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Spectrum preserving linear mappings in Banach algebras
Ty

B. AUPETIT (Québer} and H. du T. MOUTON (Bloemfontein)

Abstract. Lot 4 and 73 be two unitary Banach algebras. We study linear mappings
from 4 fuie I3 which preserve the polynomially convex hull of the spectrum. In particular,
we give conditions nuder which such surjective linear mappings are Jordan morphisms.

1. Introduction. The theory of spectrum preserving linear mappings
originates from Hua’s theorem on flelds which has very interesting geometri-
cal applications. This theorem says that an additive mapping o : K1 — Ko,
where K7y, Ky are two fields, such that o(1) = 1, and e(z™!) = o(z)~! for
& % 0, I8 an isomorphism or an anti-isomorphism. If ¢ is & linear mapping
from a Banach algehra A, into another one Az such that @(1) = 1 and
d(z)"1 = ¢la™") for w invertible, then using exponentials it is.easy to prove
that ¢ is a Jordan morphism, that is, ¢(z?) = ¢(z)? for every z in 4. In the
situation of Banach algebras the problem was enlarged by 1. Kaplansky [5]
to the following one: if ¢ is linear, satisfies ¢(1) = 1 and ¢ maps invertible
elements into invertible elements, is it true that ¢ is a Jordan morphism?
By Lemma 4, page 30 of [1], this question is equivalent to the study of linear
mappings which preserve the spectrum. o _ .

Almost at the same time, in 19671968, A. Gleason, J.-P. Kahane and
W. Zelazko proved that if A and A are Banach algebras, with B commutative
and semigimple and if ¢ 1 A —» B i3 a linear mapping that satisfies ¢(1) =1
and z invertible in 4 implies ¢(x) invertible in B, then ¢ is a homomorphism
(see 2], pp. 69-70, for the simple and elegant proof given by M. Roitman
and Y. Sternfeld).

In the case of matrices the general problem is justified by a result of
M. Marcus and R. Purves [6] which says that if ¢ 1 Ma(€) — Mp(C) is
a linear mapping which preserves eigenvalues and their multiplicity then ¢
is either of the form @(T) = ATA"' or (T) = AT*A™* (incidentally, the
same conclusion is true if ¢ preserves only the greatest eigenvalue),
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Unfortunately, Kaplansky’s problem is too general to have an affirma-
‘tive answer, as the following example (taken from [1]) shows. Let 4 be the
subalgebra of M(C) built up with matrices of the form

(i %)

with a,b, ¢ € Mp(C) and define a linear mapping ¢ from A onto A by

(6 2)=0 2)

Then ¢ is bijective, ¢(1) = 1 and ¢ maps invertible elements onto invertible
elements. However,

(5 2))-+((3 2))

is in general not zero but just in the radical of A. So the natural question
is the following: if A and B are two semisimple Banach algebras and if
T: A — B is asurjective spectrum preserving linear mapping, is 7' Jordan?

In this direction, A. A. Jafarian and A. R. Sourour [4] generalized
Marcus-Purves theorem proving the following result. If ¢ : B(X) — B(Y)
is a surjective spectrum preserving linear mapping then ecither

1) there exists a bounded invertible linear operator A from X into ¥
such that ¢(17) = ATA™? for every T € B(X), or

2) there exists a bounded invertible operator B from the dual X* into
Y such that ¢(T) = BT*B~! for every T € B(X).

Denoting by ¢ the full spectrum, that is, the polynomially convex hull of
the spectrum, in this paper we shall study a slightly more general problem:
if A and B are two semisimple Banach algebras and if T is a surjective linear
mapping with the property that o(Ta) = o{a) for every ain 4, is T Jordan?

In Section 3 we solve this problem for two extremal classes of Banach
algebras, first the primitive algebras with minimal ideals (this class contains
B(X), and consequently we get the Jafarian-Sourour resolt as a corollary),
second the scattered algebras for which every element has a countable spec-
trum. Unfortunately, the general problem is still unsolved even for the class
of C*-algebras,

‘Section 2 contains spectral characterizations of the rank one alemants,
the socle and the kernel of the hull of the socle in a Banach algebra. These
are the essential tools needed in Section 3.

2. Spectral characterizations of Fi(A4), soc A and kh(soc.d). We
assume throughout this section that 4 is a semisimple Banach algebra. The
socle of A, denoted by soc 4, is the sum of all minimal left ideals of A. It
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is well-known that the socle of A is a two-sided ideal of 4 and that all its
elements are algebraic. If I is a two-sided ideal of A, we define the set kh(T)
by
kh(f) ={a € A:a@ € Rad(4/1)}.

