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On weighted Bergman kernels
of bounded domains

by

SORIN DRAGOMIR (Milano)

Abstract, We build on work by Z. Pagternak-Winiarski [PWQ} and study a-Bergman
kernels of bounded domaing 2 € CV for admissible weights o & L' {12},

1. Admissible weights and o-Bergman kernels. Let 2 C CV be
an open subset, 12 5% . Let W(2) be the set of all weights on §2, i.e. an
clement a & W{{2) is a Lebesgue measurable function a : 2 — R so that
o> 0ae in 2. Given o € W(£2) let L?(2,a) denote the Hilbert space
of complex functions on Q for which [, |f|*adp < oo, du denoting the
Lebesgue measure op R*N. The inner product on L2(£2, a) is

(f 9} f Flelg(=)a(z) du(z)

and as usual the norm is defined by || f||, = (£, F)o’>. _

Let L2H(2,a) denote the set of functions in L2((2,a) which are holo-
morphic in 2. For z € §2 fixed define E.(f) = f(2), for any f € L*H(£2,a).
Then a € W () is an admissible weight if L*H{{2,4a) is a closed subspace
of L*(§2,a) and F, is continuous on LEH {2, a) for any z € £2. Let AW (£2)
ba the set of all adinissible weights on 2. If o € AW(£2) then, by the
Riesz representation theorem, there is a unique e, , € L2H(£2,a) so that
EAf) = {eg0,f)e for any f € LPH({2,a). The function K, : 2 x 2 — C
given by Kq(z,w) = e, 4(w) is the a-Bergman kernel of £2. For a = 1 this
i# the Bergman kernel K{(z,w) of 2 (cf. [Be]). If 2 is bounded then K is
known to give rise to a Kéblerian metric g on {2 so that each holomorphic
diffeomorphism is an isometry. Moreover, if £2 is homogeneous (i.e. the group
of holomorphic diffeomorphisms of 2 acts transitively on £2) then K(z, 2)
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is proportional to the density Glz,y)"/? where G = det(gi;) (cf. Prop. 3.6
of [He|, p. 371).

It is our purpose in the present paper to establish weighted analogues of
the above results. If 2 is bounded and a € L(£2) N AW({2) then

(1) 9o = Re{Hu|x(ayxx(2)}
is a Kahlerian metric on §2 (cf. our Theorem 1) where H,; is given by
& 0 ; _
1<i,i<N

and X ({2} is the C°°(2)-module of all real tangent vector flelds on £2. The
proof of Theorem 1 relies on the representation of K, (z,w) in terms of a
complete orthonormal system in L2H (2, a) {cf. Th. 2.1 of [PW2], p. 3}, Let
2 = Y be the unit polidisc and a(z) = exp (|z]7/%), z # 0, a(0) = 0.
Then K,(z,z) is shown to be proportional to the density Go(x,7)"/* on
any N-dimensional torus in 2 (cf. our Theorem 2). The lack of generality
of Theorem 2 {as opposed to Prop. 3.6 of [He], p. 371) may be justified as
follows. Let Hol(f2) be the group of all holomorphic diffeomorphisms of 2.
There is a natural action of Hol({2) on AW (£2) (cf. Section 3). Let I, be the
isotropy group of a € AW (£2). Then I, acts on L2H ({2, o). However, I, may
be calculated only for specific choices of a. In particular, if a is the admissible
weight in Theorem 2 then I, acts transitively on any N-dimensional torus
in the unit polidisc in CV. Finally, in Section 4 we mention an open problen
in connection with work in [Ke].

