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Weighted integrability and L'-convergence
of multiple trigonometric series

by

CHMANG-PAO CHEN ([Hsinchu)

Abstract, We prove that if 5, - 0 as max(|j], [k]) — oo, and
!:E; o - i
ST 3 ATk ) Auesl < o0,
[HENEREIEES

then fe, ) dlayi(y) & L) ad [ smn(y) = F9)l - [¢le)i(y)] dedy — 0 as
tmin{ra, 1)~ o, whare fu,y) i the lmiting function of the rectangular partial sums
sy (i 1) (e, ) el (4, ) fvre pire of type 1. A generalization of this result concerning L-
convergence s also eslablished. Bxtensions of these vesults to double series of orthogonal
Functions are also considered. These resulls can b extencded to n-tdimensional case. The
aforerontioned results generalise work of Balashov [1], Boas (2}, Chen (3,4, 5], Marzug [9],
Méricz [L 1], Mériez-Sehipp-Wade [14], and Young [18].

1. Introduction. Let T? = {(z,y) € R? : = € &,y < w}. Consider the
double trigonometric series
o =]

(L.1) )y

cjhev-(;lm%y) i
j tars oo 0Dttt v

We assume that there arve two positive, nondecreasing functions #(t) and
(1) defined on [1,no) such that

(1.2) egp 0 as max(lf], [k]) — 00,
do R - .
(13) SN ekl DI Avsess] < o0,
FIENERTIEES
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R

where £ '=max(1, £), the sum Em or” means 3o oo oot 2 oog i<~ 3
and the differences Ajcjp, Dacsi, A1acjk are defined by
Arejp = Cik = Cr(i)ke A2k = Gk~ Cir(k)
Algcjk = Alﬂgcj'k = AzAlek.

Here cpi e = Co—p = €0k, G304 & Cj0— = Cjby and the function v(j) is
defined by 7(0+) =1, 7(0—) = ~1, 7(§) = j+1for j = 1, and 7(j} =4 ~1
for 7 < —1.

Without loss of generality, we assume that §(f) > 1 and (1) = 1 for
all t. It is obvious that (1.3} implies

o0 o
(1.4) SN 1duael < oo,
[4l=0L |k[=0=
which is equivalent to
z Z |A11cjk‘ < 00,
j=—o0 k=~00

where Ajjeir = Cjp = Cjk+1 — Citlk + Cit1k+1- 1N [10], Méricz proved that
the rectangular partial sums
YT et

lFl€m |k|sn

smna:y

converge pointwise to a measurable function f{x,y). Moreover, f € LP(TH
for all0 < p < 1, and spmy (2, y) converges in LP(T?)-metric to f as wmin(m,n)
— 0.

In this paper, we are concerned with the validity of the following two
statements:

(1.5) flz, y)o(@)w(y) € LNT?),
(1.6) [ [ Iemnlm,y) — flz.9)] [9()0(y) dzdy — 0
TQ

ag min{m, n) - 0o,
where ¢ and ¢ are two measurable functions on T

2. Weighted integrability theorem. We say that (¢,0)} is a pair of
type L if there is a constant M such that

o [ tewla)+ [

[t|<m/e m /oLt <

() /1| dt < MB(p) Torall p= 1.

The main result in this section reads as follows.
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TurorEM 1. Let (1) and 9(t) be positive, nondecreasing functions de-
fined on [1,00) such that (1.2) and (1.3) ere satisfied. Assume that (¢, 0)
and (i, 0) are of type 1. Then the assertions (1.5) and (1.8) hold.

