with the aid of Carleman type inequalities and besides them the use of
L*-vorms is sufficient (see e.g. [5]). For the case of unbounded coeflicients
the situation is different in general. Strong uniqueness for the Schrédinger
equation with potential whose integrability exponent is minimal (i.e. equal
to »/2 where n > 3 is the dimension of the space) can be proved by this
method [8]. One also gets uniqueness theorems for elliptic equations with
variable coefficients of the leading part and with coefficients of first order
terms in L™, py < oo {see e.g. [6], [10]). However, it appeared that the
optimal value of the exponent, p1 = n, cannot be attained via Carleman
type inequalities: it is possible to get p; > (3n — 2)/2 at most [7], [2]. In
fact, the estimates giving uniqueness for such values of the exponent have
been found [2], [11]. T. H. Wolff has obtained uniqueness results for a case
when p; < (3n ~ 2)/2 using some modified Carleman type inequalities;
namely, he proved strong uniqueness for p1 = max(n, (3n - 4}/2) [19], and
unique continonation from an open set for p1 = n [20] (the assumptions on
all eoefficients are minimal in this case). _

There are other methods giving unigueness theorems for various classes
of second order elliptic equations. Using a geometric approach N. Garofalo
with F. H. Lin [3], [4] and J. L. Kazdan [9] have got strong uniqueness
results for equations with coefficients of first order terms having isolated
singularities of a maximal rate of growth: they may belong to LT, without
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6 K. Senator

belonging to any IX _ with p > n, and analogously for the zero order term.
Just as in the result with mildest assumptions for the bounded coefficients
case [1], the coeflicients of the leading part are assumed to be Lipschitz
continuous. An example in [14] exhibits that this continuity assumption is
sharp. In fact, in [9] and [4] it is proved that a zero of a solution is of at
most finite order in the sense of a spherical L?-mean, which implies strong
uniqueness. ¥. H. Lin [13] has derived this property, in the case of the

Schrédinger equation with L&/CZ potential, basing on a weighted inequality
of Jerison and Kenig [8] (compare Remark 4.2).

The conclusions of the uniqueness results for solutions of elliptic equa-
tions, presented in this paper, are the same as in [9] and [4]. We assume that
the leading part is the Laplacian. Our assumptions on the lower order terms
are less restrictive than those in [4] and [9], the singularities of the coefli-
cients being described by means of some mixed LP-norms. The coefficients
need not be locally bounded outside a set of isolated points; instead, we
postulate that they belong to L7, for some p < oo, though no improvement
of the earlier uniqueness results for such coefficients is gained.

‘We derive the properties of zeros of solutions of elliptic equations using
a lower bound for a function of a real variable with values in a Hilbert
space which satisfies a differential inequality (Theorem 2.1). This function is
attached to a solution of the equation as described in P. D. Lax’s paper [12].

We consider the differential equation

(1.1 Au+by(z) - Du+ bo(x) =0
where A is the Laplacian, bi(z) = (bi(z),...,05(z)), D = (Dy,...,Dn),
Dj = B/Bﬂ:j;

Let B, = B,(x) denote the open ball with radius r centered at z € R";

B = B,1(0) is the unit ball. For a vector-valued function f on B, and 1 <
P,q < 00, define the “mixed” norm

a2 lna=( [ (J 15trwieas.)" e o)
oB

0
where w € OB. It is seen that || fllpp = || fllLe).
The characteristic function of a set 5 is denoted by x -
THEOREM 1.1. Let p;,q; 2 n/(2—7), n>3,5=0,1 and
1 n—-1 _3
(1.3) — + <--—7.
PP G 2
There exists a positive number By such that the condition
(1'4) ”bl“m_,th + “bOHPD:QD <Bo

implies the following two assertions:

icm
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(i) of for each j = 0,1, either p; > n/(2 - 7), orp; = n/(2 -3} and