2. The behaviour of a-Bergman kernels under holomerphic dif-
feomorphisms and the a-Bergman metrics. Let a € AW (£2) and let

K,(2z,w) be the ¢-Bergman kernel of 2. For any complete orthonormal sys-
tem {¢y} in L2H(£2,a),

(3) Kal2,2) = 3 ow()8a(2)
k

for any z € 2 (cf. Th. 2.1(i) of [PW2], p. 3). The series 3, du(z)dy(1w)
converges uniformly on any compact subset of £2x 2 (cf. Prop, 2.1 of [PW2],
p. 4) so that (3) may be differentiated term by term. We obtain

(4) —Q——?— log Kalz, z)

82',; 623

k [4
kot BZj ('5‘95,
Let H, be given by (2) and Z,W ¢ I'*(T(2) ® C) two complex vector
fields on £2. Then (4) yields H,(Z,Z) > 0 and H,(Z, W) = H, (W, Z), ie.
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go is positive and symmetric. To show that g, is a Riemannian metric on
£2, it remains to be checked that g, is definite. Let X € A'(£2) and assume

that g (X, X)=0atzec . If X = }:?;1(&3/621- +£,08/0%;) then (4) gives

SN
(5) 2 (m% - 451—5;7)51 =0
at = € 2. I £2 is bounded there is M > 0 so that |z;] £ M (where z; : 2
C, 1< 4 < N, are the coordinate functions). Thus [, [zj|*a(z) du(z) <
M* [, a(z)du(z) < oo, provided that ¢ € LY, so that 1,z1,...,2n €
L2H {2, a). The rest of our argument reproduces that in [Hel, p. 368. Indeed,
let

B i

Bit1 = BppL = D %501, Bradi

k=0

where ¢; € L*H($2,a)} is given by ¢; = psliz ey, 0 < 5 < N. Set by =
d¢i/0z, 1 < 4,5 < N. Then det (bi;) = b1y ...byy # O together with (8)
for k=0 lead to & = 0 at z & {2

TuroreM 1. Let a € AW(R2) and ¢ € Hol(2). If 2 is bounded and
a € L) then g, is o Kihlerian metric on 2. Moreover, ¢ is an tsometry
of (£2,g4) into (£2, Guop-1), provided that o' = a o et e LMRQ2).

(-/:[]Ela

Proof, Note that g, bas complex components (ga)i = (gu);; = 0,
(9a)ij = £0%log K, (2, 2)/02;0%;, as a consequence of (2). Thus (by Lem-
ma 2.2 of [He], p. 360}, g, is Kahlerian. We shall need the following:

LemMa 1. Let (2,02 be domains in CN and ¢ : 2 — 2/ o holomorphic
diffeornorphism. Let a € AW(2) and set o' =ao o™l Then:

(i) o’ € AW ().

(i) The following identity holds:

(6) Ro(z,w) = Kar(p(2), 0(w)) i (2). ()
for any z, w € £2.

Heve, if @(z1,...,2n5) = (Q(zl,.,.,zN),...,CN(zl,,..,zN)) then J, de-
notes the Jacobian determinant J, = 8(C1, ..., Cn)/0(#1, ..., 2n ), To prove

(i) let ¥ < £ be a compact subset and wq €Y. Set X = "1 Y) < 2 and
20 = p~ ). Next, let f € LPH({',¢') and set g = (f o @), Then

1912 = [ 1f (@) Pa(2)lJo()" dulz)
2

fl

[ 1 (w)2f (w) dp(w) = [|fla: < o0

nl
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Also J, is holomorphic in {2, so that g € L*H(£,a). By Theorem 2.2 of
[PW2], p. 4, as a is admissible and X compact, there is C'x > 0 so that
|B. 0] € Cxliglla- Thus |f(wae)||Je(20)| < Cx||f||er, which yields

(7) B fl < Cy[|£lla

where Cy = Cx sup,cx |J»(2)|™'. The estimate (7) holds for arbitrary f &
L2H((¥,a) so that, again by Theorem 2.2 of [PW2], it follows that o’ is
admissible.

Next, the identity E,((f o ¢)J,) = By (f)d,(#) may be written as

8) [ {Ealz e O) Tl O
o

~Kau{p(2), QT (2)}F(C)a'(() dp(¢) = 0.
Note that ¢ — e,.{e7 1)) Tl (¢))) ™" is holomorphic in £ and
‘“(ez,aa o !P—l)(']lp o (P—l)hlng’

= [ leaale™ (O™ () 20’ (¢) dulC)

[ lesale™ (ODPITp-1(0) P () du(S) = llesalli < o0

Q.’
so that (e, o 0™ )(J, 0 1)t & L2H (2, ') and (8) becomes

{(eza0 ‘Pil)(JlP o ‘Pnl)ﬁl — Jo(2)ep(z),ar fe =10
for any f € L2H({Y,a’). This yields (6). u

In particular, Ko(z,2) = Kyop-1 (9(2), p(2))|Jo(2)|? for any z € £2, so
that the proof of the second statement in Theorem 1 is similar to that of
Proposition 3.5 of [He|, p. 370 (and is therefore left as an exercise to the
reader). Cf. also [M2]. The Kihlerian metric g, is the a-Bergman metric of
£2. It is an open problem to study curvature properties of (12, g,) (cf. e.g.
K], when a = 1).

