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Semigroups affiliated with algebras of operators
by

TIMOTHY W, RANDOLPH (Rolla, Ma.) and
PAUL L. PATTERSON (Snint Louis, Mo.)

Abstract. Il B i 4 Banach algebra of bounded linear operators on a Banach space
X, and if A i a closed operator on X such that (A —~A)™7 is in B for some A € C, then A
s saic t0 De afliliated with B. Thiy paper examings when such an operator generates a Cp
or an begrated semigronp {7 bexo it B, The spectral and essential spactral properties
of A and {T(t) b0 relative to B are also studied. A numbher of consequences involving
gpecific algebrag are incliuded.

Introduction. The concept of a closed operator affiliated with a Ba-
nach algebra B of operators contained in B(X) is defined in [6] where the
spectral and Fredhohn theories for such operators are developed. Algebras
of operators for which this concept is of particuiar interest can be found
in the study of linear integral operators and differential equations ([10] and
[6]), in the study of interpolated operators on Lebesgue spaces [5], and in
the study of regular operators on a Banach lattice ([2] and [16]).

The notion of a semigroup of operators, and its generator, being affiliated
with B js defined and considered briefly in [6]. All semigroups appearing in
6] are contraction semigroups and little is said about the related spectral
properbies for such, In this paper, we consider general strongly continuous
semigroupy and integeated semigroups and look more closely at spectral
relatiouships, relative to B, of a semigroup and ite generator.

The hasie obeervations involving peneration of semigroups affiliated with
B are contained in Section 1. Section 2 consists of spectral and essential-
spectral properties relative to B while Section 3 exhibits some specific al-
gebras of operators, The following briefly motivates interest in one such
algebra.
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Consider the abstract Cauchy problem on a Banacl: space X:
#(t) = A=z(t), t20,
2{0) =zg, g€ D(A), the domain of A,

If A is a closed, densely defined operator with nonempty resclvent, then
{ACP) has a unique solution for every z; in the domain of 4 if, and enly
if, A generates a strongly continuous semigroup. However, many Cauchy
problems have solutions even when A does not generate a strongly con-
tinuous semigroup; in particular, it is not always natural to restrict the
problem to the case in which A is densely defined. The theory of integrated
semigroups—as recently developed in [1] and [12], among others --can be
applied to this class of problems arising when A is not densely defined. In
order to consider the adjoint Cauchy problem it ig, of course, necessary to
assume that the domain of A4 is dense in X so that the adjoint operator
A* is well defined. A dual system defined by a bilinear form on X x ¥ (as
in [10, p. 43]) allows one to consider a dual problem to (ACP) in instances
when the domain of A4 is not dense, and to retain some connection between
the two problems. The Banach algebra, A(X, Y}, connected with this setup
consists of all bounded operators T" on X which have a bounded “adjoint”
operator T defined on the Banach space ¥ via a bilinear form on X x ¥
{Tz,y) = (2, Ty} (¢ € X, y € Y). Bven in situations where the domain
of A is dense in X, the adjoint operator defined on the dual space X* may
be difficult to handle or unknown. The algebra A(X,Y) again allows one to
consider a related adjoint equation involving an operator A' on a Banach
space Y which may be more accessible.

(ACP)

1. Afiiliated semigroups. Let X be a Banach space and let B{X)
denote the Banach algebra of bounded linear operators on X with the oper-
ator norm, |- ||, and F(X) the ideal of finite rank operators, Throughout the
paper, B = (B, ||| 5) will denote a. Banach algebra of operators contained in
B(X) with I € B and, for some C' > 0, C[T{z = |T|| for T € B, A closed
operator A on X is said to be affiliated with B if there exists a A € C such
that R(A, 4) = (A — A)~! is in B. For such an operator, the resolvent of A
relative to B is a nonempty set denoted by pp(4) = (A € C: R()\ 4) € B).
The spectral and Fredholm properties of a hounded operator in B have been
studied for a variety of specific algebras {[2], [4], [5], and [10]} and so use-
ful information concerning the spectral and Fredholn properties of 4 can
be derived from corresponding properties of the bounded operator R(), A)
relative to B. Our interest is with closed operators that are affiliated with B
and generate strongly continuous (Cy) semigroups or integrated semigroups.

Because of the role that strong convergence plays in the theory of Cy
semigroups, we make the following definition [6]: a subset ¢ C B has the
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strong convergence property (or SCP) if whenever {T,} C C, |Tulls < M
form = 1, and Ty — T for all x € X, it follows that T € € and 1Te < M.
The following technical lemma will be used several times.

