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Real interpolation for families of Banach spaces
by

MARIA J. CARRO (Barcelona)

Abstract. We develop a new method of real interpolation for infinite families of
Banadl spaced that covers the methods of Lions—Peetre, Sparr for N spaces, Ferndndez
for 2 spaces and the recent method of Cobos—Peetre.

1. Introduction. The notion of interpolation family was introduced
by the St. Louis group in [CCRSW]. In that paper, the theory of complex
interpolation for families iz developed.

In the setting of real interpolation the Peetre K- and J-functionals are
constructed, in the case of a compatible couple (Ag, A1), by introducing a
positive weight factor ¢ in the norms of the sum space 4g + 4; and inter-
section apace A N Aq respectively. More precisely, K (%, a) = inf{|aol|a, +
tllar)|a; ¢ o = ap + a1} and J(t,6) = max{|lal| 4., t[lafa,}-

The real method for a compatible couple developed by Lions and Peetre
([LP]) has had many generalizations in the last decades. Namely, the Sparr
method for a finite collection of spaces (see [S]), the Fernandez method for
2V spaces (see [F]) and the recent method of Cobos-Peetre for N spaces
associated with the vertices of a polygon in R? (see [CP]).

In all of them, both the K- and J-functionals are defined mtroducmg
a positive weight factor W in the norms of the sum space E; 1 A; and

intersection space [Ji.; 4;. In general,

==l

N N
Kye(,0) = inf { Y wylagla i Y =al,
j=1 i=1

where W = (wq,...,wn) & R¥, w; > 0 for every j =1,..., N and, for each
method M (Lions-Peectre, Sparr, Fernandez, Cobos—Peetre) the We1ght W
is chosen in a different way
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2 M. J, Carro

To define the interpolation spaces with the K-functional, they make &

vary in a certain set and impose the condition K (w,a)/C(&) € E where E
is a quasi-Banach space and C'(w) is a measurable function such that
min;—1

(1) —%ﬁ—(—meE

In the above mentioned methods B = L¥(du(w)) and (%) satisfies

N
logC(w) = ZG:} logw;, 0;€R.
i=1
However, the choice of a different C'(W) gives rise, for example, to the func-
tion parameter method due to Gustavsson and Kalugina (see [GU]) and
the choice of different spaces E such as Orlicz spaces has been studied by
Mastyio (see [M]).
In this paper, we want to study a method of real interpolation for families
of Banach spaces which can be related to the one described by the St. Louis
group; that is, given an interpolation family A, in the sense of [CCRSW],

we want to define, for each z9 € D = {|z| < 1}, two interpolation functors
F and G such that

G(A) C Alz0] C F(A),
with Afzg] the interpolation space defined with the complex method.

The paper will be developed as follows. In Section 2 we define the K- and
J-functionals for families in the same context of weight factors and study
their first properties. In Section 3 we introduce the interpolation spaces with
the K-method, give some examples and prove some interpolation theorems.
Section 4 is dedicated to the interpolation spaces constructed with the J-
method, and in Section § we study the relationship between these spaces and
the one constructed with the complex method (see [CCRSW]). Finally, we
end up with an appendix related to some other interpolation spaces which
can be defined by a slight modification of the ones we describe in the paper.

Throughout this paper, 3" will indicate a finite sum and the symbot

f ~ g will be used to indicate the existence of two positive constants a, b
such that af() < g() < bF(.).

I would like to express my deepest gratitude to A. Bernal, J. Cerd and
J. Soria for their help and numerous comments on an earlier draft. I want to
specially thank J. Soria who showed me how to improve some of the results
of Section 2.

I'am also very grateful to Prof. J. Peetre who gave me useful advice about

the way this pa.per should be written and informed me about example VI
in 3.8.
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2. K- and J-functionals for families. Let us first recall what an
interpolation family is. Let D denote the unit disc {z € C : |z| < 1} and
I' its boundary. We say that A = {A(y) : v € I A, U} is a complex
interpolation family (i.£.) on I" with I as the containing Banach space and
A ag the log-intersection space, in the sense of [CCRSW], if:

(a) the complex Banach spaces A(7) are continuously embedded in I
(It {4 will be the norm on A(v) and | - ||y the norm on /),

() for every a € nqer A("), ' 3 v — |la|| is a measurable function on
r,

(¢) A= {a € Aly) forae. v € I' : flogt|alydy < oo}, and there
exists a measurable function P on I' such that

f logt P(y)dy < oo and ally < P(7)|lall, for ae. v (a € A).
r

Observe that in the definition of the log-intersection space A we require
a € A(7) for almost every v € I" and not for every v € I'. This change of the
usual definition (see [CCRSW]) will be specially useful in §4, Theorem 4.5.
Let :

L= {o:I'— R« measurable, loger € L* (I},
and let
G= {bzzr bix B b; €A and E; pairwise disjoint measurable sets in 1"},
3

where x , denotes the characteristic function of E. We shall write a() € G

whenever a(-) is a Bochner integrable function in U such that a(y) € A{y)
for a.e. v € I' and such that a(-) can be a.e. approximated in the A(:)-norm
by functions a,(-) belonging to G.