As a byproduct of our Lemma 1, if 2 = D* is the unit disc in C, one
may estimate K, (z, w) in terms of the unweighted Bergman kernel of £2, i.e.
Ki(z,wy=7"1—-2w)"% (cf. e.g. [Ho], p. 147). Let z € 2 he fixed and p,
the automorphism which takes z to 0, i.e. . (w) = (z —w)(1l ~wZ) "}, Since
v, (w) = (Jz|? — 1)(1 — wz)~? the identity (6) becomes

_ 1
Ka(z,w) = K(wgaz—l(o, (,Dz(’ll)))m .
Let X C §2 be a compact subset and ¥, = ,(X). Then
Kalz,w)] < ClKa (3, w)]
for any |2| <1, w € X, where C, = wsup,,cy, |K,(0,w)| < oo.
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3, Isotropy groups of the natural action of Hol(£2) on AW (£2).
Let H({2) be the space of all holomorphic functions on 2. Consider the
actions a : H(£2) x Hol(2) = H{12), a(f,¢) = (Fop)J,, and §: Hol({2) x
AW (£2) = AW (D), B{p,a) = a0~ Then § is well defined, by Lemma
1. Let I, be the isotropy group of a € AW (12) with respect to 8. Then o
induces an action H(2) x I, — H{) for each a € AW({2). This descends
to an action L2H(£2,0) x I, — L2H(2,a) since [ja(f,@)lle = || Flla,a =
11l < o0, for any f € L2H(£,a), ¢ € Io. Set DY = {z € TV : Jz! < L,
1< 4 < N} and define a € W{DN) by

= @XP(‘z‘ml/z)x z#0,
alz) {0 2=0,
where |z|? = |2 |* + ...+ |zw|%, 2 € DY,

THEOREM 2. (i) a € AW(DY). 1

(ii) Let 0 < » < 1 and consider the torus TN(r)y = 8Hr) x ... x 8'(r)
(N factors). Then there is Co > 0 s0 thet Ku(z,2) = CoGalz,y) /® for any
ze TN (r).

Proof. (i) follows from Corollary 3.1 of [PW2], p. 6. Let {2 = ]]])NN. To
prove (i) recall (cf. e.g. [N], p. 68) that Hol(£2) = {0p0p: 0 €RY e €
(DN,|cxj| <1,1<j <N, pe oy} where

A = i91 —-——--—'-'“'""""‘zp(l) _ al . e’iaN‘z'p(N) _ QN ) ¥ Z E Q
‘Pfhcx,?ﬂ("‘) - (e 1 El.zp(l) s ) 1— asz(N) 3
and o denotes the permutation group of order NI

Step 1. Iy = {wgop: 0 ERY, peon}

Proof We must solve
(9) 60 Pgay = G
for 0, a and p. Apply (9) to z = 0. This gives o = 0. On the other hand, let
2 € (2, z# 0. Then |wgon(2)|* = }:;;1 |eti 2,050 |2 = |22, L.e. po,0,p satisfies
the functional equation (9).

Step 2. I, acts iransitively on TN(r).

Proof. Let I, x TN(r) — TN, (,2) = @(z). Then |p(z);] =

i that t don is well defined. Next, for any z,w € TN (r)
"% z,0y| == r 50 that the action is well defined. Next, for any z,
the equation wgop(z) = w may be solved for § € RY, p € oy (e.g. take
p=id and §; € {2n7 + arg (w;/2;) 1 n € Z}).