LEMMa ].‘.l‘. Assume B, as above, hus the strong convergence property.
Let 8 [0,00) = B be a strongly confinuous function and let g : [0, 00) — R
be « continuous funciion, with ||S(Os < g(8) for all ¢t € [0,00). If f -
[0, o) = C g angy condinuous function such that T 1) g(t) dt ewisis, then
]U“‘ j'(l)‘;’(!)d{ ¢ B where the operator fo JUOS (L) di s defined pointwise.
Also, || [n FOS{) dtfle < ’t;”U Mgt dt.

Praofl, lor em:la & N, the strong continuity of § ancl the conditions
on &, g anl [ imply that for each = € X, the integral fo 1)S{t)x dt exists

as o Riemann integral [9, Theorem 3.3.2]. ‘amce 1D )dt < oo and
Cll+tg = |- ||, we see that limy, e H“f fadt = fo mdt exists
for each 2 € X. These define the J"ollowmg,, opemlorb in B(X ) f }S(t) dt
and [, F()5(t) di (each denoting @ jo HSHzdt, 0 < a < oo) To
prove [, f(OS()dt ts in B with || ¥ IS dtlls < [77 7)) g(t) dt, it
suffices by the strong convergence pr(‘apfzrty Lo show that

I TH

H ] LS rif” (t) gty dt  for each m € N.
]

¢ N define V" & B to be 30, 2 f(r)S(n),

To show this, fix m & . For n -

where |f{r)g{r) i3 the minimum of |f(¢)] g(¢) on [(§ ~ 1} n%n im/n]. For
each we X, V™ (&) is a Riemann sum; thus Hm,,_,w Al ( )"-= [ S () de.
We also have ||[Vi*|ls = i 21 (n)le(n) < UIF dt These two

f'}(‘ts, and the strong convergence property on B nnply || f )S(t) dt|| s

Sy A0 ate) dt.

The concept of an inlegrated semigroup was introduced to provide a
framework for addressing Caucliy problems not governed by Cy semigroups
and il hag since heen developed in a number of articles. For relevant infor-
miation on this subject, see [1] and [12],

Lot A be o Hoear oporator ou X, 1f for some n € N, and constants A, w
there is a strongly continuous fanily {S{¢) }ewo in BX) with |S()|| £ Me‘*”
for all £ = 0 sueh that R{\, A) exists for f\ > w and is given by

2]

A" J e Mt dt forze X,

0
then A i called the generator of the n-times integrated semigroup {5( (t)}ezo.

We procecd wit h o generation theorem for integrated semigroups @ affili-
ated with B. In the ease where B == B(X) it is due to W. Arendt [1] and
extends the Hille Yosida Theorem. For more general algebras, it identifies

R(X, A =
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generators, A, of semigroups in B with the condition that R{X, 4)/A™ is a
Laplace transform {in the sense of [1]) in B.

THEOREM 1.2. Assume B has the SCP relative to X. Letn € NU{0}, w €

R and M > 0. For a closed linear operator A, the following are eguivalent:

(1) .A generates an (n + 1)-times integrated semigroup {S(t)}iz0 C B
which is exponentially bounded in the B-norm and satisfies h

liiilfglp(l/h)||5(f +h) = S(t)]s < Me*' (£ 20);

(2) there exists a > max{w,0} such that (a,00) T pp{A4) and
(A — W) R, A/ A ® ks < M for all A > a, k=0,1,...

Proof. (2)=(1). Using Widder's classical theorem on Laplace trans-
forms of r.ea,l—va.,lued functions, Corollary 1.2 of [1] defines a map S : [0, c0) —
B that will gatisfy the inequality in (1). The map S is defined by observing
that for each ¢ € B*, there exists f(-, ) € L*®[0,00) with

(RO A" o) = [ e™flto)dt and | f{t,0)] < Me“ ol
0
he:s?knl:e the equation (S(t), ) = fot f(s,@)ds defines a map 5 : [0,00) - B
Wl
(RO AY/ N0y =X [ e (S(t), ) dt  forall p € B*.
0
Using the definition of S{f), a series of cal ]
. . culations shows: |S{t + k) —
g(t) I < Mma:;:{e (+h) et} . h (£, h > 0) (showing the inequality holds);
is contmu?us in the B-norm and hence is strongly continuous; and, there
;cn)s\tsAan M %+()1 suocéh t}ia,t [S(®)]ls < M'e¥"t, where w' = max{0, w}1 Thus
(A A = At [P e St dt exists for all @ € X, and hence A is the
generator of the (n 4 1)-times integrated semigroup {5(¢)};>0.
Notc?: The map S can be defined even if B is merely a Banach space (see
[1]). This fact will be used in the proof of Theorem 3.1.
1)=(2). Let w' = hesis, I
ham(a )=+(2). Let w’ = max{0,w}. By hypothesis, for z € X and A > w' we
R(\ A) T
FCESmCR f e MS () dt,
. 0
where S(t) is strongly continuous and ||S(£)}z < M'ev' ¢ ]
: ] B < M'e¥* for some M'>0. B
Lemma 1.1 with £() = Ae™** and g(t) = M’e*"*, the operator R(A, A)m/,\“ E