DrriNiTION 2.1, Let e € L. .
(a) For each a € U, we define the K-functional with respect to the i.f. A
by
K(a,a)=int{ [ aln)la()l, dv},
r

where the Inflmum extends over all representations a = [ a(y) dy (conver-

gence in U), with a-) €
(b) For each a € A, we also define the J-functional by

(e, a) = esssup(a(7)llall) -
~yel :

Remark 2.2. (1) Given a € G, let
| Bla)={v € I's fa(m)|ly # 0}



4 M. J. Carro

Then, since a,, (7) "= a(y) for a.e. v € I" {in the A(v)-norm), we can always
assume (considering, if necessary, al, = an) (@) llan (1) < Clatls }) that,
for every constant C' > 1, ||an(fy)Hq, < C’Ha( H'v for a.e. v € Efa). And,
if [|a{()||. € L' () withk & € £, we can assume that there exists a constant
C’ » 0 such that a('y)]\an(fy)lh < C' for every v € I'\ E{a). This will allow
us to assert that, if a € § is such that ||a(-)|. € L'(a) and a,, € G converges
to @, then the sequence aay, is dominated up to a multiplicative constant by
aa+ 1. That is, we can apply dominated convergence to the sequence aa,,
whenever needed.
(2) Obviously, J (&, a) can be 4o0.

Before stating the first elementary properties of these functionals we
need the following definitions.

DEFINITION 2.3. Let A = {A(y) : v € I3 AU} and B = {B(7) : v ¢
I';B,V} be two i.f. An operator T : A — B is said to be an interpolation
operator if T': U — Vis bounded, T': A — ), . B(7) and || T a(y)— p(y) <
M (v) with M € L.

We shall also use the following theorem due to Szegd (see [G]):

THROREM 2.4. Let w € L. Then
nf{ [ le(rw)IP(v) dy i o € B=(D), p(z) =1}
r

—exp [ log(w(x))Pa() d,
r
where P, is the Poisson kernel at z € D and H®(D) is the space of bounded
analytic functions on D.

When not specified, we will always be dealing with the interpolation
family 4 = {A(y):ye I'; 4, U}
Given a € A, we define

valz) =exp [ log(lally)Pu(v) d,
r
and, for e € L,

alz)=exp [ loga(y)P(y)dy.
r
PROPOSITION 2.5. (1)} The K- and J-functionals are seminorms.
(2) For every a e U, |la|ly < K(P,a) where P is the function associated
with the i.f. in (c). Therefore, if K(P,a) = 0, we get a = 0 (We ghall see
that this is not true in general for o # P).

(3) For every a € A and every z € D, K{a,a) < wa(z)a(z).

icm
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(4) For every a € A, K(o,a) < J(e,a).

(5) If T is an interpolation operator and 17, < M{x) € £ for ae.
vy &I, then

K(o,Ta) < K(aM,a), acld,
J(a,Te) < J(aM,a), acA.
Proof Properties (1) and (4) are trivial.

(2) o= [ra(y)dy, then llall < [ la(y)lludy < fp P
Thelefore, ey < K( a).

(3) This is a consequence of Szegd’s Theorem. We write ¢ = « frel)
X Py (%) dy with p € H>(D) such that ©(z) = 1. Then

K(a,a) Sinf{ S ellalletPm)dy:o(z) =1, ¢ €H°°}
I

Sexp [ log(a(y)llally) Px(7) dy = pa(2)a(z).
I

(5) Let a = [.a(y

Ma(n) - dv-

)dy. Then Ta = f.T(a(y)}) dvy. Hence,

J eIT@amdr < an)ME)lat)lagm dr-

r r

Taking the infimum over all the representations of a we are done. The result
for J is proved in the same way. w

Ko, Ta) <

The following definitions will be very useful in the sequel.

DEFINITION 2.6. Let N be a countable set. A sequence (ay Jnen of mea-
surable functions in I" is said to be a base sequence (b.s.) if it satisfies

(i) there exists ng € N such that ap,(y) =1 for ae. v € I
(ii} there exists a partition {I'1,..., )y} of I' such that o, is constant
in each I';, and
(i) 3,y (ess inf(an (7)) /an(2))P < oo for every z € D, and every p > 0.

If we have the following condition, stronger than (iii):
(iv) for every z € D, there exists a compact set K C D so that

Z ( 1nf an(€)/on(2))f < oo for every p> 0,
nEN

then we say that (an)n is a special base sequence (s.b.s.).

