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Walsh-Dirichlet kernels D;(t) (chosen for W;(t)) have the properties (7.2)-
(7.4) (cf. [8] or [15]). Hence, the conclusion of Theorem 1* holds for double
Walsh series, or more generally, for n-dimensional Walsh series. Its corollar-
ies generalize the corresponding results in [1] and [14]. Other generalizations
are left to the reader.
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Nonaccessible filters in measure algebras
and functionals on L™{A)*

by

RYSJZARD PRANKIRWICOZ (Warsnawa)
andl GRZBGORYZ PLEBANEEK (Wroctaw)

Abstract, In a nonatomic measure algebra, we constrnet a nonprincipal filber with the
inaccessibility property considerad by Kunen [7]. Using that flter we define two “pathologi-
eal? functionals on L2(A)" Tt follows that the Banach space L™(A) is not realcompact
whenever the meagare X is not separable.

The main ain of this paper is to prove that a Banach space L™ (A) is not
realcompact in its weak topology whenever the measure A is not separable.
According to a characlerization of realcompact Banach spaces due to Corson
(see the next soction), it suflices to find a functional from L2 (A}** \ L= (A)
which, roughly speaking, behaves like an element of L%(2), when considered
on countable subsets of L(A)",

Actually, we shall be dealing with the usual measure A on the Cantor
cube 9%, We find it convenient to treat C(9), the space of continuous func-
tions on the Stone space of A, rather than the space L>®{}) itself. We shall
show that one may define a functional with the required properties putting
- p(FY for e C(S)*, where F' is a certain closed subset of §. In fact,
F will be defined as the set of all ultrafilters from S that extend a suitably
chosen filter in 3. To make the idea work, we consider a property of filters in
measure algebras that hag been invented by Kunen [7] for another purpose.
Tt is rather technical; we call it Kuhen's property (see Section 2).

14 is shown in [7] that in measure algebras of cardinality « there are
ulbrafilters with Kunen's property provided Martin's Axior holds, However,
a8 explained in Section 2, given such an ultrafilter one may c.onstrucl:. a
ppoint 0 Fw \ w, which indicates that the existence of ultrafilters with
Kunen’s property is independent of the usual axioms. Therefore we present a
wmff;g{wﬂw; r;'ﬂh.ema!;'.ir‘,s Subject Classification: Primary 46B25; Secondary 08E10.

Key words and phrases: realcompact Banach space, measure algebra, weak p-point.
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construction of a filter with Kunen's property which, although not maximal,
is sufficiently large for the purpose mentioned above.

That filter is also used in the last section, where we show by similar
methods that there is a functional from C(5)** which lies in the realcom-
pactification of C(S) but is not defined by a single measurable [unction
on S.

We wish to thank Czestaw Ryll-Nardzewski and Zbiguiew Lipecki for
valuable conversations.

1. Preliminaries. A Banach space F i3 said to be reslecompact if

(E, weal) has this property in the usual topological sense, that is, il every
0-1 weak Baire measure on F is concentrated at some point {cf. [15]). This
is equivalent to saying that (E, weak) is homeomorphic to a closed subset
of some product of the real lines. As proved by Corson [1], every Banach
space has a Hewitt realcompactification in (E**, weak”), consisting of all
functionals that are weak® continuous on weak™ separable subspaces of I7*,
That result yields the following useful characterization of realcompactuess
in terms of functionals on £* (cf. [14], 2-4-2).

THEOREM 1. For a Banach space E the following are equivalent:

(a) E is realcompact;

(b) every z € E** which is week® continuous on week® scparable sub-
spaces of ™ is weak™ continuous (i.e. z € E);

(c) given z € E**, if for every countable subset D C E* there sz € F
that agrees with z on D, then z is weak® continuous (i.c. z € K).

For the hasic properties of realcompact Banach spaces and connections
of this notion with several others, the reader is referred to Edgar’s survey
papers [2, 3]. We only recall that realcompact Banach spaces can be quite
“big”. For instance, it is not difficult to prove that I'(k) is realcompact
provided there is no measurable cardinal less than or equal to & (see e.g.
[14], 16-2-6). A more involved argument shows that under the same car-
dinal restriction C(2%), the Banach space of continuous functions on the
Cantor cube 2" is realcompact (see Talagrand [13], 16-3; cf. Plebanek [9])..
Banach spaces C(K), for K compact are also discussed in this context in
Plebanek {10].