Jo° Ae™ S (1) dt is an element of B for A > '

Jo Ae” ; > w IfA > o, then (B(A ")
is infinitely 'dnfferentiable as a map from R into X. W: (negd,f;lc} /s,\ho);
R(X, A)/A™ is infinitely differentiable as a map from R into B and that
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ihe derivatives satisly the inequalicy in (2). Let h(A,t) = de”™. Lemma 1.1
with
ry 2 PO ) 9O
' N1 ANk-1

and g(t) = Mt implies
R\ +1/n,A) = R() A)
L/n

is an element of B, An argument using the SCP shows w,, converges to

Uy, =

RN A) () RO o
[“ e ] ”“’“’5}“\“?0'"“5(1’) dteB.
Lastly, applying Lemma 1.1 with f(¢) = B R(A, 1) /0N and g(t) = Me't
shows that
Fﬂ@:\:ﬂ.}”"’ MK
An A = ()\ e LU')I“"H' '

[f the elosed operator 4 is densely defined, we have the following theorem
(ef. {1, Theorem 4.3]). In the case n = 0, it is a generation theorem for
¢ semigroups aflilinted with B, and in that case I8 a stronger version of
Theorems 33 and 34 i 6] (which address contraction semigroups). [Note:
the results just wentioned include the concept of a cone C of operators in
B(X) in which the semigroup and the resolvent operators reside. A version
of Lemma 1.1, where the funciion S maps from [0,00) into C, can be used
to prove the analogous vestlts here. However, the only examples that the
authors are aware of are cones contained in the set of positive operators on
o Banach lattice X . Since a semigroup is positive if and only if its generator
is resolvent positive (e, RN, A) = 0 for all sufficiently large A), the added
liypothesis seems HnNecesHary.|

TrrOREM 1.3, Assume B has the SCP relative to X. Let A be o densely
defined opergtor such that (a, o) © on(A) for some a Z 0. Forn € NU{0},
w % o and M 0, the Jollvaring are pyuinalent:

(1) A generates an n-fimes integrated semigroup {1 }ino satisfying

()l < Me¥t (82 0);

(2) (A - w)t . LR(A,A,)/(\”W“)/E! g 5 M for all A > a b 0,100

Proof (1Des(2). Thly is the same ad the proof of (1)=(2) in. Theorem 1.2
except, for letting h(A 1) = e” M oand g(t) = Meh, _

(2)=+(1). By Theorem 1.3, A generates an (n+ 1)-tinies integrated sermi-

- s HoE g [ CREE] “t P
group {S(t)}ipo. Proposition 1.3 and Corollary 3.4 of [1] imply S(-)= is in
([0, 00), X} for all » € X, and that T'(t)r = é%ﬂ(t)m defines a strongly
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continuous famity, {T'(¢)}+>0, of linear operators. Part (1) of Theorem 1.2
and the SCP nnply that {T(t)}iz0 € B and |T'(t)||z < M(J‘“ Pmally,
RN, A)z = AL [ e=MG(Hzdt = A" [ e M)z dt, for A >

2. Spectral theory. Spectral and Fredholm theory of operators relative
to some specific algebras have been studied in [2], [4], [10], and [15]. The
object of 6] is the study of spectral and Fredholm theory relative to B of
an operator that is affiliated with B. In this section, we briefly present the
basic facts involving the spectral and essential-spectral properties of a Cy
semigroup and its generator relative to B.

If A is a closed operator affiliated with B, denote the spectrum of A
relative to B by og(A) = C\ o5(4). It is clear that ¢(4) C op(A). Also
note that if R(\, A) € B, then

(2.1) o(A) = {(A—p) "' n € og(R(A A)), A# b,
and so pp({A) is open and o(A) is closed [6, Theorem 2].

In general, the spectral properties relative to B can be quite different from
those relative to B{X). A useful relationship between the spectral properties
relative to B and those relative to B(X) is the fact that if T' € B, then every
coraponent of gg(7") intersects o(7") [5,Theorem 4.5]. This fact combined
with (2.1} implies that the analogous praperty holds for the B-spectrutn of
a closed operator on X affiliated with B.

In studying relationships between the spectrum of T'(#) and that of the
generator A, the following identities are usefnl {11, p. 14]:

t
(e = T())z = (A — A) f =2 (\eds, reC, zeX,;

2.2) t

f eI (5) (A — Az ds,
0

(e —T(t))a AeC, xe D(A).

The first theorem is a familiar spectral mapping inclusion for B.