ExXAMPLE 2.7. (I) Let {I'1,I%} be a partition of I', and consider, for
n € &, :

a1 ifyely,
an(7) = { 2" ifyely.
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Then (an)n is a s.b.s. Since ay,(z) = 27172« (where |E|, denotes the har-
monic measure of E C I" at z € D), we can easily prove that property (iv)
holds.

(1L} Let {Ig, I1, ..., I'm} be a partition of I', consider @ = (ny,...,n,) €
Z™ and

1 if v e Iy,
o (7) = {2'”-‘!’ fyely, j=1,....,m.

Then one can easily check that (as)nezn is a b.s, for m > 1.

(111} Let {Io, I, T2, I's} be a partition of I', consider ® = (n, k) € 72
and

1 ifvely,
_jar iftvely,
aq(y) = ok fvyely,

2m2k ify ey,
Then (o5)neze is a 8.b.s. This example can be generalized to a partition of
I into 2V subsets and @ € ZV.

(IV) By choosing a; and b; properly, we can construct a b.s. defined for
n, k€ Zby

a'n,k(')’) = {(aj)n(bj)k e Fj’ F=1,... :m}'
PROPOSITION 2.8, Let M : I' — R be a measurable function in L.
Then, for every a € A,
K(M,0) < ini(Cala) inf M(2)),
where the infimum is taken over oll sets 2 C D and Cr(a) = sup,cq walo).
If =D, then
K{M,a) < (essinf M (v))Cr(a),
yel

with C'r(a) = esssup,cp [all, = J(1,a).

- Proof. By condition (3) of Proposition 2.5, K(M,¢) < M(2)g.(2), for
every z € D. Therefore, for a fixed 2 C D we get

K(M,a) < inf (M(2)ga(2)) < SUp pa(2) inf M(z) = O(a) inf M(z). w
Remark 2.9. By Proposition 2.8, if we set (B(v), | - 3wy} = (Al7),
BN - {laem) with 8 € L, we get
K(MB,a;A) = K(M,0;B) < essinf M(y)J(1,a; B)
. =essinf M(y)J(8, a; A);
that is, for every a, [3 € £ and every a & A,

-K(a,f:a) < essinf %%J(ﬁ, a).

icm

Real interpolation 7

In the case of a compatible pair (4g, A1), if the i.f. 4 is defined by A(v) = Ao
for every v € Iy and A(y) = 4; for every 4 € I, where {Ih, N} is a
partition of I', and taking, for ¢,5 € R,

_J1 ifyely,
a(’)f)“{t ifyei,

we get the well-known formula (see [BL])

K(t,a) < min (1, z) J(s,a),

_J1 ifryerly,
'B(W)—{s fyern,

for every a € 4g N Ay,

3. Interpolation spaces with the K-method

DEFINITION 3.1. Let § C L and 0 < p < oo. Let A = {A(v): v €
I'; A,U} be an i.f. The space [A]fn’p consists of all a & I{ for which

(K

€ P(5),
O!(ZD) )Q:ES
endowed with the norm
~ ( K{a,a)\* 1e
laliasg, , = (Z (‘"’“—) :
a-® aés CE(ZO)

Our next goal is to choose § in such a way that the spaces constructed are

first intermediate, and then interpolation spaces (with or without convexity}.

Lemma 3.2. If P € S, then {A]fn,p s continuously embedded in the con-

taining space U with norm less than or equal to P(zy).

Proof. By (2) of Proposition 2.5, {la|y < K(P,a) < P(z.g)Hc;-,]h_,ﬂf‘J ]

N
From now on, we will always assume that P € § or at least that there
exist K &€ § and C' > 0 such that P(vy) < C’K(fy) for a.e. ye I'.

PROPOSITION 3.3. A is contained in [A]S . for every S.
Proof. We only have to use property (3) of Proposition 2.5 to obtain

K{x,a)
sup
ags (20)
Now if p # oc we have the following result.

ProrosiTioN 3.4. (a) If, for every a € A, J(1,4) < co and

< pa(2p) <00. m

‘ ess infep a(fy))-p'
2 gsiber o))" o o,
@ 2 (=) <=
then A is contained in [A]2 .
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(b) If J(1,a) = oo for some a € A, then A is contained in [A]7, , under
the stronger condition that there exists a compact set K in D such that

) )3 (R} < o,

Remark 3.5. (i) We want to point out that condition (2) is analogous
to condition (1) in the introduction.

(ii) Condition (2) implies that ess inf ae(7y) # 0 only for a countable subset
of § and condition (3) implies that S is a countable set.