This theorem will apply to many particular cases, which generalize [2, 4,

g, 11, 16]. The pairs (¢, 0) and (46, 9) in Theorem 1 can be chosen from any
of (i) (vil), stated below:

i) (), 1) (p{1)/t & L))
(i) ((log l/l’l ) (s
(ii) ((log 1/]t1) L, Gog log#) s
(tv) (Clog 17]4]} -  log log L !, (logloglog t) ),
(v) ((og l/H) “A(logt) ) (0w < 1)
(vi) (1, (Qog 8} ")
(vit) (J¢] o 0) (0 < e < 1),

Any of (1) (vil) i of type L The logarithm functions given in (ii)~(vi) are
defined in the extended sense. This means that they have the original value
wheuever they are well defined; otherwise, they are defined as 0. It is known
that the Muctions

(log 1/t and  (log1/]t) " (loglog )t

ave closely related to the Dini Lipschitz test (cl. [17, Vol. I, p. 303]). We focus
our attention on the following three cases, The Brst one is 0(t) = 9(f) = 1.
Then {1.3) is exactly (1.4). From (i) and (1i), we get

COROLLARY 1. Assume that (1.4) holds. Then (1.5) and (1.6) remain
true for oll ¢ and 1 chosen from (i} and (ii).

The second case we consider i 0() = = {(log#)T}*~¢ and O(f)
{(log t) }' 4 where 0 < g, 6 < L. In this case, (1.3} reduces to

&3]

CRRD DR DR

10t kT

)T {(log &) VI8 Agegr] < o0,

wltich iy cquivalent ke

;Z

4 ’l

(log 31 "1 Clog (KD TH | Asegul < 00

Therefore, (v) and (vn) imply
ClOROLLARY 2. If both of (1.2) and (2.1 ) are aatvgﬁcd Jor some 0 < &,
b1, then | fle,y |/{|ln;.e,(1/|a:) log; (1/lyD]°} & LHT?) and

o l!‘jmn(tl ‘I) J( 'U)M sy = o1
IJ Tioatt e sty whP ™ o)

&

as min(m, n) — oo.
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The particular case of (2.1) with e =6 =018

o0 oo
(2.2) 33 (logli]) T (log [Kl) T Aracsk| < oo,
|7]=0a | k1=0+&
In this case, Corollary 2 has the following form:

COROLLARY 3. If both of (1.2) and (2.2) are satisfied, then the sum f of
series (1.1) is integrable, (1.1) is the Fourier series of f, and ||smn— filz — 0
as min(m,n) — oo.

This corollary was proved in [4], which generalizes {11, Theorems 2, 4,
5] and [16]. Set Afyc;n = (log IFDT (log |k|) T Avzcsk. Then by the Holder
inequality, we find that (2.2) can be replaced by the condition

(2.3) AL=

SY S % Gl Ak} <o,

u=0v=0 - [2v-T)<]5 <2 [2-1]<{k| <2
where 1 < p < co. For p = o0, A} is defined as

[s.o = o}
Ar = max i1 Tkl T | AYscs| -
ggom_qsw oz Tl e
Here [¢] denotes the integral part of £, in particular, [§] =0 for 0 < £ < L.
Condition (2.3) is closely related to condition (1.11) given in [11].

CororLary 4. If both of (1.2) and (2.3) are satisfied for some 1 < p
< co, then the sum f of series (1.1) is integrable, (1.1) is the Fourier series
of f, and ||smn — f|1 — 0 as min{m,n) — co.

Given £ > 0 and 1 < p < oo, we have {(log [5])T}? < M(|7|T)® for all j,

where M is a suitable constant depending only on £ and p. Therefore, the
following condition implies (2.3):

eSS { % S T A} < oo,

w=Dv=0  [gu-1]j]<2v (20 -1 k|<2Y

CorOLLARY 5. If both of (1.2) and (2.4) are satisfied for some & > ()
gnd for some 1 <p<oo, then the sum [ of series (1.1) is integrable, (1.1)
is the Fourier series of f, and ||smn — f|l — 0 as min(m,n) — oo.