THEOREM 2.L. Assume B has the SCP relative to X. If A is the qt“nmm‘m'
of a Uy semidgroun {T(t)}eso n B with |T{t)|g € Me?t for some M 2 (
w & R, then

B A C op(T(1))  fort >0
Proof The theorem is proved for the case B = B(X) in [14, Chapter 2,
Theorem 2.3]. The only addition to the proof that is needed is to verify that
Bs(1) is an element of B (¢ > 0) where By(t)e = [} eXt=T(s)z ds for all

2 € X. This can be shown by applying Lemma 1.1 Wlth the interval [0, co)
replaced by [0,1) and with g(s} = Me“® and f(s) = e*(t~9),

icm

Sereigroups offilinted with elgebros 93

In the study of semigroups the Browder essential spectrum is commonty
considerad. or o defailed discusgion on the role of essential spectra in semi-
group theory and applications to population dynamics, see [3] and [18]. We
start by looking al the relevant Fredholm theory. General Fredholm theory
in a primitive Banach algebra is defined and studied in [7] where the theory
is developad relative to the socle; see also [6] for details concerning the def-
initions that follow. As pointed out in [6], B must contain sufficiently many
operators of finite rank in order to have a useful Fredholm theory, Therefore,
from now on we msswne that B has the followlng property:

(#)  there exists o total subspanee ¥V oin X7 such that
iz e Bforallz e X, e 6V

(where ev () = afz)e (2 ¢ X)) Under this assnnption, B is a primitive
Banach algebra and the socle of B can be identified as Fg = F(X) N B
6, Propositions 3 and 4],

Now let Kpg be any closed nonzero inessential ideal of B; for example,
Kp may be the closure of Fg in B, In the primitive Banach algebra 5,
Fredhobin theory relative to Fp is equivalent to Fredholm theory relative
to Ky, Define the sel of Fredholm elements in B as $(8) = {T € B :
s invertible in B rolative to Fy (or Kg)}, and the B-Fredholm spectrum
of T e B oas wu(l) = {Ag € A-T ¢ &(B)}. One can extend the
B-Fredholm theory to a closed operator, A, on X: A is B-Fredholm (again,
denoted A ¢ fl’(H)) if there exist R, 9 ¢ B and F, G € Kp with

(2.3) Al = [ Fon X, and SA=T-Gon D(A).

Sel wprl{A) = {A e T A~ A g DB}
We extend the usual definition of the Browder spectrum in a Banach
algebra (see [7]) o closed operators: A B-Riesz point of a closed operator A
is a point A ¢ € satislying either
(i) A ﬁ" (7;_;;("'1}; or
(i) A is wolated in ep(A) and A~

A B(B).

Define the Browder spectrum ol A relative to [5’ as fAp(A) ) = {AeCiAls
nol & B-Riewz polul in or(A)Y} Then wa(d) © As(4) © op (A). We now
show Lthal wpmtml mapping inclugions hold, w]«utm- to B, for the Browder
and Fredholm spectra. The arguoments here quphfv somewhat the proofs of
these properties in the case of B = B(X),

Assume B has the SCP relotive to X, If A is the gemmtofr
(D} in 13 thot da crponentially bounded in the B-

THEOREM 2.2,
of a Cy semdgroup {11
noret, then for t 3 0,
(1) efosld) ¢ wp(r());
(2) etfslh) C Bell(1)).
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Proof. (1) Assume e ¢ wg(T(t)). Then there exist W,V & B and
F,G € Kg 50 that (¢ — T())V = I~ F and W{e?* ~T'(1}) = I - G.
Combining these with {2.2) gives

(A— 4) f et P T(\Wads = (I - Flz  (z € X),
a

t
W [ el NPT()(A - Aywds = (I -Gz (z € D(4)).
0

Setting § = W(Jj e(~*)*T(s) ds) and R = (jot elt=nAP(g) ds)V gives oper-
ators R and § in B which satisfy (2.3) (with A replaced by A~ 4). Therefore,
A guwp(A),

(2} By Theorem 2.1, if e & og(T(1)), then A & Bs(4). Assume e ¢
oa(T(t)) \ Bs(T(t)). Then e** ¢ wy(T(t)) and so by (1), A ~ 4 € &(B).
By assumption, ** is isolated in og(T'(t)). Properties of the exponential
;hcl)gv that ) is then isolated in op(A). Therefore, A & Bs(A), and so (2)

olds.