Given a finite measure A, L*()) denotes the usual Banach space of real-
valued essentially bounded functions. The Banach space L™ (\) is isometric
to C(9), the space of continuous real-valued functions on §, the Stone space
of the measure algebra. As usual, C(S)* will be identified with the space
M{S) of all signed Radon measures on S of bounded variation (M+(9)

and M;"(S) dencte the families of nonnegative measures and probability
measures, respectively). : :
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It is clear from Theorem 1 that a Banach space E is realcompact when-
ever 5 1s weak® separable. Thus the space L () is realcompact for every
separable finite measure A (since LY\ is then separable and weak® dense
in L™ (A}

Now we introduce the notation that will be in constant use. Let B(2“1)
be the a-algebra of Borel subsets of the Cantor cube 2%*. Unless stated
otherwise, A stands for the nsual (product) measure on B(2“!) and B =
B(2¥1)/ A is the measure algebra of A Concerning measure algebras, we
ewsentially follow the notation of Fremlin's article [6].

The canonical epimmorphism from B(2¥1) onto B is denoted by 7, that
i, B s an clement of B obtained from B € B(2“1). The Stone space of
all ultrafilters in B 1s always denoted by §. Further, we shall denote by V'
the canonical womorphisim between B and the algebra of closed and open
gubgets of 5, Lo

Vie)={pe S:acp}.

We use some standard resalts on the measure A For instance, for every
o € B there is B & B(2¥!) depending on a countable set of coordinates and
such that o = B (sce e.g. [6], 1.15). We write B ~ I whenever B depends on
aset J Cwy, that is, B == By x 240\ for some By € B(27). Similarly, every
A-meagurable function on 2% s A-almost everywhere equal to a function
depending on a countable set of coordinates.

There are natural correspondences between Radon measures on 5,
finitely additive measures on B, and measures on B(2%1) that are absolutely
continuous with respect to A. Therefore, we may treat a given p € M +(S) as
either a finitely additive function on B or as a measure on B (2“1) {denoting
them by the same letter).

2. On flters with Kunen's property. Let (A, u) be an arbitrary
measure algebra. We say that a filter F © A has Kunen’s property .1f for
every double seguence {ani)n kew & A having for every n the properties:

(i) ==Ll () & IP)

(ii) g0 2 Bl 2 Ot 20y

(Uii) Limgemne {Gnk) =0,
there is d & ¥ auch that for every n there ils kowith 4 ang = 0.

The following result is due to Kunen [7].

THEOREM 2. Under Martin's Aziom, in euery nonatomic meqsure alge-
bra of cardinality ¢ there czists an ultrafilter with Kunen's property.

It is easy to check that an ultrafilter with Kunen's property is a ‘weak
p-point in the Stone space, that is, a point which s not a cluster pom’c. of
any countable subset. Theorem 2 was used in [7] as a tool for constructing
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ultrafilters in Sw \ w with certain inaccessibility properties (cf [4]). The
existence of weak p-points in the former space was obtained by Kunen in [8]
by a different approach that does not require Martin’s Axiom. Lel us note,
however, that ultrafilters with Kunen’s property may not exist.

Suppose that F is an ultrafilter in B with Kunen’s property. Choose a
partition (an)new € B\F and consider the family 7 of subsets of w given

by
P:{Ngw: ZaneF}.
neEN
Clearly P is a nonprincipal ultrafilter on w.

Actually, P is a p-point in fw \ w, that is, every Gy sel containing P
is a neighbourhood of P. To check this take a partition (N,,) of w such
that no Ny, is in 7. Putting, for every &, by = 3 {an : 1 € Ny, n 2 k}
we find that byy's are as in the definition of Kunen’s property. Thus there
is d € F such that, for every m, d - bypp = 0 if & is large enough. Let
M=1{n¢cw:d a, # 0} Such & set M belongs to P and iz almost
disjoint from every N,,. The property of P we have checked is one of the
combinatorial characterizations of p-pointedness. Since the existence of a
p-point is not provable in ZFC (see Shelah [12], VI.4.4.8, f, [5]), neither i
the existence of ultrafilters with Kunen's property.

Now we describe a construction of a certain filter with Kunen’s properky;
the essential part of our construction is based on the following simple trick.
Consider a sequence {ay, )ne, of nonzero elements of B. Let A be a complele
subalgebra of B containing a,’s. It is easy to see that the family

(=) F={scA: lim Ma, - 2)/A(an} = 0}
is a filter in A. Moreover, F is nonprincipal whenever Pon Man) < oo,
LeMMA 2.1. Buery filter F C A defined by (%) has Kunen's property.