It is easy to see that kh(soc A) is a closed two-sided ideal of A and (by [2],
Corollary 5.7.7) the spectrum of every element of kli(soc A) has at most 0
as a Hmit point,

Let & be an analytic multifunction from U € C into C. We say that
2 € _{1‘.’(9\0) is a good isolated point of K{Aq) if there exist 7,5 > 0 such
that B(zy,8) N K (Ag) = {2} and B(z,s) N K (X) is fnite for [A — Ag| < r.
We denote by DK (A) the set of points of K (A) which are not good isolated
points, while &(A)" denotes the set of limit points of K()) (see [2], VII, §2,
for more details).

TuroruM 2.1 (Multiplicative characterization of soc 4 and kh(soc.A4)).
Let a € A. Then we have:

(1) a € soc A if and only i Sp(xa) is finite for all z € A,
(2) @ € kh{soc A} if and only if Sp(za) has at most 0 as a limit point
Jor every » € A.

Proof. If a € socd, then o is algebraic, so Sp(a) is finite. If ¢ €
kh(soc A), then Sp(a) has at most 0 as a limit point. So the necessary con-
ditions are obvious. Suppose now that Sp(za) is finite for every z € A. In
particular, Sp{a} iz finite. If p is the spectral idempotent associated with
gome nonzero isolated spectral value of a, then there exists ¢ € 4 such
that p = ac = ca ([7], Proposition 2.4) so Sp(pzp) is finite for all z € A,
This implies that the semisimple Banack algebra pAp, with identity p, is
finite-dimensional and hence p € soc A, Because a may be written as 3 Aip;
it, follows that a € soc A.

Suppose that Sp(xae)’ C {0} for all z € A. The same argument shows
that there exists a sequence a,, € soc4 such that gla — a,) — 0 where p
denotes the spectral radius. Arguing in A/kh(soc A) we have ¢(@) = 0, so
o(Aa) = 0 and ¢ € kh(soc ). m

We define the rank one elements of A as the set F1(A4) = {a € 4 : Sp(za)
containg at most one nonzero point for every @ € A}

Clearly the set 7y (A) is closed wnder multiplication by elements of 4 and
by Theorem 2.1(1) we have Fi(4) ¢ soc A, Examples of rank one elements
are the minimal idempotents of A, Furthermore, every minimal left ideal of
A is of the form Ap, where p is a minimal idempotent and hence soc A is
equal to the set of all finite sums of rank one elements of A.

THROREM 2.2 (Additive characterization of Fy (A}, soc A and kh(soc A)).
Let a € A. Then we have: ' '
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(1) a € Fi(A) if and only if for every x € A and for every lwo-element
subset F' ¢ C\{0} we have

ﬂ oz +ta) C o),
teF
(2) a € soc A if and only if there exists an integer n 2 | such that

ﬂ oz +ta) C a(x)
EF
for every © € A and every n-element subset F' ¢ C\{0},
(3) a € kh(soc A) if and only if for every ¢ € A and for every subses
F ¢ C\{0} having only a nonzero limit point we have

ﬂ oz +ta) C oe).
EF

Proof {1)(=) Let z € A and u & o(z). If F is a two-clement subset of

C\{0}, then

{1/t:te F} ¢ 8p((p—2)"'a)
because Sp((x — #) ') contains at most one nonzero point. Hence there
exists £y € F such that 1/tg — (g ~ )™ 'a is invertible. But the relation
(*) g (e +ta) = (1 — )L~ t(u ~ 2)" 0]
implies that p — {z + tga) is invertible and consequently u ¢ Sp(z + toa).
Suppose that u € o(z + fpa). Then u belongs to a hole of Sp(x -+ toa). But
(by [2], Theorem 5.7.4(ii)) o(z + toa) and o(x) differ at most by isolated
points, contradicting the fact that u & o'(«). So u & M,.p oz + ta) and the
inclusion is proved.

(+=) Suppose the inclusion is true for every two-element subset F' of
C\{0}. Let u & o(x). Then p — z is invertible and x & o(z -+ tya) for some
t1 € F. Consequently, 1/t; & Sp((p — 2)~'a) by (+). This says that every
two-element subset of C\{0} meets C\Sp((u ~ 2)~'a), so Sp{(u — z)~'a)
contains at most one nonzero point. Consider the following two cases:

(i) If @ is invertible then Sp({(z~2)~'a) consists of a single nonzero poind.
Let y € A be arbitrary and |A| > 29(y). Then y — A = (g~ a)~ !, where

_ ¥ y v 1
m—ﬁ(lﬁj\ul—ﬁ-lwm) and ;Lf::m-«)-:.