In B(X), the spectral mapping property e'™'4) = o(T(£)) \ {0} fails to
hold in general. However, such an equality does hold for the residual and
point spectra [11, p. 85]; hence, the continuous spectrum, o (T(t)), containy
any points for which it fails. Since oo(T(t)) C w(T'(¢)), these points are in
the Fredholm spectrum. By [15, Theorem 5], JB(T@))\WH(T('I))‘) G (TN
w(T'(t)); bence, with the possible exception of zero, op(T(t)) \JB(T(f)) c

o(T()\ oo(T'(t)) & elo(A) C et7=(A) This combined with Theorem 2.2(1)
gives

(2.4) oa(T(1)) \wa(T(1)) C eHloalwaldl
A similar argument shows (cf, [3, Proposition 5])

(2.5) ap(T(E)\ Bs(T(2)) C ' 78lA\IulAD
For completeness, we also observe that

(26) BT\ ws(T() € M Bean,

For, if e € Br(T(t)) \ wa(T{)), then et — T(t) € &(B). The point e
is interior to Bp(1(f)) since the set {u € C: p—~ T(4) B(BY} iz-aloprm
Let V' be an open neighborhood of ' contained in #(T'(¢))\ w(T(t)). Then
T/tAg cht(T(t)) \wa(T(t)) C e's4), Hence V is an open neighborhood of
e P, and so A is a limit point of og(A). Therefore A @ Ba(A).

This sh i 3
Thfo Se I(;lw;. zﬁ(jg{ gff(t)) \wp(T(t)) C 804 Inclusion (2.6) now follows from
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3. Some algebras of operators. One could consider closed operators
affiliated with the algehra BF(X) of all regular operators on o Banach lat-
tice X. Though this is not pursued here, B'(X} is an algebra in which the
spectral and Fredholm theory is understood [2] and, like each of the algebras
mentioned it this section, can be seen o satisfy the assumptions on B in
dection 1 and Lhe condition (#) in Seclion 2.

Jargens algebras. Lot X and ¥ ohe Banach spaces which, along with a
nondegenerate hilinear form (v, -}, comprise a dnal system (X,7) (as defined
in [10, p. 43]). A set § ¢ X 16 said to be V-folal in X if g+ ={ye¥:
(o) = O foralle e §) = {0} Let Az A(X,Y) be the set of 2l T € B(X)
such that there exists n 71 € B(Y) satistying (T, y) = (2, TTy) for all
e X,y eV, When endowed with the noem [[7'] 4 = max{[[T, Tty A
is & Bauach algehra of operators; the speetral and Fredholm theory of an
operator in A is developed in {4] and [10].

Now let A be a elosed operator on X whose domain s ¥-total in X For
such an operator, define the domain of Al as the set, D(AT), of ally € ¥ for
which there exists w € ¥ satisfying (Ax,y) = (x,w) for all @ € D(A), For
y & DIAT) and w as above, set A by = w. Then Al is well defined and, by def-
inition, (A, y) = {x, Aty for e € D(A), y © DA, T¢ in addition 4 is affil-
jated with A(X, ¥, then Al s a cloged operator on ¥ and D(A") 18 X-total
in ¥ [6]. Finally, note that the map T -+ T th T defines a linear isometry of
AX, VY into (BUX @ Y)Y )i denote the image of A under this map by
A A calewlation shows that A has the SCP on X @Y [6, Proposition 32].

As an example, if X s nonreflexive and if 4 s an operator on X
with D(4) X-total in X", then relative to the dual system (X*, X) (where
ty, ) = y(x), for y € X*, w6 X), At g defined above is called the precon-
jugate of A (see [8]).

The ahove set-up, along with a development of the spectral and Fredhol
theory of a closed operator affiliated with ALK, Y), is given in [6, Section 3]
In particular, it iu shown that if A & a closed operator such that [2(A) s
Vetotal in X and if 4 is affiliated with A(X, Y), then e (A) = cr(A)Uo"(AT),
and wald) = w(A)Jw(dT) Uw) whore w = {Ae T A~ A and A = A are
Fredholmn, but lindex of A~ Al + [index of A - Al # 0}, Here, w(A) denotes
the Fredholm spectrion of an operator A (not necessarily densely defined)
from D(A) into X,

A similar proof, alang with [4, Theoremn 2.5, can be used to check that
Ba(A) = 3(A)B(AL), 1t can also bo shown that wa(4) = w(A) = fa(A) =
BlA) & g A(A) = o(A) (a similar statement can be made involving A% cf.
15, Corollary 7)),

The techniques used in the proof of Theorem 1.2 can be used again to
prove the following theorem, If ¥ == X* in the statement below (80 that A is
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densely defined), then AT is the usual adjoint operator, A*, which is known
to generate an (n + 1)-times integrated semigroup (1, Corollary 4.4].