1
dr
(1.5) J Mbixg o0 — < o0
0

then a solution uw € H'*(B) of equation (1.1) either vanishes identically in
B or

(1.6) f wdS > COr?
a8,

ford<r<1

where C, A are some positive constants, depending on u;
(ii) generally, there exists a function n(r) — 0 as v — 0 such that

{1.7) f ulds > Cexp(—-frhn(r)) for0<r<1.
OB,

The theorem is proved in Section 5. Now, we discuss some of its conse-
quences. For any 0 < r < 1 put f.(z) = f(rz). If u is a solution of equation
(1.1) then u, satisfies the equation of the form (1.1) with by replaced by rb;
and by by r?by. For any function f in B and 0 < r < 1 we have

I Frllpq = T_n/p“fxug,”p.q .
In particular,

fellzo@ ="l f 2o ca.y -
CororLaRy 1.1. Suppose that the assumptions of Theorem 1.1 are sat-
isfied. If
B = [b1llps,g: + lIBollpo,e0 < 00

then there exisls o positive number ro < 1, depending only on A, such that
the assertions (1) and (i) of the theorem hold with “0 < v < 1" replaced by
“O<r<ry”.

Proof The number ry is defined by

”bl,mum,qx =+ ”bﬂ,roﬂpo,qo < bBo.

It remains to show that wr, = 0 implies « = 0. This follows from the fact
that then u is a solution of (1.1) with b; replaced by x5 b; (j = 0,1).
o

Condition (1.3} holds when p; = ¢; = 2n/(3 — 2§) and so, by Corol-
lary 1.1, a zero of a solution of equation (1.1) with by € L™ and by € Lf;/ 3
is of at most finite order in the sense of the spherical L>-mean (i.e. estimate
(1.6} is valid).

As a consequence of Corollary 1.1 we get a strong uniqueness result for
a class of elliptic equations; singularities of their coeflicients are described
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by functions e;(z) in B such that for some p;, g; satisfying (1.3) and any
0 < e <1 we have

(1.8} lleillpg.a; T llesllons@-2nm-np,) < o0
for j =0, 1.

THEOREM 1.2. Let w € HY2(Q) be a solution of eguotion (1.1) in an
open. connected subset 2 of R™, n > 3. Suppose that for every x € {2 there

exist functions ¢; in B, § = 0,1, satisfying (1.8) and a positive number
r < dist(z, 892) such that for y € B.(z),

b3 (Y] < o5 (%(y - fﬂ)) :

If the integral condition (1.5) s satisfied, with c; in place of by, and for
some gy € {2,

fuzdm=O(Rk), k=1,2,...,
Br(zo)
then u is identically zero in {2.
If (1.5) does not hold then v vanishes identically provided

[ v dz = O(exp(~r™*))
Br(zo)

for a positive number a.

2. An abstract differential inequality. We show a lower bound for
solutions w(t) of differential inequalities in a Hilbert space 7. The scalar

product in M is denoted by (-,-). Given a symmetric operator A in H we
put

T = o2 —
U 7 Aw .

By HL.(0,T;H) we mean the completion of C*(0,7T;H) in the metric
determined by the pseudonorms

n
( f (@l + av/at?yat) "
0

where 0 < < T.

‘We shall use the following identities, which are easy to check and known
in the logarithmic convexity method. For any function v(t) such that dv/d¢
and Av belong to H (0, T;H) we have

@1 el = () + (),

icm
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%(Av,v) = 2(Av, dv/dt),

o]t L (4. )
e

=2||4v + 3 Lo||* |[o]®

= I LolP vl — 2(Av + 5 Lv,0)% + g(Lu,v)?

The last identity gives the estimate

d (Av,v)

(2:2) & olF =

—$1Zo)? [v]?