Proof of Proposition 3.4. (a) By 2.8, for every o € A, K{a,0) €
J(1,a) ess inf cx(-y} and therefore

s, =(L (7))

s

(b} If J(1,a) = oo for some a € A, we have to use 2.8 with 2 = K (K
the compact set given in the hypothesis) and condition (3). m

THEOREM 3.6. Let A and B be two i.f. and let T : A — B be an inter-
polation operator with norm ||T| ai—py) < M(7) € L.

(a) If || Mo < oo, then for every S C' L,
T : [A]fg,p —* [B]f(),p

is bounded with norm less than or equal to | M| .

(b) fMS = {Ma:0a € S} CS then
T: A, — Bl ,
is bounded with norm less than or equal to M (=) (that is, with converily).

Proof. The proof of both parts is obvious by property (5) of Proposi-
tion 2.5, m

PROPOSITION 3.7. Let A = (Ao, 41) be the i.f. defined by A(v) = A; for
€Ty, 7 =01 with {Ih, N} a partition of I'. Let o« € £ be such that
a; = essinf e, a(v) # 0 for § = 0,1. Then, for every a € Ay N Ay,

K(a,a) = inf{aplloo/|a, + crl|o1]a; 1 @ = ao + a1} = apK (o1 fog, a),

where the last K-functional is the classical one.

icm
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Proof Let a = ap + a; € 4g N Ay with aj € A; and consider a(vy) =
oo () + a1p1(y) where ¢, are arbitrary measurable functions such that

(%) suppy; C Iy and [ p;(y)dy=1.
Ty

Then fpa(y)dy = a and

K(a,a) < inf{z f [ lla; ()i ()| dy : 5 satisfies (*)}
j=0 F_-,'
< llaoll 4000 + flas |4y 01 -

Conversely, given £ > 0, if a = f pa(y) dy with

fa nwmw+f

el dy < Ko, 0) + ¢,

then deﬁmng a; = [ r, a(y)dy € A; we get o = ag +a; and

aolfanHAo +oaifjela,
< me{ f

Taking ;(v)

i (7) dy - f“’f(“/)d’le} [ Hal¥) laey dv-

T I

= HCL(”/)||A(~,)><P Wr, latllaey dv)™*
term is less than or equal to

ija Ve Mamdv="[ eMlia(¥)am dy < Ko a) + ¢,
i=0 Iy r

we see that the last

and, thus, letting £ go to zero and taking the ap.propriate infimum we get
the result. w

ExampLE 3.8, (1) If A = (4, Ay) is the i.f. corresponding to a partition
{Io, 1} of I', then P(v) <1 for a.e. v € I'. In this case, we can take
for § the b.s. of Example 2.7(I) and we get [A]2 . (Ao, 1) |1y, .0 SiNCE,
by Proposition 3.7, K(ay,a) = K(2%,a) with K( &) the classical K-
functional and a &€ Ag N Ay.

We shall assume in the next examples (II), (I1I) and (IV) that {1, A; is
dense in every A;. Then one can easily see that the following equivalences
hold.

(11) If A = (Ag,A1,...,Ay), that is, A(y) = A; for vy € I}, § =
0,%,....,N, {Io,]0,...,Iw} a partition of I', and we take for S the b.s.
of Example 2.7(11), then [A]zw (Ao, A1, -, AN) 1y =1, N p (SPAIT
K-space, see [S]). :
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(IIT) 1f A = (Ao, A1, Az, 43), that is, A(y) = A; when v € I, j
0,...,3, and we take for § the s.b.s. of Example 2.7(IIT), then [A] op
(Ao,Al,Ag,Ag)(ghgz)’p;K where 6y = |I7 U Fg!zO and & = If‘g L FglzD
(Fernéndez K-space, see [F|).

i

(TV)If A = (A;,..., Ay) and we take S to be the b.s. of Example 2.7(TV)
with a; = 2% and b = 2% and (w;,y;) the vertices of a polygon in
the affine plane R2, then [A}Zup = (A1,.-, AN)(a,3),px Where (o, B) =
2j=1 [T5]2 (25, y;) (Cobos—Peetre interpolation spaces, see [CP]).

(V) The following example will be very close to those defined by Cwikel-
Janson in [CJ] and denoted by Ups(A, Z). We shall use their notation in this
example.

Assume that A(vy) € U (bounded family on I'}, that is, P(y) = 1 for
a.e. v € I'. Let P be a countable subset of the set of partiticns of I" and let
I'={n,n,...,I},} € P. We define {instead of the space Supyer, A(7) as
defined in [CJ]) the space

Ar(é)z{aEU:Kj(a)<oo}, sel;, j=01,...,n

where K;(a) = inf{frj lle{y) Hq,dfy ta = ff v)dv}. Consider the finite
family {AT(80), AT(8,),..., AT(8,)} with 8; € I';, and define

Un (A T) = (AF(&}) AT(81), . AT (80t

where M denotes the Sparr method with index p and § = (||, . ., [T z)
for a fixed point zp € D. Let S = {Sz: I € P} where, if I' = {FD,Fl,...

s I}, S5 = {ar}rezn is the b.s. of Example 2.7(I1). Finally, set Ups(4) =
nfeP UM(A, I"). Then we have:

PROPOSITION. The space Unr(A4) coincides with [A]3, .