.The conf:h.lsion of Corollary 5 involves three types of results: the sum [ of
series (1.1) is integrable, (1.1) is the Fourier series of f, and ||spmpy = fll1 = 0
as min{m,n) — oo. For {j| < m and |k| < n, we have |cj, — FU. k) <
[|$rmn — f ||1 Thus, the last one implies the others. It should be noticed that
the conclusion of Corollary 5 may not hold for the case s = 0, in general. This
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phenomenon may happen even for the first two results of the conclusion. Let
cjk be the coefficients of the series

2 o sinjesin ky
2.5 y Yy
(25) 22 (g os )
Then for all § and for all k,

[Anacgel € M(GITVRT) " {(log 7)) T (og RN,

where M is an absolute constant., From this, we see that condition (2.4) with
e = 0 is satisfied for all p > 1, but series (2.5) is not a double Fourjer series
(cf. [17, Vol. 1, p. 2563 or (4]}, This gives us a counterexpmple to Corollary 5
for the case £ == 0. It is easy to check that condition (2.4) with & = 0 is
equivalent to condition (111} given in [11]. Hence, [11, Corollary 1] tells us
that the first two results in Corollary 5 can be extended to the case € = 0
for double cosine series. However, the example

(2.6) fan) =y,
jue=2

cos Ju
log j

indicates that the third result in Corollary 5 still fails for the case & = 0 (cf,
[3, Corollary 3.3]). To gunarantee such a result, some additional conditions
are required (cf. [11, Corollary 2] or [5]).

The third case we investigate is 0(2) = t* and ¥(¢) = 2, where 0 < o
B < 1. In this case, (1.8) is of the form

(27) ST WMk

=0 |bj=0%
Moreover, (1¢|7*,t%) and (1t[=7,?) are of type I. Hence,
COROLLARY 6. If both of (1.2) and (2.7) are satisfied for some 0 < a,
g < 1, then o~ y?|f(z,v)| € L'(T?) ond
[ lownless) = Flong)lal Iy dody =0 as min{m,n) = o0.
Tafl .
Thig corollary ls false for the case o = = 0. Series (2.5) provides a
counterexample (cf. [4]). Assume that Aygey, 2 0 for all and for all k.
Then we have

TP Awaeje| < o0

Ayege 2 0
Applying a double smmmation by parts, we get

ST T T e 2 S ST (R Avacsnl.

[7]==0k |/]=0ck [#]=0ct | K| =0k

Agejp 20, and ojx 2 0.
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COROLLARY 7. Assume that Ayzcyr > 0 for all § and for all k. If (1.2)
and

(2.8) o> AT R ege] < 00

|11=0: || =0:k
ere satisfied for some 0 < «, 8 < 1, then the conclusion of Corellary 6 holds.

This corollary for double cosine series was proved in [9, Theorem 4],
which extends [2, Theorem 4.2] from the one-dimensional to two-dimensional
case. Corollary 7 also generalizes [2, Theorem 4.1].

3. L'-convergence. As indicated by series (2.6) (or [11, Example 4]),
the assertion that [|sma(f) — fll1 = o(1) as min(m, n) — co may not follow
from the assumption that f € L'(T2). To ensure such a conclusion, a certain
kind of conditions are needed. The purpose of this section is to provide such
conditions. The conditions involved here are weaker than (2.2)-(2.4). The
main result in this section is the following.

THEOREM 2. Let f € LY(T?) and ¢y be its Fourier coefficients. If

(3.1) Y (loglil) " (log [k)) " Aresk] = 0 as (k| — o0,
1il=04
(3.2) Y (oglil) " (log k)| Azess] 0 as|j| — oo,
|k|=0%
]
(8:3)  lLm Fm 32 Z (log |77 (log [k} T Aracss| = 0,
lil=m+1 |k|=0%
and
[An]
(3.4) lim Tm Z > (log|3) T (log [k])T| Asacyel = 0,
|7=0z£ [kf=n+1

then ||spmn(f) — flli = o(1) as min(m,n) — oo,

Theorem 2 is a two-dimensional analogue of [3, Corollary 3.3]. It extends
5, 'Corollary 2| from double Fourier cosine series to general double Fourier
series. Obviously, (2.2) implies (3.3) and (3.4). For any § and any %, we have

(3.5) | Areu] < Z | Aracyy|
lv]=|k|

and

(3.6) | Agesn] £ Z |Avacur|.

lul=14]
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Hence (2.2) implies (3.1) and (3.2). The above argument indicates that The-
orem 2 generalizes Corollary 3. It is not hard o check that

, ol COs jx
' flay) == e
(37) 1) 2 (o giiogTond

defines an ntegeable function on ', The coeflicients of series (3.7) satisfy
(3.1) (3.41), but condition (2.2) fails, This example digtinguishes Theorem 2
from Corollury 3.