THEOREM 2.1. Let A be a symmetric negaiive definite operator in a
Hilbert space H, and 0 < T' < oc. Suppose that dv/dt and Av(t) belong to
HL (0,T;H) and v : [0,T) — [0,00) is a continuous function. If

(2.3) ldo/dt — Av| < (2)(|(Av, )} + [o])
then

(2.4) )i 2 p@llexs (= [ alr)dr)
where |

T

ar) = 5+ 2l + Do (3 [ A8 +1,

0

= (Av(0},(0))[»(0)] 7%
Proof. From (2.2) and (2.3) we get

d (Av,y) L, (A )]
& Tol? > ()

Multiplying this inequality by v(t) = exp(— fo

§) ds) and integrating, we

obtain

‘(A'U!I”)I l ; v

it <07 (3 [ vten 6)4s).
Consequently,

(4v,) Do (I Facaras)
25) el < (e (5 [ 2610)
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Using (2.1), (2.3) and (2.5) one gets

(dv,) Lo
& P12 T
(Av,v) e [(Av,v)| 12
> o - (K +1)
> ~2—|(ﬁ3|’|§)5 — () -1
> =2l + esp ([ e)ds) =) 1.

0
Now, (2.4) follows by integration.

CoroLLARY 2,1, (i) If v is an integrable function in [0,00) then there
exists a real constant A such that

v 2 [lv(0)]| exp(—A(t +1))  for £ =0.

(i) If v(t) — 0 ast — oo then for some function ¥(t) such that (t) — 0
as t — oo we have

v = [[v{0)| exp(— exp(t(2))) .

Remark 2.1. The negativity assumption in Theorem 2.1 is not essen-
tial.

3. Estimates of operators. The functions which are in domains or
ranges of the operators we consider are defined on the unit bhall or on its
boundary.

Let X, Y be sets with given measures, p,q € [1,00]. The norm of an
operator T' from LP(X) to L(Y) is denoted by ||T|||pq. If this norm is
finite, one says that operator T is of fype (p,q). If I is an integral operator
with kernel k{x,y) then T* denotes the integral operator transposed to T,
whose kernel is k*(y, z) = k(z,y). Let 71 be another integral operator with
kernel ki (z,y) on X x Y. We say that T is majorized by Ty if for a positive
number C, |k(z,y)| < Cki(z,y). We shall write sometimes || f||, instead of
| filze(xy- For any p > 1 the number p' is given by 1/p +1/p' = 1.

Let 0 < o < n. The integral operator P, from L'(8B) to L*(B) is given
by

Poip(z) = f T - w| T (W) dS .
OB

The proof of the Hardy-Littlewood~Sobolev inequality in [17] may be
adapted to derive LP-estimates for P, (we make use of the case a = 1).

icm
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LEMMA 3.1. Let 1l < a<n. Then

(1) P, 1s of type (p,q) with 1 <p <(n-—1)/(a—1) and
I n-11 a-1

¢ nmop n
(i) P is of type (p,q) with1 <p <n/a and
I n 1 o

g n—1p mn—1"

" The norm in H™?(B) is given by

1fllpmy = Y, 1D%Flle-

|| <m
Let 1 < p < n. The trace operator is well-defined from H**(IB) to L7(OB)
with 1/¢q > n/(n — 1)p — 1/(n — 1). The trace of a function u is denoted by
ujgp and H"F(B) is the closure of C§°(B) in the norm || - I, (rm) -
The space H™?(0B) consists of functions ¢ on JB such that D*@ap €
LP(8B) where 3(z) = ¢(|z| tz), |a| < m, and

(3.1) lelpimy = 2 ID*BllLsom) -

|aj=m
The norm {3.1) is equivalent to

(32) liells + (—25) 2l

where Ag is the Laplace-Beltrami operator on OB (see [15]). The set of all
functions on B of the form
(3.3) p= > Y
0<k<i
where Yj, is a surface spherical harmonic of degree k, I = 1,2,..., is a dense
subset of H™?(dB) for 1 < p < oo -
Now, we introduce an operator A from H?(0B) to LP(8B). For functions
of the form (3.3) we put
Ap= Y kY.
1<kl
As k(k-+n—2) is the eigenvalue of —Ag corresponding to the eigenfunc-
tion Vi we infer, using the multiplier theorem for spherical harmonics [18],
that the norm (3.2) is equivalent to