Proof. We shall prove the following two facts:

C npep[ Jafp =415, and

(i) 41T = Une(4, D).

Proof of (i). Since S5 C 5, we have (see Remark 3.11) [A]ZDP
[A]fn,p and, therefore, we can deduce one of the embeddings of part (i).

Let now & € Nz.p [A]zc, - Then there exists a constant C' such that for
every T'eP, |af lsm < C.Let § = {an}, and consider the set &y =

20,0

{ao,al,.. S ON T Assume that oy € S7 . Then, #f I = ([ Iy, for every

icm
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j=0,...,N we have o; € Sy and therefore
N
K(aj,a})p) i/p
—— < |le s < C.
(;D( ;(z0) Il g2z, <
Letting N go to infinity, we get flellas ,<C.
zZg,

Proof of (ii). In order to be precise, we shall write Kg for the Sparr
K-functional. Let a € Upr(A,T). Then a = 337 a; with a; € AT(5;) and

where, f 71 = (ni, ey Tem),
m
KS(aﬁﬂa) = inf{Ha’OHAF(ﬁo) + Zgnj ”a'jHAF(ﬁj)}
i=1

m
= inf {Ko(ag) + ZZ”in(aj)} :
J=1
But, as in Example 3.8(I), one can easily prove that Kg(am, @) ~ K{aa,a)
and we have the equivalence of both spaces. m

Using the argument given in Theorem 2.21 of [CJ] we can prove the
following;:

THEOREM. Let A and B be two i.f. Let T be an interpolation operator
such that | T a¢ymmiy) < N(Y) for a.e. v € I', with N(-) € L®(I") and
Riemann imegmble The'n.

T:[4]2 — (B

Z0 20,0 !

with norm less than or equal to N(zg).

Proof. We only need to observe that 7' : Af(rSj) — Bf(c?j) with norm
less than or equal to N; = esssup.,. Ty N ('y) and apply the same kind of
proof ag in [CJ]. = -

(VI) Let A = {A(v) : v € I'} be an if with A(y) = L'(w(y,")) and
w(7, ) a family of weights on a measure space M. Then

K(a,f)=inf{ [ eFO e dr: [ Fo) =1}
r

I

= inf { ,\{ Ff eIF (), ) dvde - [ Flye)dy = f(z) |

I
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- flf(m)\(inf{ [ aOletrewtnaren: [ ol

r

d'y—l})d
f |F(2)] essinf(e(r)u(y =) d,

and hence, 1f we define

w(8, z) = Z ess infyer (al{y)w(y, z))

a(zo)

1

oS

we can easily see that, for every S and every zo € D, [A]5 | = L (w(S, 20)).

Remark 3.9. For a general family A and a general S, we cannot assure
that [A}za » 15 & Banach space (1 < p < oo}, However, if, for every o € §,
there exists a constant € > 0 such that Ply) € Chafy) for ae. v € I',
then standard arguments show the completeness of these spaces. This is the
case for all the given examples. Let us show that:

THEOREM 3.10. If for every ao € 8, there exists a constant C, > 0 such
that P(y) < Cuoely) for a.e. v € I then, for 1 < p < oo, the spaces [A]S "
are Bonach spaces.

Proof. Let (an)n be such that 3 ||an£|[A]st , < 00, and so the series
Y 0n converges in I{ to an element a € U, For S = {an }m, we have

Klam,an)\* v
4 _— .
) g(g(amw) )) <
Given € > 0, let ay, () be such that a, = [, anm(v) dy and
f (V)| an,m (7) |y dy £ (14 &) K (o, @) -
Then

IS amntn], 1< [ SP0lenntilhen
< Con ) f a7y

and hence, there exists a function ¢™(-) € L) such that 2 in| < Gngm =
o™ in the L*(U)-norm and -

axzan=z fanym(fy
1 n I

Man,m (Y| dv < 00,

Jdy= [ a™(y)dy
I
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Finally, by (4),

lalls, ( ( al‘(l:)(v)llvd»y)li)llp

<> (Z (fl“ cn (1) |@n,m (V) Il d7>p> 1/p

T ™ am(zo)
i/p
(1+e¢ Klom,an) )’
; (Z ( o (20) o0
and, hence, we get a € [4]2  and lalipas I D ”anH[A]EO,,, < oo m

Remark 3.11. Observe that:
(i) If § C 8’ then [ALL2 p 18 embedded in [A]S .
(ii) Moreover, if § = S1US; then [A]S p 18 equivalent to the intersection
space [A]S: N[4S

20,7 Z0.P"

4. Interpolation spaces with the J-method

DEeFINITION 4.1. We define (A)2 | to be the space of all elements a € U

#0,P

such that there exists {u(a)}aes in A satisfying a = Yowes w(a) (in the

U-norm) and
J P E/p
(x( stV
=\ alz)
This space will be endowed with the quasi-seminorm

li,, =2 { (2 (P52 ) )

where the infimum extends over all possible representations of a.