Frploying the same argument as given in Section 2, we get the follow-
ing two consequences of Theorem 2, which generalize Comllarms 4 and b,
respeetively.

COROLLARY 8. Lol f & IMT?) and ejp be its Fourier coefficients. As-
gutne that

(9]

38) o)1 Y

1/ b o0
(m P 1\A*(‘ k\p] p——>0 as k| ’
el [ »-i.]:;|j|<:2“

%]

(3.9) (loglih) "> k >

yraxd) “[zr- !.]ﬁ‘lklegglv

%3 [i\ 'rrrf]

(3.10) l 11}11&2:[ Z Z

wall gL {2 g <Ry

L Tyg=1 A 10 M 0 ||—+oo
(kT Azl =0 as I — oo,

a1 ,Tf’u—-lA* . |1' l/r=0
(71 k[ ALagse :

and D

(3.11) 11111 1‘?{fi L[ L Z (1517 k) Ty A 2cjk\] 920

[z <l [kl=ntL
for some 1 < p,q,r, 8 < oo Then 9w () — Fll1 = o(1) os min(m, n) — oo.
Here Afejp = = (log |7 " Aveyn, Abejp = (log k)T Agejp, and Afpejp are
defined u Section 2. For ps= ¢ = 7 = § = o, the conditions (3.8)-(3.11) are

defined in the same way as we did for (2.3).
COROLLARY O, Let [ & LV(T%) and ey be its Fourier cocfficients. As-
sume thal :

(3.12)  (logk]) L[ D

apsmel) g ]| F) e Y

. . Y
(T el =0
as |k| — oo,

% . 1/q
(313)  (log m)'rz“: [ }: (|k:}r)q-wl+ﬂlﬂgcjk?|q] — 0

wsl) (2% |kl €20
as |j} — o0,
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[Am]

(3.14) lim Tm Z[ DY ;j|T|icW)T"1-'-fJ/_\mcj,ﬂV']Wmo,

L1 m—o0
v=0  |j|=m+l 271 Sl <20

and
[An]

(.15 lm @ SIS e el =0

=0 (2ol jl<an [ =nt1
for some € > 0 and for some 1 < p,q,,5 < co. Then |, (f) — flIl1 = o(1)

as min(m,n} — oo.

The conditions (3.12)--(3.15) with & = 0 reduce to the conditions of [5,
Corollary 1}. As shown in [5, Corollary 1], the conclusion of Corollary 9 for
this case should be replaced by the following statement:

(3.16)  ||8mnlf) = Fil1 — 0 as min(m, n) — o
if and only if ¢;3(log|f])(log |k|) = o(1) as min(|jl, |k|} — oo.
It is still an open problem whether Corollary 9 holds for this case. If so, it

will extend [11, Corollary 2] and [5, Corollary 1] from double cosine series
to any double series of type (1.1).

4. Auxiliary results. Consider the functions ¥;(¢) defined by Wy, (f) =
!T/g (t) = 1/2, Wy(t) = 1/2 + (e + ¥ 4 .| - £17%) f013>i and W_, (L)
¥;(—t) for j > 1. We have |¥;(¢)] < m1n(2|j\T,7r/|t|) for all j and for a]

Lemma 1. Let (¢,0) be of type T and M the constant given in the defi-
nition of the pair (¢,8). Then for all 7,

f 5(8)6(6)| db < 4M6(j| ).

Proof. From the definition, we find that (55, ) is of type I, where (;5'( 1) ==
¢(—1). Since ¥_;(t) = W;(~t), it suffices to prove the case § > O+ Let
o= |§I". Since [&;(t)] < m1n(2|g|T,7r/\t|) for all § and for all ¢, we get

J1w@emid<2Ai™ [ lewidtrr [ o)/t de < adreqs]T).
—m |t <w/e w/es|t <

Lemma 1 generalizes [4, Lemma 1). Due to the structure of . {t), the
following summation by parts formula holds. Its proof is left to tllL reader.