Furthermore, o(z) < |u| 80 #Sp((A —~ y)a) = 1. If we apply the scarcity
lemma ([2], Theorem 7.1.7) to the analytic multifunction )\ = Sp{(A ~y)a)
we conclude that #Sp(ya) = 1 for all y € A, Hence o € Fi(A).

(ii) If ¢ is not invertible then Aa # Aor aA # A We only consider
the first case. Since Aa # A, no element of Ag is invertible and so 0 €
Sp((e — 2)~'a). As in case (1) we conclude that #Sp(ya) < 2 for all y € 4
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and since 0 is in Sp{ya), Sp(ya) consists of 0 and possibly one other point.
Hence a € Fi(A).

(2)(=») Let o € soc A, For every p & o(z) the analytic multifunction
o Sp((p =~ a) 'a) is finile, so by the scarcity theorem, there exists an
integer n 2 1 such that #5p((u - z) " a) € n for every p & o(z). Let F be
a subset of C\{0} having n -+ 1 points, Then

{1/t:te F} ¢ Sp({p - z) " 'a)
because Sp((i - ) 'a) contains at most n points. Hence there exists tteF
such that 1/t - (g~ )" 'a is invertible and so p & Sp(z + t10). Asin (1)
we conclude that 4 ¢ (. o(2 + ta) and the inclusion is proved.

(¢=} Suppose the inclusion is true for every n-element subset of C\{0}.
Let p € o). Then p — i is invertible and p ¢ o(z + toa) for some 1y € F.
Consequently, 1/ts & Sp{(x - z)'a) by (). This says that every n-element
subset of C\{0} must meet C\Sp((i — 2)~*a), so

#Sp((u— =) 'a) Sn+ 1.
Asin case (1), #Sp(ya) < n-+1for all y € 4, s0 a € soc A.

(8)(=) The proof iy very similar to that of (1) and (2). For p € o(z)
we have Sp({p ~ )~ ta)’ < {0}. Let F < C\{0} have a nonzero limit point.
Then {1/t : ¢ ¢ F'} has a nonzero limit point, so it is not contained in
Sp({p ~ 2) " 'a) and we finish as previonsly, :

(4} Suppose the inclusion is true for every subset F of C\{0} having
only a nonzero limit point. Let g &€ o(z). Then u — z is invertible and
i & oz + tya) for some ¢35 € F and by (*) 1/t3 & Sp((p — z)~*a). We
conclude as previously that

Sp((u ~ )" a)' < {0},

and ag previously

Sp((pu = w)a)' < {0}
for all |A| > 2p(y). Consequently,

DSp((A - g)a) € (0} |
for [A] > 2¢(y). But by the Oka-Nishino theorem ([2], Theorem 7.2.4] either
DSp((A — y)a) = @ for all X € C or the multifunction A = DSp((A ~y)a) is
analytle, In both cases DSp((A -~ y)a) C {0} for all A € C. Herice Sp{ay)’ C
{0} and the result follows from Theorem 2.1(2). w '

Remark. Note that the proof of case 1 of Theorem 2.2 also s'hows that
A containg invertible elements of rank one if and only if A > C, ~

If 4 is not isomorphic to € and o € Fi(A) then Sp(a) consists of 0
and possibly one other point. We define a map ¢ : F1(4) — C by Sp(a) =
{0,4(a)}.
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LemMMA 2.3. Let a,b € Fi(A4) such that a + b € Fi{A) forall ) & C.
Then t(a + b) = t(a) + t(b).

Proof. By [2], Theorem 3.4.17, the map A : C — C, h(A) = t{a + M),

is entire and
w P t(-i—-l—b) = t(b),

A—eo |Al T |Al-oo
by Newburgh’s theorem (see [2], Corollary 3.4.5). Hence, by Liouville’s the-
orem we have t{a 4+ Ab) = t(a) + A$(b) and the result follows. w

The condition a + Ab & F1(A) will be automatically satisfied if o and b
are left multiples of the same element in the socle, We shall use this fact in
the proof of the next theorem.

3. Linear mappings which preserve the full spectrum and the
Jordan property. Throughout this section we assume that A and B arc
semisimple Banach algebras and that T : 4 — B is a surjective linear
mapping with the property that o(Ta) = o(a) for every a € A. We start by
giving a few elementary properties of these mappings.

THEOREM 3.1. With the above hypotheses we have:

{1} T is ingective,

(2) T1 =1,

(3) T(F1(A)) = 71(B),

(4) T'(soc A) = soc B,

(5) T(kh(soc A)) = kh{soc B).