Remark 4.2. If A and § are as in Examples 3.8(T), (IT), (ITT) or (IV),
one can easily check that (A)S , = (41,...,An){,; where M indicates the
corresponding method: Lions-Peetre, Sparr for N spaces, Ferndndez and
Cobos-Peetre respectively. In this case we do not need the condition of
density of the intersection space in every space Ay, for any of the examples.

We now want to study conditions which are necessary for (4)5 , to
be, first, an intermediate and Banach space (when p > 1), and then an
interpolation gpace.

To have the log-intersection space A ¢ontained in (4)3 ,p we shall agsume
that the space generated by

A= {a € A: there existsa € § with-J(a,a) < oo}
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coincides with A. To obtain the embedding of (A)ZD p in U we need the
following result. '

ProrosITION 4.3. Let p > 1 and assume that, for every couniable set
M = {ay}, in S, there exists a compact set K in D and a positive constant
Cur sueh that

5) (z (%))’ <Cy, weD.

Then (A)S . is embedded in U. If p < 1 then the embedding holds without
any extra hypothesz’s on S.

Proof. We prove the result for p > 1. The case p < 1 follows the
same steps except the last inequality where we do not need to use Hdélder's
inequality.

Givene >0, let a= 3, an and M = {e,}» C 5 such that

(Z (%)3 1/p < HG'H(A)fU,p +e.

n

Then, for every (2.}, € D,

ol < 3 el < 3 ese (P sl
- Ve (2 ((’Tj) an( Ml
. op L)
< Zn: Xp (Ff 1 B o )Pzn(*/)d"/)
e ([ Toglan(n)anln)Pun () )
’ r

< 1P, lloo sUP(P(2n)) 3 %S_) |

Let K be & compact set in D satisfying the hypothesis. Then, choosing
zn € K such that an(zn) = sup,cx an(z), we conclude that there exists
¢ > 0 such that

CJom,an) an(#o) J(om, an)
aju < C E L£C E .
ol SUp,ex an(z) = — SUD,ep @n(2)  n(20)

: N P\ 1/p'
o, 1 ‘ i a’n(ZO)
co=o( 2 (sl ) ) e,
< COmillaliay, , +¢)- n

icm
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Remark 4.4. Observe that, in fact, we have proved that Y |lan|lu <
COulall s,

THEOREM 4.5. Let p > 1. Under the hypotheses of Proposition 4.3 the

spaces (A)fu » are Banach spaces.

Proof. Let (au)n C (A}S  such that 2onllenlliays < co. Then, given

e > 0, for every n there exist (@n m)m in A and {ozﬂ m}m in § such that
= 3 Gngm and

L Z(Z(“(“‘”ﬁ“)—))) S0+ s, <

Hence, if we consider the countable set M = {v, ,n : n,m}, we get, by the
previous remark, 3°, 3 |lanmlly < Cur Y, lanll(aye , < oo and thus,
we can define ¢ = 3 m Gn,m in the U-norm. In fact we can write ¢ =

Pon( D aen Ol = EQGM(EH an o) Where, if we set My, = {om m }m and
o« & My, then an o = 0.

Now, since, for a fixed o« € M, 3" J(@,0n,0) < 00 and a,, o € A, we get
J a3 lanalydy €3 I, an) < o0,
I n n

and, therefore, 3, an, o € A(y) for almost every v € Iandlog™ || 32, @0 ol
is in L'(I); that is, 3 an,s € A. Hence, by (6),

lallcas , < (ofgf (_{@mﬁiw_%@))f))%s; (ag (J(ZE—Z;)"")—Y)W
a2, S 2o lonllca

TuroREM 4.6. Let A and B be two i.f. and let T : A - B be an inter-
polation operator with norm ||T|| 4(y)~n(y) € M(y) € L.
(8) If || M]loe < o0 then, for every §C L,
T (4)5,p— (Blap

is bounded with norm less than or equal to ||M [l -
(b) If S € MS then ;

That is, a € (A)m » and fallae

201‘3

T: .(A)zu R (B)xq,p
is bounded with norm less than or equal to M(zg) (that i3, With converily).
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Proof. The proof of both parts is obvious by property (5) of Proposi-
tion 2.5. m

The following remark gives us simple and useful properties of these
spaces.

Remark 4.7. (i) If po < p; then (4)3 , is embedded in (4)5 ..