Proof. Let F be built from the sequence (Gn)new. Take a double se-
quence (b,,p) from A with the properties {i)-(iii). For any function ¢ & w®
we put b(p) = Y onew Pmo(m). We have to find a function w such that
~b(p) e F.

For every e > 0 there is ¢ € w* such that Man < 0(g)) < eXlay,) for
every 7. Indeed, given m € w, —bimp € F 50 limy_or A, bna )/ A{ag) = 0.
Hence there it N € w such that Man, - ba)/May) < €271 for every
n > N. There is p(m) € w such that Aa, “bmptmy) [ Man) € £27m1 for
n < N. For ¢ so defined we have '

A(a"ﬂ ) b(@)) < Z ’\(a'n ' bmy:(m))

AMan) A(am) ;S &,

mew
as required.
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Let . be a function having the above property with respect to e = 1/7,
p = 1. Take a function ¢ that eventually dominates every w,, say @(m) >
wp(m) for m 2 r. Now we have

)‘(“u ' b(tp)) -~ A(a’” ) Zmu:'r' b1nc,9(1n)) + /\(a"’" ) Zmz'r' bm&p,.(m))
Alan) - Aan) Alan)

for all v and n sufficiently large. Hence limyoo Alan - b())/Alan) = 0, so
=b{p) € F. The proof is complete.

<2/r,

We shall use the following combinatorial lemma.

Lemma 2.2, There exists o farnily (Ia)acw, of functions such t!lmt ey-
ery [ maps w inio the family of finite subsets of « and the following are
sabisfled for every oo

(a) Ia(n) © In(n+ 1) for all n;

(b) Uﬂ&:w T (n) = o ‘

(¢) if B < « then there is m such that I'o(n) N 8 = [s(n) for every
n > M.

Proof We put Iy(n) = § and proceed by induction. It is clear that,
having defined [, we may put Iagi(n) = Ie(n) U {a}.

Now take a limit ordinal 4 < wy and suppose that I'y satisfy (a)-(c) for
every o < . Tep (vp)pew be a fixed increasing sequence that is cofinal in ~.
We choose for every k a natural number ry, 2 k so that Iy, (n)Noy = Ia, (1)
whenever n > ry, and i < k. We shall check that I, given by

Iyn) = U{Fak(ﬂ) iy < n}

has the desired properties.

It is clear that I'y(n) is a finite subset of v and (a) holds. If £ &  then
there is k such that cv, > £ and so & & Iy, (m) for some m. Then £ € I'y(n)
provided n » max{m,rs}. This shows that I, satisfies (b).

To check (c) we first note that Iy(n) M ey = Iy, (n) for every n 2 ri.
Indeed, Iy(n) N ey is the union of the sets [, (:n) M o, wl*}ere ™ S
Itk » 4 then I, (n) Moy = Ty (n) by our choies of ry. If & < 4 then
U () M vy = Dy () @ Dy (1), since n 2 7y, .

Now we prove that {¢) holds for Iy, Take any o < v and o > As
we have checked, I (n) M ai = Ty, (n) for n sn,lfﬁcien.yly large; on the O‘L;ller
hand, Iy, (n) N @ = Iy(n) eventually holds by the inductive agsumption.
This gives [%(n) N = [a(n), and the proof is complete.

Tor a given I € w, we denote by B(Z) the complete subalgebra of B
consisting of all elements depending on I, i.e : .

B(I) = {X : X € B(2?), X ~ I},
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PROPOSITION 2.3. There exists o filter F in B with Kunen’s property and
such that for every countable subset I of wy there is B € B(2%') depending
onwy \ I with \(B)=1/2 and B€F.

Proof Write wy as the union of a pairwise disjoint family of infinite
countable sets (In)y<w, and put, for every o < wy, Jo = U/Mu Ty Tet B,
be a filter in B(J,,) defined as in () for a sequence (ay ), & B(fe) (which
is assumed to satisly Y, A(aZ) < o).

We define an increasing family (H,)o<mcw,, where H, is a filter in the
algebra B(J,), as follows. For every o < wy and every n we put

¢ &
= [ &,

Eelain)

where [,’s are functions as in Lemma 2.2. It ig clear that ¢i's form a se-

quence of nonzero elements of the algebra B(J,). We let H,, be the filter

defined as in (*), but with respect to ¢2’s, i.e.