LEMMA 2.

m
> we = 3 A+ Y ar(t)

filsm lil=0 |f=rn
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With the help of Lemma 2, the following representation for s...(xz, )

can be easily derived,

LEMMA 3.

L

St (‘ U }_J Z AJAC'Jk!pJ !I/R (U)

FIEDE RS
T
+ Z: Z Alf-zj,r(!c)!'pj (&) (y)
{9 [smlbke | do|mem
g .
- D 2 Aeer s (2)Py)
FIESALIEC R
- X Z C"r(j).r(_k)‘pj (m)lffk{y)
L4 e | R]mm

Denote by o, (x,y) the firsl Cesdro mean of the sequence {smn(z, )}

that is,
Trt i,

(4 Y1) = ,m"":}ti' ) ,;;‘:I:ml" Z Z ‘ka (2,9} -

jasl) k=0
Tt was pointed out in [6, 7] that the following identity holds.
LemMa 4 (Chen and Hsieh [6]). Let € = min(1,£). Assume that Am =
mA 1 and An a4 L Then
[Amn] + 1 Anl+1

S = Pyn, 7 ['\”Ll - 'HL( [Ami]n U-rm‘!-) + '[')\n] T (U'm,[/\'rb] = Gran)
[Ang -l
o .h: (m,n.;u:,y),
where

M g a, )
o W) g TN

o ([ A L ] [An] -+ 1 -
- 3 (Tt Sy ( e

1< A (k]S An
[)\m] Lo IJ\) ([Au]ﬁ i -

X 2_,-4 ( )\m] N [)\ﬂ}—»«n

lil<me k[0

Performing a double summation by parts (i.e., applying Lemima 2 tw1fcc),
and simplifying the final result, we get the asccond reprcbentdtmn or

RMm,ny @, y) helow.

§

* joo-ble
) ajkei[.?w vl
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LEMMA 5.
R*m,nyx,y) = Ro(m,n; 2, 1) — B (m,n; 2, y)
- Rg\(ﬂl, n,x, y) - R«%‘(mﬁ n; may) )
where

Ro(m,n;z,y) =

Z Z Crii) ey i ()% (y)

7= |k|=n

R L 1 [Arn] [An]
Rl (m: 'n;m,y) [:)\m [)\J’L] Z (4}, T‘(.‘h)lp ( )!pk(?f)
|j|=m—i—l [k]=n+1
Ry (m,n;z,y)
m b
== > > Mg BE@ T = Y Y eyl (2)(y)
|7]==0 [ k|=n |Fi=m |k|=0
Am] [An]

[)m |—n Z > (M) Ayeyr Y5 (2) % (y)

m
[i]=0% |k|=n-1

1 : [Arn) [An]

[An] +1 - lk[)i
N — (-—-__m__m.. Ager iy w¥i{a) Wi (y)
[)‘m] m |Fj=m-1 |k|=0% [)\n} -
Ry(m,n; z,y)
[)\m 7

= > > ’\ﬁ,,,;ﬁl P2 1=Vl ity () ()

| l=m+1 |k|=0%
L P E T

n Z Z Wﬂlgcjk!pj(-’ﬂ)wk(y)
[71=04 |k]=n+1

[Amn] [An]

[/\m+1—\g| [An] 1k
+ > by ] — Dl <m ,ﬂlzcjz,:%(m)‘ﬁ’k(y)-

|7 |l=mt1 [k[=n-t1

5. Proof of Theorem 1. It is clear that
[+ 4} o
(5.1) el < D0 Y [Ancu|.
: [u]=|7 [v|=]k|

We have |@;(¢)| < «/|t| for all § and for all 0 < || < 7. By (1.4), (3.5), (3.6),
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(5.1), and Lemuma 3, we infer that for 0 < |z, [y| <,