THEOREM 3.1. Let A be the generator of en n-times integrated semigroup
{S()}iz0 on X. Assume that D(A) is Y-total in X and there cxists some
a € R with (a,00) C pa(4). If

(A = )P PR, A/ A R <M forallA>a, k=0,1,...,

then At genemtets an (n+ 1)—timc; integrated semigroup {E(#) o on Y.
Fhriher, E(t)= f; 8(s)T ds, where [} S(s)"ds is defined by (x, fy §(s)tyds)
= Ji (@, S(e)ty) ds. |

Proof. Since A is isometrically linearly is ic R
. y isomorphic to A, R\ A) =
R(), A) @ R(X, A)T is differentiable and by hypothesis oA

IO = )P RO, AN E JE pax € M forall A2 a, k=0,1,...
As pointed out at the end of the proof of (2)=-(1) in Theorem 1.2, since

(-/11“' max iSﬂaB h Jata . T )
bl l| saax) anach space, there exists V : [0,00) = A C B(X @ Y)

5]
R\ Az @y) = antl f MV zdy)dt foralzdyeX oY
0
a?cll Vis expo?tentially bounded in the | - [[max nowm. Since A is the image
({)/ , there eX}rsts {V{#) }izo in B(X) with V(#) = V(1) @ V()1, and both
(t) and V()1 are exponentially bounded in their respective norms. Thus

(R(\, Ay e RO, ANz @)
— )\n+1 = —)\tVt d 71 r e A . .
( 6fe (thedt) & (,\ (_)fe ﬂV(t)Tydt).

By [6},tR(/\% Aty = R(A, A.)ff, 50 the previous sentence implies that A ig the
fﬁnera or o the (n + 1)—t1me§ integrated semigroup {V(#)}ypp and Al is

e generator of ﬂm (r -+ 1)-times integrated semigroup {V (1)1}, Since
A generates S(1), it follows that = F

o0
‘ ‘ [=3] i
R\ Ao =" [ e MS(t)edt = A" e [ 8(s)edsat
5 S '

"The unigueness of the Laplace transform implies f{;’ S(s)ds =V (¢). To prove
thi nga,st statement of the theorem, first note that (z, V(¢)y) = (V(1)z,y) =

. E “y -
(Jé (s)z ds, y). S1rice s — (5(s)z,y) is integrable, [9, 3.7.12] implies
(Jo S()zds,y) = [{{S(s)w,y) ds = [y (e, S(s)ty) ds.
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As a special case of a general dual system, consider the situation where
A is a closed, densely defined operator on X. Let Y be a Banach space con-
tinuously enbedded in X* (e.g, Y is a closed subspace in X*). If D(A*) C
Y € X* [or some Banach space Y, then one can form the dual system
(X,Y) which inherits the obvious bilinear form from (X, X*}: (z,y) = y(z)
for w € X, y € Y. Since A is densely defined, D(A*) is X-total in X* [17,
p. 177], and hence this form is nondegenerate.

LEMMA 3.2. Let A be a closed, densely defined operator on X and let
V b a closed subspaee in X* salisfying D(A*Y) ¢ ¥V © X*. Then AT s
defined relotive to the dual system (X, Y) and &f R(A\ A) € B(X), then
RN, AN € B(Y). Further, ||[R(, AN < RO AN

Proot. We argue as in [6, Proposition 37] where ¥ = (A*). First note
that for all yin ¥, A* (A, A"y isinY. Tndeed, for & € X, A*R(X, AMa =
~AR(M, AN — c. Since R(A, A% € D{A*), it follows that for y in Y,
A*R(M A* )y = A*R(\ A" o = —~AR(), A*)y — y, which is an element of ¥.

Now let z € D(A) and y € ¥, Then (A=, R(\ A%y = {z, A"R(X, A")y)
= (z,z) for some z € Y. Therefore, if R(\,A) € B{X), then R(A, A")y €
DAY for all y € Y. Now, ATR(), A%)y = A*R(A, A")y, and so

(ye¥).

(0~ AN R\ Ay = (A~ AR\ A%y = ¥

The final inequality is clear.

We point out that if Y = D(A*) (this is the usual “sun dual,” X @), then
Al ig densely defined and Al (which in this case is often denoted by A®)
generates & Cp semigroup on Y.

CIOROLLARY 3.3. Let A generate o Ch semigroup {T(t)}po on X. If Vs
a closed subspace of X* satisfying DA CY C X%, fhen Al generates an
integrated semigroup {S()}ez0 on ¥ where 8(t) = [, T(s) ds. Moreover,
(A1) € o(A) and B(AT) € B(4).

Proof If A gencrates a Cp semigroup {T(t)}s0 on X, then there exist
M > 0 and w € R such that |R(A AP < M/(A— (fz)k for k= 1,2,...,
for all A > w. By the preceding lemia, o(A) € Q(Aﬂ) and HR()\,AUH <
LR(x AMY| = | RN, A By Theorem 3.1, AT generates the integrated semi-
group {S(f)}izo as indicated. ‘

Finally, as noted prior to the theorem, o A(A) = o(A)U o(AT), Ba(A) =
BAYUB(AD), and fa(4) = B(A) & 0.a(4) = o(A). These conibine to show
BAT) C B(A).