(%) Ho={z € B(J.): lim Ale} - 2)/A(e) =0}

Then H,, is a nonprincipal filter with Kunen’s property (by Lemina 2.1).
We check that Hp C H, whenever § < a. Take z € Hy; since Ip(n) N
B = I's(n) for n large enough we have

A(m-cﬁ)m)\(w- H ai):)\(w- H aﬁ,)/\( H aﬁ‘),

EETw(n) £cly(n) Eele(n)\@

since the factors of the latter product are stochastically independent of those
from the former. Accordingly,

Aled) = )\( H ai) = A( H afl))\( H aﬁ)
£ela(n) gels(n) el (n)\G
This gives '
Az-cg) Azl
AleR) Ach)
so the inclusion in question is verified.
An analogous argument shows that Fy € H,, for 4 < a.
Finally, we put
F= | H,.

Qeary

Being the increasing union of an uncountable family of filters with Kunen’s

property, F' is a filter with Kunen'’s property. The rést follows from the fact
that F contains every F,. |

— 1,
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3. A pathological functional. Let F € B be a filter as in Proposition

2.3. We denote by F the closed subset associated with F, i.e.
F={pe&:FLp}.

The formula z(g) = u(F) defines a continuous functional on M(S); in
fact, z € C(8)" \ C'(§) since F is not open in §. We shall check that z has
the property as in part (¢) of Theorem 1, that is, for every countable family
of measures M © M(8) there exists a function from C'(S) that agrees with
zon M.

Lumma 3.1, Let u & M](S) be o measure singular with respect to A and
such that p(FY = 0. Then s disjoint from the support of j, i.e. p vanishes
on some neighbourhood of F.

Proof. Since p(F) = 0 and g is outer-regular we can tnd open neigh-
bowrhoods of F of arbitrarily small measure . If we consider p as a finitely
additive messure on B this means that for every m € w there is &y, € F with
pildyn) < 1/(m+1). We put amo = —dn. By singularity, for every m there is
B SEQUONLCE 0 22 Gt 2 - -« With p(ami) 2 1-2/(m+1) and AMaqr) < 1/k.

Now, as F has Kunen's property, there is d € ¥ such that for every m
there is k& with d « Gmg == 0. This means p(d) < 2/(m + 1) for every m, so
p(d) =0, and we are done.

LEMMA 3.9, If (dhn Jnew © MT(S) is a sequence of measures that vanishes
on F then there exists g € C(S) such that g = 1 on F' and pa(g) = 0 for
atl

Proof. For every n, write fin = pl + p2, where gl is absolutely contin-
wous with respect to A and u2 is singular.

Applying the lemma above to the measure p = S, 27" ud, we infer that
there is d € F such that p2(d) = 0 for all n. Every measure pt, when
considerad as a measure on B(21), is given by uh(B) = [ @n dA, where ¢n
is the Radon-Nikodym derivative. Since every @, is A-almost everywhere
equal to a function depending on a countable set of coordinates, we may
assume that all ¢,’s depend on a countable set T & wy. Moreover, we may
take T o that there is D € B(2¥) with D ~ I and D = d. o

Now we make use of another property of F—there is B € B(2«+) such
that B ~wy \ 1, B € F and A(B) = 1/2. Take g € C'(S) to be the function
corresponding to x(B 1 D) = x(D\ B) € L*()) (here x(+) stands for a
characteristic function). We check f._l}g.t‘ g has the required properties.

Indeed, F' € V(B?D) \ V(D\ B) so g = 1 on F. Since g vanishes
outside V(d), u2(g) = 0 for every n. Moreover,

W)= [ x(BIDYondr~ [ x(BX(D)endA "
= (A(B) = A(B) [ x(D)pndr=0, -
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since B is independent of D and ,,. Therefore u,(g) = 0 and the proof is
complete.

Levma 3.3, The Banach space L™(X), where A is the usual product
measure on 2!, is not realcompact.

Proof The functional z described at the beginning of thig section wit-
nesses non-realcompactness. Indeed, given a sequence (u,) © M*(9), we
can write pn, = pl + g2, where pl(F) = 0. By Lemma 3.2 there exists
9 € O(9) such that 3 (g) = 0 and g = 1 on F. Then z{p,) = p2(F) = pu.(g)
for every n. Therefore L>(}) is not realcompact by Theorem 1(c).

'THEOREM 3. If p is any finite measure then the Banach space L™®{u) is
realcompact if and only if A\ is separable.