(ii) If § € S then (A) p is embedded in (A)S

z0,p"
: )Esm) If § = 51 U Sy then (A)z,0 p I8 equivalent to the sum space (A)5! ) "
A)zz .

Since we already know (see [CJ], [F], [CP]) that the K-method and J-
method do not coincide in general, we cannot expect an equivalence theorem
for both methods.

The next theorem gives a necessary condition for (4)2  to be embedded
in [A],_,EI » This result holds in all the known examples for a finite collection

of spaces.

THEOREM 4.8. Let (N,+) be an additive group and let S be the sef
{a, 1 n € N} and assume that, for every n,m, anwm(*) ~ o Yam(-) with
constants independent of n,m. If 3 essinf o, (v)/on(20) < 0o and p 2 1,
then (A)S, , 1 embedded in [A]S ; and if p < 1, the embedding holds if
> (essinf o (v)/an (20))P < 0o.

Proof Let a € (4) . Given £ > 0, take (an)n such that a = ¥ ay,

z0,p°
and
J(ana a'n.) P\
(Zﬂ: (m < HGH(A);?G,,, +e.
Then we get |

Koy, a) < ZK(amam)
{fan(7
nf{ fozﬂ_m

J(amiam) inf{ f an—m(?’)@(’?) dry
r

1A

Mlamllydy: [ oly)dy= 1}
I

'Y)am<7)“amil'y dy f dry = 1}
r

[ ey = 1}

r

IA

IA

07507 SM SM

(am, @) €88 Inf o () -

icm
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Therefore, if p > 1 then

- (5 (555))"

k(3

< C’(Z (Z J(am, am) ess infan_m(ry))i") 1/p

) @n-m(20)
< G’(Z Z ( ozm,am ) ess;if_i?(;’:)m)w

f
<C HCLH(A)EW +e.
If p < 1 we just make the obvieus changes in the second inequality. m

Remark 4.9. An interesting example of a set S satisfying the previous
hypotheses is given by S = {M({-)® : n € Z}. This type of set includes
§ = {2n") : n € Z} and the sets § of Examples 2.7(I)—(IV).

Moreover, if we want to have the usual properties of the spaces [A] o,p a0d
(4)5 ,, namely, to be intermediate Banach spaces with (4)5 Sp C 413
we need essentially that S is a multiplicative group such that

Z a8 mfa( Volz) < o0

o=t

25,p?

COROLLARY 4.10. If (A)S = [A]S , then, for every § C &', (A)5)
embedded in [A]zD o if and only if both spaces are equivalent.

Z0,p

Proof. This is an easy consequence of

(A5, C (A, € (A5, € (A1

Z0,P zo,p°

In the same way, we have

COROLLARY 4.11. If (A)S
Scd.

APPLICATIONS 4.12, Some of the following results are already known in.
the literature, However, we show here how all of them are trivial conse-
quences of Remarks 3.11 and 4.7.

(1) Let {Ip, [} be a partition of I'. Let F;“ with j =0,1and k=1,2
be such that {I'f : k = 1,2} is a partition of I'; for each j. Consider

S = {{an(-)}nez onl7) = {%ﬂ ijfr 2 2}

C (4

zp,p?

then (A)S , C [A]S  for every

P #0.p

and
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1 ifyel}
_ oM iy e [E
SSPMI —_ {anl,ng,na(')}ﬂj EZ : an;,ng,'n@. (’Y) = 271.2 lf ,.Y E Fll

oms if y € I'}
Then, obviously, § € §%P*T and hence

(Ao, A1, As, Ag) (5825 C (Ao + A1, Az + As)sy 0.

and
J,Sparr
(Ao M A1, AN Az)p, 05,0 C (Ao, A1, Az, As) glli'ga;:ga)'p‘
(2) With S as before and
1 if vy € F(i
on  ify el
= {ane{ ) nrez s anp(¥) = § o if y € F('jl
ontk  if y & TP
we get the analogous result for the Ferndndez spaces; that is,

(Ag, A1, As, Aa)K Tt < (Ag + A1, Az + As)g,p

SFernéndez

and

(Ao N A1, A2 N Ag)pp C (Ao, A1, Az, A3)are ™

(3) Relation between Ferndndez and Sparr spaces. Since §Ferminder
S8parT e get,

K3 K ,Ferndnd
(AO,A]"AZ’AS) 91 g:.rerﬂj ¥4 (AD’A'L;A27A3) a ;Tl’l neez

and

J\Ferndndez J,8parr
(AOJ A].:Az) A‘3)(al:5)’;j; d - (-A()) A11 AQ) AS) glpga; B3).p
whenever o = 01 + 03, f = & 403 and 81 + 02+ 83 < 1. In particular, taking
s = aff we get a result proved by Cobos-Peetre in [CP].