We mention a few situations to which this corollary applies.
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EXAMPLE 3.4. Let (12,u) be a measure space and let BC = BC(2)
denote the space of bounded continuous functions on 2. The condition that
#(U) > 0 for any nonempty open set U in {2 implies that the embedding
of BC into L™ = L*°(12) is one-to-one. In this case, BC and L' = LM 2)
form a dual system via the form

(f.g) = ffgdu (feBC, ge LY.
n

The above theorem shows that if 4 generates a Cy semigroup 7'(¢) on BC
with the property that D(A*) C I, then AT generates an integrated semi-
group {S(t)}iz0 on L', and §(t) = f; T(s)1ds. Also, o(A!) C o(A) and
AlLAT) C B(A).

On the other hand, suppose 4 is a closed operator on BC' such that {A)
is L'-total in BC. If A" generates a Co semigroup, {T(¢)}4»¢, on L and hag
the property that (A, AT)*(L) C BC, then D(A™) C BC C L. For ATl
defined relative to the dual system (L, BC), then D(A) C D{ATH). Also,
by Lemma 3.2, A' is affiliated with the algebra A(L', BC) and hence, by
[6, Proposition 12], AT is a closed operator. Thus A is a closed extension
of A which, by Corollary 3.3, generates an Integrated semigroup {S()}1n0
on. BC, with S(t) = fOtT(s)Tds. Theorem 19 of [6] shows that the spectral
theories of A and A! are related in the same strong way as those of A

and A*; ie., o(Al) = o(AM), with similar equalities for the Browder and
Fredholm spectra.

EXAMPLE 3.5. Semigroups on the Banach space L (u, X) of Bochner in-
tegrable functions from a measure space ({2, u) into a Banach space X are
considered in [13]. In this setting involving vector-valued functions, the set
L#*{p, X*} is generally a proper subspace of L1(j, X)*. The main idea in [13]
i that the translation semigroup generated by A on E = L*([0,1], X) has
the property that D(4*) C L*([0,1], X*) (this then allows a straightfor-
ward identification of the semigroup dual, £€). The point we wish to make
here is that the pair (L!(y, X), L=, X)) forms a dual systens, as described
above, defined via the foru (f, g = Jolf(w), glw)) du(w) (for | € LYy, X),
g € L®(u, X*)). So in general, if A is the generator of a Cy semigroup
{T(t)}120 on L1, X) with the property that D(A*) C L*(u, X*), then
Al gencrates an integrated semigroup {5(¢)}i»p on L (1, X™) given by
m@:ﬁﬂ@w&memamwgdmam5mngmm.

Extensions of operators. Let X be a dense subset of a Banach space
(¥, - ly-) and assume that (%, |l - i x) is a Banach space continuously em-
bedded in V. Let £ = £(X,Y) be the set of all T ¢ B(X)} which have a
continuous extension, T € B(Y), With the norm 1Tle = max(||T)}, || T)]), £
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is a Banach algebra of operators. A straightforward calculation shows that
. " ‘“‘ (Y -1 (> YK
also hiag the SCP relative to J . o o
y dJAp]‘)Lyiug Theorem 1.3 to & gives the following theorem which }_:)rovu;e;
a =n1fﬁ¢iént condition for the exiat@ncg c)f a mn‘nmfxl c.ll(:)s‘ed ez{.te&sic;n()g o
closed densely defined operator on X, The proof is similar to the ,
Theorem 39]. |
TuroreM 3.6, Let X and Y be as above and let A be a c.’,o.s'ej denzlely
] 'EJ "l L . g . i J ) . | Gn
defined operator on X. If there erists an w € R with (w,00) @ ge(A4)

' b M for o, k=010,
8= W)t RO, AV AW ke < M for alb A > w) &

i ' i FeNy S(t) o0, and
then A is the generator of an n-times integrated semigroup, { .S(t)}z,ft),mmd
A hoe a minimal extension A which is the generator of the n-ltimes g

semigroup {8t hizo. '
If,grgo f. By Theorem 1.3 there exists an n—:Lime.sel integr?t;sqd 1%1_1(1;)@;{?:5

{81}z in €. Hence the one-parameter family of opgz% f 8, u stmngh;

exists. A caleulation using the density of X shows. that_ {1; a:g}fgemjgmup,

continuous on ¥. To show that {S(£)}iz0 is an n-times integrated

we check that for all y € Y and ¢,¢ 2 0,

(1) S8y

4 e

-l [ ej"fm(s gtV S )y dr —~ f (84 t—7r)""18(r)y dr] .