(5.2) L Z Aroei¥ (@)W (y) — f(x,y)  as min{m,n) — oo.
(el ko]0

Tt follows from (1.3), Lemwma 1, and Faton’s lemma that

[ [ 1f G )bleniy) dody
I.Tr'.]
f;ﬂ{*{ lim L L o131 )9 (16 )l Aszesnl | < oo,

O et ROk

where M* i a suitable constant coming from the definitions of (¢,6) and
(4f,9). Thus, (1.5) holds. For (1.6), putting (5.2), Lemma 1, and Lemma 3
together yields

f f 8o (Cﬂ,y) e

vl'l'é‘q

(e, 1)) - [d()vp(y) | da dy

su{ Y.

(4 RYEQ ()

B(131 T 10( k1T )| Araega!

=4}

S 0P I A
Ijlm:fJ:i: [ ke[e==m

3N B0 AR ) Azer sy il
|7 1= {R]=0k

w5 S BT e tyrie ]
MEALEs

where ((m, n) consists of all (j, k) with |j] > m or |k > n. Frox this, we
see that the desired result Tollows from. (1.8), (3.5), (3.6), and (6.1).

8. Proof of Theorem 2. We adopl the notations of Lemmas 4 and b.
The particular case of Lemoma 1 for the pair (1, (log?) T says that

iy

(6.1) [ 1s(e)] dt & 4M (log inT.
We have
(6.2) el £ D 1Aseunl

fulesls
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By (3.1) and (6.2}, we find that
eir(log|i))(loglk)) = o(1)  as min{|j],[k]) — co.
Combining this with (6.1), we conclude that |Ro(m,njz,y)li — 0 as

min{m, n) — co. Moreover, we infer that

B2 (m,n;z,y)lli € max | Ro(u, vz, w)lls
m<uL A
n<ULAn
— 0 uniformly in A, ag min(m,n) — co.
Write
R3y(m,n;z,y) = ~ Rai(m,n;w,y) — Raa(m,mi2,y)
+ Rys(m,mim, ) + Byu(mymiz,y),  say.

By (3.1) and (6.1}, we obtain ||[Re1(m,n;z,y)|j1 — 0 as min(m,n) — oo,
and

A .
1Bzs(m.niz. gl = max [ Baa(u, vi2, )il

n<uLAn
_ -+ 0 uniformly in A, ag min(m,n) — oo.
Sirnilarly, {3.2) implies that

| Raz(m,n;2,9)1 — 0 as min(m,n) — oo,
and
R34 (m,m;2, )1 — 0 uniformly in ), as min(m,n) ~+ oo,

Th;ls, |R3(m,n;z,y)|1 — 0 uniformly in ), as min(m,n) — oco. For
| R3 (m, m; @, )1, it follows from {6.1) that

[Am] )

3T ST (log 1) T (log k)T Aaeal

[fl=m+1 k=0

o [An] :
+ 2. D (logli)T (log k) Tl Awzen| }

1§]|=0k [k|=n-+1
Thus, by (3.3) and (3.4), we get

AN
fim lmLRG(m,mse,y)y = 0.

1B (my i, ) < (162

P Ty o .
Here the symbol “limy, 5" means the limit superior, defined as
LIm e¢j; = inf i
ik in sup ¢ = lm su
m,n—0oe mynzl fEm.k>n n—o0 jzar,,Ezn.
. . 12
Since f € LH{T?), we have ||o,0a(f) ~ fl1 — 0 as min(m, n) — 0o, Combin-

ing all what we have done so far, we conclude that th ire ;|
o all what e have d i 1e desired result follows

Ciks «
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7. Generalizations. It was pointed out in [7] that Lemma 4 still holds
for the n-dimensional case. Inspecting the proofs given in Sections 4-6, we
find that the results established in the preceding sections can be extended
to higher dimensions without difficulty. The only thing we have to do is
to modify the corresponding conditions from the two-dimensional to the
n-dimensional case. We leave these to the reader. Following the proofs given
above, we find that the theory developed here can be extended to any double
seties of the type

}_: cpewy()un (y)