(3.4) ez + 14l
and so the norms (3.1) and (3.4) are also equivalent. .
Let ey, ..., en be the canonical basis of R". The vector 7j = e; — T;% 18

the tangent component of e; at apoint x € dB. For j = 1,...,n we define



icm

12 K. Senator

operators A; from H1?(6B) to LF(0B) by
Aj == 5/67‘5: -|"€Uj/1.
Consider the Poisson integral for the Dirichlet problem in B,
ulz) = [ plz,w)p(w)dS, = Pel)
OB
where p(z,w) = ¢, (1 — lz|*)|z — w|™". (The constant ¢ is determined by
Pl=1)
LEMMA 3.2, Let 1 < p < co. For any @ € HYP(8B), j = 1,....n, we
have
(3.5) D;Po=PAjp inB.

Proof. Tt is easy to check (3.5) for ¢ of the form (3.3). For any @ € H?
it follows by a continuity argument. For the right hand side one may use
the obvious inequality |Pp(z)| < C(1 — |z|)1""|l¢]l; whereas for the left
hand side of (3.5} properties of uniformly bounded sequences of harmonic
functions.

The normal derivative of a function v € H'?(B) is given by
Ju
ok Y v Djugae,
1550
where v(z) = (v1(z),...,vn(2z)) is the outward unit normal vector at = € JB.
The operator P is majorized by Py. By Lemmas 3.1 and 3.2 we get
COROLLARY 3.1. (i) If p € H™P(8B), 1 < p < oo, then Py € H™4(B)
with g =pn/(n—1).
(ii) If Pp € H*>P(B) then D;Ppigp = Aje (i =1,...,n) and

d
apzp-— Ap.

Let g(z,y) be the Green function for the operator ~A in B. For n > 3,

a(z,y) = eallz — y27" ~ Jy[* "2 ~g|*™)
where ¥ = y|y|™* and ¢, = ¢, /(n — 2).

We put
gi{@,y) = Dy,g(z,y), J=1,...,n.
We have
(3.6) lg;(z,y)| < Clz —yl*~™.
For z € B put
(37 Gf@)= [ g(=.9)f(y)dy,

B
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(3.8) Gif(z)= [ gile.9)f(v)dy.
i

The integral operator G?, j = 1,...,n, is determined by the kernel
g;(x,y) restricted to OB x B.

LEMMA 3.3. Let f € LP(B) with 1 <p <n, andu= Gf. Then
(i) uwe H*P(B)N HyY(B) where 1/g = 1/p — 1/n.

(ii) Au = —F.

(iv) Qu/dv = P* f.

Proof. Put go(z,y) = eniyi® ®|z ~ 1™ and let the operator G be
given by (3.8) with 7 = 0. We extend f outside B by (; w = G f is defined,
by (3.7), on the whole R™. If 0 ¢ supp f then after a change of the variable
y we get

Cof(w)=cu [ o~y Fly)dy
where f € LF{R™) and f=0in B. Therefore Au= f — f and so u € H>®,
In the remaining case, when supp f C B, the function (g f is harmonic in
an open set containing B, Also Gf € C*(B) when f € C§°(B). Thus (i) is
checked. Property (iv) follows immediately from (iii) and the identity
(3.9) p(z,w)= Y wigj(wa)
1<5<n

where z € B, w € §B.