Sl i 0 s
The strong continuity of {8} 20 i,m'plies the Lntegllfalli 111218(;))1:@:1;1:.){-11;122
{5} }ezo is an n-times integrated semigroup on /X , (X) coy for densiéy ”
dominance of the X-norm implies (1) 1l‘mlcls for x:de X ;mé e e
X in Y implies (1) boldson all of ¥ F mally, thelz Noc11111ntenSi0n the X morm
implies that the generator, B, of {8t} izois exrgl ose tixfor fon of A Henee
A exists and by [6, Proposition 20], (A~ A) . axists
sulficiently large, both (A~ A)-and (A - B)
to D(B). . |

'I‘(he)following notation will be used in the discussion below {see [11]):

U exist. Thug D(A) is equal

' t 173 th bound is
is the growth bound of a semigronp {T(t)}izoi the essential growth bo

e = ':)’e(_T(t)) = tlﬁlnlo 7 log i||7TT('5)I” ) 1] donotes
] X Yis the ical projection and [[j-||| denote
sre 7 : B(X) — B(X)/K(X)is the canonical p .
r;lhercj)gn 1315 ti)aem_;luoiiexlt algebra; the spectral bound of the g?elral;i(;rn? al:
S(il? =sup{Re A : A € o(A)}. Finally, define the essential-spectra .
Si(A4) = sup{Re X : A € £(a)}- B '
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In the study of asymptotics for problems in population dynamics, a
commonly considered property of semigroups is that of asynchronous ex-
ponential growth. For definitions, background discussion, and equivalent
characterizations of this property see [18] and [3]. A necessary and suffi-
f:1ent condition for a semigroup to have asynchronous exponeﬁtial growth
15 for v, to be strictly less than v and the boundary spectrum, oplA) =
iiee o(4) : Re A = S{A)}, to consist of a single eigenvalue of multiplicity

Now suppose X is densely embedded in a Hilbert space ¥ (as above),
and.A generates a (g semigroup {T'(¢)}:»0 on X which extends to a ¢
semigroup {T'(#)};>0 on ¥ generated by the minimal closed extension, A
of A The following relates a spectral bound propetty of 4, on V 1’?0 aj
grom_ftl‘a bound property on {T(t)}+>0, on X. In particular, the con,(lition
;n At lzlmplies the semigroup on X will not have asynchronous exponential
rowth.

ProrosiTiON 3.7, If A is self-adjoint on ¥ and if S.(A) = S(A
Ye(T(t)) = v(T(2)). f Se(A) (A), then

Proof. Since 4 is self-adjoint, each T(¢) is self-adjoint; T
ce , -adjoint; hence o(T'(t)) C
o(T(t)) and B(T(t)) C B(T(t)) (see, e.g., [15, Section 3B]), and o ag(T(1))
:; a(T(t)) and 8e{T(t)) = B(T(t)). As in Theorem 5 of [15], one can check
that os(A) \ fe(4) C o(A)\ B(A). Suppose 1(T(t)) < v(T(£)). Then there
exists a Riesz point, A, in o(T(1)). By (2.5),

A €a(T)\BTE) = 0e(T (1)) \ Be(T(2))
C etos(ANBE(A) ¢ GHolANAA))

Since A is self-adjoint, A is real. This would imply that S.(4) < §(A).

We conclude by mentioning an algebra of interpolated operators on
L'ebesgue spaces. Let L? denote the Banach space of p-integrable func-
tions on a o-finite measure space (2,p). Fix 1 < p < s < oo InAt’h'@
case s = oo, L* denotes the sup-norm closure of L? N [.*. Let B ‘ d@m‘}‘tvf
the algebra of all bounded operators T' on LP A L (a Banach slf;ce awith‘
;orm ||13 lps = Smax( Il - Hp, [+ 1ls)) that have bounded extensions Ty, and

s to LP and L° respectively. By the Riesz Convexity Theorem, T has a
bounded extension T, € B(L") for all r € [v,s]. With respect to ,tlm :;10;'111’
1T, = max{| Ty, IT:|I}, Bps is a Banach algebra. The spectral and Fred-
holm theories of an operator in this algebra are developed in [10] and [“)]
Prc{)éerties of a closed operator on LPM L* affliated with By, are investiga,f;eci
in [6]. A
. For each r € [p,s], L N L% is a dense subspace of L" and so a result
similar to Thecrem 3.6. applies to this setting—here, A is a closed and densely
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defined operator on IF N LY Let {1(1)}e0 denote the semigronp genevated
by Ay, the minimal closed extension of A to L™ In case p({2) < oo and Ay
is self-adjoint (p = 2 < &), the previous discussion applies directly with ¥
replaced by L2, X by L7 for r = 2, and & by By, If 1 £ r £ 2, the fact
that o{72(1)) € o(T(1)) allows the same argument to be used in this case
as well (see [H]).

The anbhors would like (o thank the refetee for the helpful suggestions,
and in particular for the remarks regavding the proof of Theorem 3.1,
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