(7.1) 3
NE TS

o X
i

where w; (1) are measurable functions defined on [0, a]. The prerequisite is
the existence of a sequence {¥; ()} of measurable functions such that

(7.2) [ (4)] < A(5)T (all §),
(7.3) ()] < B/ all §, all 0 <t < a),
(7.4) W) = Wya(8) = wi(t)  (all 5),

where A and 3 are two absolute constants. For instance, Theorem 1 can be
extended in the following way. Let 8, (2,y) be the corresponding rectangu-
lar partial sums of (7.1). Assume that the following analogues of conditions
(1.2) and (1.3) bold:

(7.5) eip = 0 as max(f, k) — o0,
b -

(7.6) 8(; )0k ") Aracqu| < oo,
Jo=0 k=l

Then Sy (2, y) converges pointwise to a measurable function flz,y). We
say that (¢, 8) is a pair of type I* if there Is a constant M such that

fg I
o [leidet [ oG/t de < MO(e) forall g 21,
4} v/

Then Theoram 1 has the following form.

TrEoREM 1°. Let 0(t) and 9(t) be positive, nondecreasing Junctions de-
fined on [1,00) such that (7.5) and (7.6) are satiefied, Assume that (¢,9)
and (3, %) are of type I". Then Flz () (y) € (0, a] x ’[(),a]) and

[s

f f |Sn (7)) = f&,9)] - [6(x)0(y) dedy — 0 as min(m,n) —+00..

00 .
We know that if {wy(t) : § = 0} is the Walsh orthonormal system de-
fined on Lhe interval [0, 1) in the Paley enumeration, then the corresponding
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Walsh-Dirichlet kernels D;(t) (chosen for W;(t)) have the properties (7.2)-
(7.4) (cf. [8] or [15]). Hence, the conclusion of Theorem 1* holds for double
Walsh series, or more generally, for n-dimensional Walsh series. Its corollar-
ies generalize the corresponding results in [1] and [14]. Other generalizations
are left to the reader.
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Nonaccessible filters in measure algebras
and functionals on L™{A)*

by

RYSJZARD PRANKIRWICOZ (Warsnawa)
andl GRZBGORYZ PLEBANEEK (Wroctaw)

Abstract, In a nonatomic measure algebra, we constrnet a nonprincipal filber with the
inaccessibility property considerad by Kunen [7]. Using that flter we define two “pathologi-
eal? functionals on L2(A)" Tt follows that the Banach space L™(A) is not realcompact
whenever the meagare X is not separable.

The main ain of this paper is to prove that a Banach space L™ (A) is not
realcompact in its weak topology whenever the measure A is not separable.
According to a characlerization of realcompact Banach spaces due to Corson
(see the next soction), it suflices to find a functional from L2 (A}** \ L= (A)
which, roughly speaking, behaves like an element of L%(2), when considered
on countable subsets of L(A)",

Actually, we shall be dealing with the usual measure A on the Cantor
cube 9%, We find it convenient to treat C(9), the space of continuous func-
tions on the Stone space of A, rather than the space L>®{}) itself. We shall
show that one may define a functional with the required properties putting
- p(FY for e C(S)*, where F' is a certain closed subset of §. In fact,
F will be defined as the set of all ultrafilters from S that extend a suitably
chosen filter in 3. To make the idea work, we consider a property of filters in
measure algebras that hag been invented by Kunen [7] for another purpose.
Tt is rather technical; we call it Kuhen's property (see Section 2).

14 is shown in [7] that in measure algebras of cardinality « there are
ulbrafilters with Kunen's property provided Martin's Axior holds, However,
a8 explained in Section 2, given such an ultrafilter one may c.onstrucl:. a
ppoint 0 Fw \ w, which indicates that the existence of ultrafilters with
Kunen’s property is independent of the usual axioms. Therefore we present a
wmff;g{wﬂw; r;'ﬂh.ema!;'.ir‘,s Subject Classification: Primary 46B25; Secondary 08E10.

Key words and phrases: realcompact Banach space, measure algebra, weak p-point.
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