We are going to discuss operators of fractional derivation on the unit

ball. The radiol derivative d, of order & > (-is defined as follows: if o is an
integer then

dof(rw) = (rd/0r)" f(rw), wedB,
and if @ =k — B with k an integer and 0 < & < 1 then
1
I8
The change of variable r = ¢! transforms the operators d, to the usual

fractional derivatives. One verifies easily the property dodg = dovp. If u is
a harmonic function, u = Y gcpese ™ Yi(w), then dou is also harmonic and

(3.10) doulrw) = Z k4 Y (w) .
1<k<o0

1

di
[ dflta) }10gt|ﬁ“1T.
4]

drx.f(w) =

By dy we mean the identity operator.
If wg is the boundary value of a harmonic function v on B, then diu =
P Aug. The norm (3.4) is equivalent to (3.1) with m =1 and therefore there
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exists a constant C such that
(3.11) [ Dsulls < Clldiu2.
Denote by H the integral operator with kernel
Ma,y) = ch(L—2*y?) (1 + 2%y ~ 22 -y)7°

on B x B, where 2 = |z|* and z -y is the usual scalar product in R™. We
consider the commutator of the operators dy and G on the space of smooth
functions in the closed unit ball.

LeMMA 3.4. For each n > 3,
(3.12) diG—-Gdy=2G - H.

Proof Put|z| =r, ly| = s. Integration by parts in s shows that d, G —
(Gdy is an integral operator with kernel

(r8/0r + s8/90s + n)g{x,y)
and (3.12) follows by direct computation.

The kernel of H may be expressed by means of the Polsson kernel
Namely,

(3.13) hz,y)
From this formula we get

LeMMA 3.5. For any f € LY(B), Hf is a harmonic function in B with
boundary value P*f and H = PP*,

LeMMA 3.6. For any 0 < o < 1 the operator d, P is an integral operator
magorized by Pi_,.

= plzlyl,v/lyl) = plylel, z/|2])-

Proof. One verifies that for any w € B and y € BB,

d
i < _ —1Ty .
’arp(way) < Clrw -y
It remains to show that for 8=1— ¢,
1
(3.14) f frsw — y] " "logs/P ' ds < Clrw — y| ™™+
0

Suppose that 1/2 < r < 1 and w -y > 1/2; for the remaining case the
estimate is obvious. Put w -y = 1 — g2 and use the substitutions r = e}
s = 77, then inequality (3.14) follows from

f(o G

This inequahty may be reduced to the case £ = 1, and the latter is derived
easily from the case £ = 0 for which we have equality.

}

+ N do < O 4 g2) (A2
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For each 0 < o < n denote by H, the integral operator whose kernel is
(x?y? — 2z -y -+ 1)"7T®/2 4 0 ¢ B. From Lemma 3.6 and (3.13) we obtain

COROLLARY 3.2. For cach 0 < o < 1 the operator do H is an iniegrel
operator on B majorized by Hi_,.

‘We derive bounds for the operators H, from bounds of their “traces” on
0B by means of Minkowski’s inequality.

LemMA 3.7. Let K, ;, 0 < r,s <1, be linear orerators on OB and
1K r,slllo < K(r, s)
Then for the operator T on OB » (0,1) given by
t) = f Kisf(-,8)ds
and the integral operator M on R defined by

My(ty= [ K(t,)g(s)ds

we have
1T < MM o, -
TueorREM 3.1. Let 0 < 2 £ 1 and
111, 1 1.1
27 0 270 g
If
1 -1 1 1
(3.15) = Sa+n(~#—)
P q 2 o
then
{3.16) |1Ha(af)ll2 < Cllallp,qll £ e

Proof. Suppose that both sides of (3.15) are equal It can be seen from
the identity #2y> — 2z -y + 1 = |z —y[* + (1 — ")(1 - ¢*) that (3.16)
follows from the corresponding estimate for the integral operator H, on
OB x (0,1/2), with kernel
(3.17) k(w,t,&,5) = (jw — €|+t + )" E(E, 5)
where w, £ € 8B, t = 1 — ||, @£, s) = a((1 — 5)€).