Set gj = xj -y, LS 7 S N, and let (gu)ap be the real compononts
of goy 1 < A, B < 2N (with respect to 8/8mj,3/8yj). Let Ga(_:v,y) =
det ((ga)am(z,y)). We finish the proof of (ii) in Theorem 2 by showing:

Step 3. Kalz, 2)/Calz,y)M/* = const. on TV(r).
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Proof. Let z,w € TV (r). By Step 2 there is ¢ € I, 50 that ¢(z) = w.
Then (6) yields K,(z,2) = K,(w,w)|J,(2)]*. Set w; = u; + v;. Finally,
Gaolm,y) = Galu,v)|[J,(z)[* so that

Ko(z,2)Ga(z,y)~ Y2 = Ka(w, w)Golu,v)" . &
We end Section 3 by looking at vet another example. Let 2 = D! be the
unit disc in C and a € W{D") given by a(z) = [Im(z)[*/(1-12D |z < 1.
ProPoSITION 1. (i) a € AW(D1).
(ii) I, is a subgroup of Go ={¥pe k€ Z, a € R, || < 1}, where
L k Z —
dhalz) = (12
Proof. Note that
Vo © Y8 = Vetly, where v=((—D'a+8)(1+ (-L)af)™",
and (Yg o) "' = tr g, where 8 = (—1)5+'a, so that G, is a group. To prove
I, C G, recall that Hol(D') = {pp ., : 0 € R, @ € C, |a} < 1}, where
_if Z
—¢ 1 &

lz| < 1.

QDG,Q(Z)
If wg o € I then
(10) a(p,a(z)) = a(z)
for any |z| < 1. Let z = 0 in (10). This gives Re(c) sin@ + Im(a) cos @ = 0
and we distinguish the following cases: 1) cosf # 0, Re{a) # 0, and then
tanf = —Im(a)/Re(a), or 2) cosf # 0, Re(a) = 0, and then o = 0, or 3)
cos# = 0, Re(c) = 0. Clearly the case cos = 0, Re(a) # 0 cannot occur.
Let z = a in (10). This yields o € R. Now, according to cases 1) to 3) ahove,
we obtain the following sets of holomorphic diffeomorphisms: 1) 4y o (2) =
Prmalz) = (-1)F 2L o € R, [o] < Lk € Z, 2) pap(z) = exp (i8)z, and
3) @bk(z) = C,me_!_.,r/g}o(z) = i(—l)’“z, k € Z. Note that a(tpg}g(l/m) = 0
yields 8 € {kr : k € Z} so that 2) is contained in 1) for o = 0. Finally,
a(¥e(1/2)) # 0 so that oy, & I,.

4. Derivatives of a-Bergman kernels and an open problem. Let
A be the Laplace operator on R*Y ~ C¥, N > 2, and
PN ¥ p oy
w(z) = m, WhEI'e WonN = 27F F(N) .

Let 2 ¢ C¥ be a bounded domain, a = ™%, and assume ¢ € CM)
throughout Section 4. Then a € AW(2) (cf. [Ho, p. 145). Let P, : L(£2,0)
— LPH($2,a) be the orthogonal projection (with respect to {, o). For
w € {2 fixed there exist (cf. [Ke], p. 156) open sets U, 1 < j < 4, so that
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we Ugand Uy Uy, 0< 5 <3 (here Uy = £2), and real-valued functions
Vu, W with the properties @, € CF(Ua), vulys = 1, the € C§°(U1),
v, = 0 and Yu|y,-v, = 1. Let K (z,w) be the a-Bergman kernel of £2.
We seck for a weighted analogue of Lemma 1 of [Ke], p. 152. We set ourselves
under the hypothesis of Theorem 3.5.1 of [Ho], p. 145, i.e. we assume that
the weak maximal operator 8 : L2(£, a) — Lfojl}(!?,a) has a closed range,
and that 862 is of class C? and strictly pseudoconvex (i.e. the Levi form
3 0k (2)t;Ty is positive definite in the plane 3° ¢;(2)t; = 0, for any z € 842,
cf. conventions and notations of [Hol, p. 127). We establish the following:

TurornM 3. (1) DAK,(,w) € L2H(2,a) provided that |o| 2N +1a €
L. ‘

(i) DY Ko w) = (1) P1Pye? DE (pu At ), f.e. DS Ky(2,w) can be
represented as an orthogonal projection.