Proof. As we mentioned in Section 1, if ¢ is a separable measure then
L>(u) is weak™ separable and hence realcompact.

By the Maharam structure theorem (see e.g. [6], Theorem 3.9), the Ba-
nach space L*(u}, where u is a nonseparable measure, contains a subspace
isometric to L>(A) (as above, A stands for the usual measure on 2“1). Now
the assertion follows from Lemma 3.3 and the fact that realcompactness is
preserved when we pass to closed subspaces (see e.g. Edgar [3]).

4. Another functional. The space C(K)** for K compact has a rather
complicated description (see [11], 27.2.2)~every functional from C(K)**
can be represented by a family of Borel functions on K. Of all elements of
C(K)**, those which are relatively easy to handle are given by the formula
2(p) = u(p), where ¢ is a bounded real-valued function which is wniver-
sally measurable (that is, measurable with respect to every Radon measure
on K.

It seems that all known examples of functionals from C'(K)**\ C(K) that
are weak” continuous on weak" separable subspaces of C(K)* are given by
universally measurable functions (see 2-4-4 of [14] and [13]). Using a flter
with Kunen’s property, in this section we describe a functional from the
realcompactification of C(5) of a different nature. We follow the notation of
the previous sections. In particular, F is a filter in B as in Proposition 2.3
and F'C Sisgivenby F={pe S:F Cp}.

Let C(wq) denote the family of cocountable subsets of wy. For any set
B C wi we let 0(C) be the closed set in S given by

8(C)=({V(B): BeF, B~C}.

We say that a measure yp € M™T(5) is close to F if there is C € C(wy)
such that u(6(C)) = pu(S). Further, i is far from F'if u(8(C)) = 0 for every
Ce C(UJI).

icm
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LevMa 4.1, Every measure p € MY(S) can be written as g == fio + pr
where jio 18 close to F' and pg 8 far from B
Proof It is easy to see that there is Cy € C(wi) with
1(8(Co)) = sup{pu(8(C)) : ¢ € Clwi)}.
We define g, to be the restriction of i to the set {Co) ang‘l e o= - ;,nc.this
gives the required decomposition. Indeed, if p(6(C) > 0 for some ¢ & Clwi}
thon w(B(Ch)) = p(B(C N Co)) 2 1(0(C)), so u((C)\ #{(7y)) = 0, and thus

from F and let (v} G M{_*’ES) be a sequence of measures that are close ?a F.
Then there is o function g € C(8) such that ua(g) = 0 and vu(g) = 1 for
every n.

Proof (sketch). For every n choose Cy, € C(wy) such that v (8(Cn)) ==

1 O =, Ch.

VT]{(‘;I)oiniep;liocecdqg innthe proofs gf Lemmas 3.1 and 3.2 but instead of
B consider the subalgebra B(C) = {B : B € B(2*), B ~'C}. Thus we can
find a function g € C(8) such that g = 1 on F and pn(g) = 0 for every n.
Again g is the element of C(8) corresponding to x(Br D)~ x(D\ B). The
point is that now B and D are Borel sets depending on. C. It follows that
g=1on 8C), 5o v.(g) = 1 for every n.

We define a functional on C(8)* by the formulas w(p) = pe(S), where
pe M), and w(p) = w(p™) — w(p™), where u € M(8) and pt,u~ €
M*(S).

PROPOSITION 4.3. The functional w is weak® continuous on weak™ sep-
arable subspaces of C(8)*. Moreover, w is not given by a single universally
measurable function. '

Proof. The first part follows from Lemina 4.2, Lemnma 4.1 and Theo-
rern 1. - "
Suppose that w(w) = p(p) for every p € M™(8), where p is a umversglly
measurable function on S. Let ¢ be the set of all p € § such that the Dirac
measure &, is close to F. | . |

Let K C S be a compact set with A(K) > 0. Then there is o € B such
that V(a) € K. Choose a set A € B(2*) with a = A, A depending on a
countable set I C wy. Sinee the family

(e} U{BeF:Br~uw\l}
has the finite intersection property, it can be extended to an wltrafilter p € S.
Tt follows that p € V{a) N Q. Thus we have proved that @ is the set of full
outer measure A.

LEMMA 4.2. Let () G M (S) be o sequence of measures that are far
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Now o(p) = w(fp) = 1 for every p € @ so ¢ = 1 M-almost everywhere.
On the other hand, w({A) = 0, since X is far from F, a contradiction.
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