By Young’s inequality, the integral operators on 0B with kernels k: (w, £)

= (jw — €| + ¢+ &)™+ map L% into L* for 1/q1 = 1/ + 1/g and their
norms are bounded by

1] + 1+ 8) 7 g2y = C(E+5) 7Y
where 1/g; = 1/2+ 1/7 and 1/w =1/p' + 1/2—1/0.
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Let K; . be the integral operator on 9B given by (3.17). By Hélder’s
inequality,
K sllloz < CUEE, 5l pagome (E+ )77
We apply Young’s inequality for multiplicative convolution operators on Rt
to the integral operator My on R™ given by

Mig(ty= [ (t+8)7/g(s)ds.
If 1 < w < 2 then it is of type (p1,2) with 1/p1 = 1/o +1/p=1/2 + 1/w".

Therefore the operator M = My ojf@(:, 8)||, is of type (o, 2) and so, according
to Lemma 3.7, estimate (3.16) is proved.

4. A formula for the Dirichlet problem. The Dirichlet problem for
equation {1.1) in the unit ball is uniquely solvable in H L2 if the norms
65|l /2, [|B1]in are sufficiently small (see e.g. [16]). Set

B=b(z)D+by(m), F= ) (BG)F*
0<k< o0
where (BG)? = I, the identity operator.

We shall use the inequalities of Holder, Young and Hardy-Littlewood-
Sobolev without mention.

THEOREM 4.1. Lét b; € LYE=9 j = 0,1, n 2 3. If the norms
i |ln/e—gy are sufficiently small then the operator F is of lype (£, 1) with
1<t<n/2 (withl<t<nifby=0). Ifug € H"?(0B) withl <p<n-1
(with 1 < p < oo when by = 0) then the function

(4.1} w = Pug + GFBPuy
is of class HY® with s = pnf(n — 1) and u is a solution of the equation
Auw + Bu = 0 with trace ug on JB.

Proof. We have BG =37, .icq b G + boG. The estimate for the oper-
ator F' follows from T

183G [l.e < ClBfln  forl<t<m,
fboGllle,e < Cllbgllnye  for 1<t <n/2.
By the Sobolev imbedding theorem and Lemma 3.1,
[ Puslly < Clluollp,q

where l< p<n-—1land1l/g={n~1)/pn—1/n.

Now, from BP = Eb:{PAj + bp P and Lemma 3.1 we infer that the
operator FBP maps HLP(OB) into L(B) with 1/t = 1/s -+ 1/n and so
v € H-* By Lemma 3.3, ujpg = ug and Au = —FBPup. The identity
F =1+ BGF gives Bu= FBPuyy and thus Auv 4 Bu = 0.

icm
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CoRrOLLARY 4.1. Let w be a solution of equation (1.1). If the norms

105llnsr2—5 (4 =10,1) are small enough ond v is a harmonic function on B
such that u)ap = v|sp then

(4.2) 2, 00) < 2{wlla,g; -
If by =0 then
(4.3) ufz < 2luliz-

Proof. From (4.1) we get
Dy = Dyv + G Fby Dv + Gy Fogu .
Thus (4.2) is a consequence of the estimates
[1GeFbilllae € Cllballn,  IGrFbollloz < Clibolluyz
where o = 2n/(n — 2), and (4.3) follows from
[[GEbolll22 < Cllbollnya -

I

Remark 4.1. A function v € H*(B) is a solution of the Dirichlet
problem for equation (1.1) with boundary value ug if and only if

(4.4) u — GBu= Puyp,
and the solution of (4.4) is represented by the series
U= Z(GB)kPuo :
2
Formula (4.1) is obtained from this formally.

Remark 4.2. F. H. Lin [13] showed that a zero of a solution of the
Schrédinger equation —Au+ V{z)u =0 with V ¢ LI;/CZ is of at most finite
order in the sense that
(4.5) f uwde > Crt.