Here D = 8181 joz8" ...8?{,5\;’". To prove (i) fix w € 2 and a polyradius
r==(ry,...,ry) so that Dr(w) € 2, where D.(w)={(¢€ CN |G —wy| <
riy 1 €4 < NY As Ko (-, 2) € H(2) for any 2 € {2, we may use the Cauchy
integral formula and Theorem 2.1(if) of [PW2], p. 3, to obtain

N .

; ; 1 Ka(z,()
11 DE K, (zw) = (~1)V 3! (W) 2 ()
(1) b Ko 7 8(;{3 o
where [ = D.{w) and 8D denotes its distinguished boqndary. Clegﬂy
DE,KU,(‘,w} e H{2}. On the other hand, set { —w = (rlewl,...,rNeWN)
and wse |K.(¢, 2)| € Ox||ezlla (for some Cx > 0 depending only on the
compact set X = D C (2, and any ¢ € X) to obtain

Ka((, %) (2m)™
(12) I du(C)l < Cxllecalle 20—
E)“I)
Next (11)-{12) yield the estimate
(13) DA Ko < Chr™ [ llesolialz) du(z) -
f2

Wo need to estimate the integral [, o [ Ka(z w)|*a(z)a(w) dz dw. De-
fine £, i £ — & by
oo = [e@IV T Ku(z,2),  2€ 4,
Fulz) = {)\(z)ﬂ“’(“)N!/(éhrN) , €080,
where A(z) is the product of the N - 1 eigenvalues of the Levi form. of 312
in the plane 37 g;t; = 0. By Theorem 8.5.1 of [Hol, p. 143, I7, is continuous.
Finally, by Theorem 2.1(i) of [PW2], p. 3, | K o{z,w)| € Kolz,2) + Kalw, w)



icm

156 S. Dragomir

g0 that we may perform the following estimates:

[ [ 1Ka(z,w)lPa(z)a(w) dz dw

x4t

S2AfKa(z,z)2a(z)d,u(z)+2( f Ka(z,z)a(z)a?,u(z))2
£2 2

=24 [ Fu(2)?o(=)| 2" Va(z) du(z)

+2( [ Fala)lo(z)|" ¥ a(z) du(2) )
0

b

2
< 2(81}pFa)2{A [ tel N e dy + ( | IQE“(N“’adu) } <00
L 2 0

where A = [,adp < oo, so that D K,(-,w) € L?(£2,a), and (i) of Theo-
rem 3 is completely proved. It is easy to see that |p| 'f(N"'l)a, € L} (2) vields
o ™ HYa e M) as well (eg let 0 <e < 1land 2. = {z & £2: g(2) > €}
and note that [, o]~V +Vady < Jo, lolm ™ Wadu+ [, o [o| 2N+ g dy
< ca). ’

The proof of the second statement in Theorem 3 is similar to that of
Lemma 1 of [Ke], p. 152, so that we allow ourselves to be somewhat sketchy.

Let g € H({2). Using (1.18) of [J], p. 97, and 4, [, € C$(2) (to integrate
by parts) we have

9w) = [ tu(2)Lu(2)Alpug)(2) duz)
n

= [ 9(2)pu(2) Al )(z) dulz).

2

Let g = DFf, f € L?H(2,e~%), and integrate again by parts to get

(14) DF flw) = (1)1 Pye? D2 (pu A9 T)), o -
Next apply D5 to f(w) = [, Ku(w, 2) f(2)a(z) du(z) to obtain
(15) DP flw) = (DE Ka(w,-), Y .

Finally, (14)-(15) together with Theorem 3(i) yield (ii). =

It is an open problem to prove differentiability up to the boundary of
the a-Bergman kernel of 2; of. Theorem 1 of [Ke|, p. 151, where ¢ = 0.
There, essential use is made of a formula for Py : L*(2,1) — L2H(£2,1) in
terms of the Neumann operator {cf. the solution of the 3-Neumann proi:)lem,
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[Kol, p. 140} and the Sobolev letuma (a weighted version of which is aiready
known, of. [Ku]).
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