We now give an example of an i.f. and a set S such that the space {A4)2

is not embedded in [4]5 -

20,

ExAMPLE 4.13. Let A = {A(y) = 4; : v € I}, = 0,1} be an i.f. with
Ap = L' and A; = L™ Let S be the s.b.s. of Example 2.7(I) and let

' _ 1 ifyely
§ “{“"_(7)‘{?12 ifnferl}'

Assume that {4)5US" ¢ [A]SYS'. Then by Remarks 3.11 and 4.7, we would
have, for p = p(§) = 1/(1 ~ 9), with 8 = |1,
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L'IJ + (A')Zo p (A)ZSQL:IE’ - [A fgl-,l'pS’ == Lp n [ ]zo,'pi

and consequently L? ¢ [A]S’ A

Now, if f € [A]5, and f**(t) = ¢! [} f*(s)ds with f* the non-
increaging rearrangement function, then

= (2 (52 ) - (£ (52))”
m(z( e ) (Zn%f** n2))H/0- 9>) oo,

n

But, if

O <t <,
ft) = {1/\f 4> 1,

one can easily check that the, above series diverges, for say 6 = 3/4. Therefore
L? is not embedded in [A]7

20,p"
5. Relation with the complex method for families. In this section,
we shall use the notation of [CCRSW]. Let us recall that for an 1.f. A, the
St. Louis group defines the function spaces

f
G(AC) ) = {9(z) = Y wiay+ 95 € B=(D), a; € A, lgllgar.ry < o0}

where ||gllgcacy,ry = esssupyer [|9(7) | a¢y), and FA(),I") is the comple-
tion of G(A(-), ") with respect to the norm || - ||g. However, as is shown in
[CCRSW)], one can substitute the above norm by gl = (Jj. |lg(¥)||E dv)*/?
for every p > 1 and the interpclation spaces A{zp} and A[zp] remain un-
changed. In this paper, we shall denote the norm with index p by ||« [|g» and
the corresponding spaces by GP(A(), I') and F?(A(-), ).

In this section, we show that the usual embeddings known for the classical
method;

(Ag, Ar)e C {Ao,x‘h]e C (Ao, A1)e,00
(see [BL]) are now given by
(A)5,1 C Alzo} C [417

20,00

PROPOSITION 5.1, Let zo € D and S C £. Then the following embeddings
hold.

(a} (A)S, | is embedded in Alzo].
(b) Alzp] is embedded in [A]z0 -

Proof, (a) Let a € (A) 1 Then, for every £ > 0, there excist two
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countable sets {an}n C S and {a,}, C A such that a =3, a, and

J(an, an)
PEahe g te.
— Ofn(zo) H ”(A)f(hl

Now, if ¢ € A, then {see [CCRSW])

lallagzo) < exp [ log|laflyPey (7) dy

r
=5 a J(a,a’)
exp [ on(amlaly/a)Pat)in < S,

and'hence
lallago) < llanlap) < lalls , e
™

(b) Let @ € Alzg] and let f € FY(A(), ") be such that f(z) = a.
Since there exists (gn)n in G'(A(-),I") such that g, converges to f, and
we can always approximate each g, by functions in §, we see that f is a
suitable function to compute K(o,a). More precisely, given o € S, write
&(z) = exp [ loga(y)H,(7) dy with H, the Herglotz kernel (see [G]) and
consider fo = &(20)f/& Then a = [, fo(v)P.y(v) dy and

J e fa(Dl Pe(v)dy € Calzo) [ 1F )y dy < Calzo)(£] k-
r r

.Thus, K(a,a) < Co(zp)||f|i#: for every f € F* such that f(z) = a. That

is,
K
sup Kloya)
acs o(20)
and consequently there is a constant C' such that lallas . < Cllallagzg). =
% ,00

< Ollall afe; »

Appendix. (1) We could also define, for ¢ > 1, the interpolation spaces

[A]fa)p:g and (A)fo,p,q ag in 3.1 and 4.1 respectively but with the K- and

J-functionals substituted by

Kyfwa) = inf {{ [ (enllatn)1rar)”)

I
and

/g
Tl a) = ([ (e(n)laly)ay) .
r
Although some slight modifications are needed, the theory can be de-
velopfed sgmlarly. In general these spaces do not coincide with the ones
described in the paper, which obviously correspond to the case ¢ == 1 in the

icm
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K-method and ¢ = oo in the J-method. These spaces will be studied in a
forthcoming paper where duality and reiteration results will also be given.

(2) According to an observation of the referee, our method could also
have been defined for families of Banach spaces indexed by points in an
arbitrary measure space instead of the special case of the unit circle equipped
with the harmonic measure. The latter is the natural setting to compare
with the complex method for families but for the case of a finite family it is
more natural to consider a finite set. The author thanks the referee for this
remark,
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