B,

This condition follows from (1.6). The converse does not hold in general

but one obtains easily (1.6) from (4.5) using (4.3) and the following estimate:

fu2d52 ffugda:.
B B

5. Proof of Theorem 1.1. We apply Theorem 2.1 taking 4 = —d,
and with 7 being the space of harmonic functions in B with norm given by

lol3 = [ v*dS.
aB
Denote by ¢, the trace of u, on OB and define for ¢ > 0,

o(t)=Py,, r=c
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The assumptions concerning the function v(t) in Theorem 2.1 are satisfied
because u & H2.

It is easy to verify that
P‘Pr = (I'l"GA)ur .

Let uf, 0 < & < 1, be smooth functions in B such that 4 — u in H?? ag
e — 0. We have

du Sy ) .

Et' =-P 31./ = Wil_l}'[l)(f -} G/_'\)dlur
Using the identity Ad; — di.4 = 24, Lemma 3.4 and equation (1.1) we get
(5.1) du/dt + dyv = —HBu,

where
B, = b1 (2)D + rho () .
It is easy to show, using (3.10), that the norm in H is equivalent to
1d1/2v]]2 + [l]l2
By Theorem 3.1 we have
1 Hyy2 (b1 Dun )iz < Cllbypllp, g0 [ Dur ]2

Applying Theorem 3.1 with ¢ = 2n/(n — 2) and the Sobolev Theorem
we get

[H172(bo rtir) 12 < Cllbo,rllpo g llter |2, 01 -
The operators d,, on H are symmetric and positive definite. The pseudo-

amrm (dl/gfu,v)%z is equivalent to ||d;qv|le and therefore, by (3.11), to

From Corollary 4.1 we get
(5.2) ldv/dt + dyv]3; < CB(r) (v, v + |o]3)
where ' = C{n) and
2
ﬂ(?") =T [|b1,1'[|11271,q1 +'T4“bO:THgo,qn ’
If condition {1.5) is satisfied then the function (t) = C3(e~") is integrable
and by Corollary 2.1,
(@) 2 [fo(0)* exp(~A(L +1)) .
Hence:
[ ulds > or [utas.
om - oB
This estimate gives (1.6). The remaining case is treated similarly.
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Remark 5.1. It follows from (4.1) and Lemma 3.3(iv) that
Hu,/8v = Ap, + P*FB,v,
and consequently we have the formula
dv/dt + dyv = —-PP*FB,v,

analogous to {5.1) and from which we can also deduce inequality (5.2).
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Certain lacunary cosine series are recurrent
by

D, J. GRUBB (DeKalb, I1l.) and
CHARLES N. MOORE (Manhattan, Kan.)

Abstract. Let the coefficients of a lacunary cosine series be bounded and not square-
suramable. Then the partial sums of the series are recurrent.

In this note, we wish to consider the partial sums of a lacunary cosine
series

N
(1) sn(z) = Zajcos(nj:c—i-Qj)

Jj=1

where we assume that a;, §; are real, |a;| < 1 for every 7, and the n; satisfy
nj+1/nj > A > 1. We will show:

THEOREM. Suppose that in addition to the conditions just described, also
3 lajl? = oo, Then {sn(z)} is dense in R for almost every z ¢ [0, 27].

We will restate the conclusion in probabilistic terms by saying that for
almost all = the sequence sy (z) is recurrent in R. In the case when a; = 1
for all j, this question was posed by T. Murai [4] (see also Brannan and
Hayman [3]), and was solved by D. Ulirich [5]. Ullrich was unable to obtain
the more general case when Ja;| < 1; however, the proof we give for our
theorem, although shorter than that of Ullrich, does take its key idea from
his method.

When the terms cos(n;z +6;) in (1) are replaced by exp(in;z), the most
general conditions which give recurrence of the partial sums in the complex
plane are far from being known. Anderson and Pitt [2] showed recurrence in
this case when a; = 1 and n; = & for some integer b. They have also shown
recurrence in the complex plane when ja;| — 0 or if the a; are bounded and
ni+1/m; — co [1}. We stress that even though the series we consider are
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