Proof. Let a € T71(0). Then o(a) = {0} and if g is any quasinilpotent
element of A4, then o(a + ¢) = {0}. By Zemdnek’s characterization of the

radical ([2], Theorem 5.3.1), a = 0. A similar argument shows that T1 = L,
while (3), (4) and (5) follow from Theorem 2.2. m

Remark. In fact the same argument shows that T(Rad A) = Rad B if
A and B are not semisimple.

THEOREM 3.2. With the above hypotheses, for every & € soc B and o € A
we have (Ta® ~ (Ta)?)z = 0,

Proof. By [2], Theorem 5.5.2, 7' is continuous. Let b & F1(A) and let
¢ € A be such that 0 ¢ o(c). Then (by using [2], Theorem 5.7 A(11)) it s easy
to see that 0 € o(c + b) is equivalent to saying that ¢+ b is not invertible.

Furthermore,

¢+ b not invertible <> 1+ ¢"'b not invertible
> —1¢€Sp(elb)
S t(c“lb) = -1,
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and since 0 € o(c + b} 0 € o(Te+ Th), it follows that
e 1h) = o # 0 & H((~ac)™'b) = —1
& t((—ale)"'Th) = -1
@ t{({(Te)'Th) = .
This shows that £{e 718} = ¢((Te)~'Tb) for all b € F1(A) and ¢ € A satisfying
0¢o(c) Let ¢ Aandbe Fi(4). For all A € C with [A] > p(a), we have
0 ¢ (A~ ) and hence
ET((N = a)='B)) = (A~ Ta)"*Th).
Expanding both sides of this relation, we get
t(ijjﬂ |, T(ad) + I,L‘fnii’,)m +> - )(I’b TaTb (Ta)*Th - ) .

PUR VARt PO VR Y
So applying Lewmma 2.3 and comparing coefficients, we get
(1) tH{T(ab)) = t{TaTb)
and
(2) HT(a®h)) = t((Ta)*Tb).

From (1) it follows that ¢(T'(a*h)) = ¢(Te*Th), while by (2) and Lemma 2.3
we have t((Ta? — (T'a)?)Th} = 0. Let w = Ta® — (Ta)®. Then t{ud) = 0
for every d € F(12). Suppose that ud # 0 for some d € F1(B). Since B is
semisimple, there exists an © € B such that Spludz) 5 {0}. But dz € F((B)
and t{udz) = 0. This shows that ud = 0 for every d € F1(B) and the result
follows from the fact that soc B is the set of all finite sums of elements of
Fi(B). =

CoroLLARY 3.3, If B has the property that bsoc B = {0} implies b = 0,
then T iy Jordan.

A Banach algehra A is said to be prime if adb = {0} implies o = 0
or b= 0. By Jacobson’s density theorem it can easily be seen that every
primitive Banach algebra is prime. In [3], pp. 47-51, it is shown that if A
and B are prime rings, then every Jordan morphism 7' : A — B is either a
homomorphism or an antimorphism, Furthermore, if A is a primitive Banach
algebra with minimal ideals, then A has the property that asoc A = {0}
implies a = 0 (see [B], p. 78). Hence we have the following result.

CoRoLLARY 3.4. If B is primitive Banach algebra with minimal ideals
then T is either a homomorphism or an antimorphism.

The following is an improvement on the result of Jafarian and Sourour [4].

COROLLARY 3.5, Let ¢ : B(X) — B(Y) be a surjective linear mapping
such thet o(H(1) = o(T) for every T € B{X). Then either
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(1) there is a bounded invertible operator A: X — Y such that ¢(T) =
ATA™L or

(2) there is a bounded inveriible operaior B : X* Y such thal ¢(T) =
BI*B~L.

Proof By Corollary 3.4, ¢ is either a homomorphistn or an antimor-
phism. If ¢ is a homomorphism, then (1} follows from the fundamenta)
isomorphism theorem (8], Theorem 2.5.19, p. 76). If ¢ is an antimorphism,
then (2) follows from the fundamental isomorphism theorem and the fact
that the Banach algebra C' = {T™ : T' € B{X)} is a strictly dense subalgebra
of B(X") which is anti-isomorphic to B(X) under the map 7' v 7™, m

LEMMA 3.6. If a € A and u = Ta? - (Ta)? € khisoc B), then u = 0.

Proof. Suppose that u # 0. Since B is semisinmple there exists an ¢ & B
such that Sp(uz) # {0}. Obviously uz € kh(socB). Let A be a nonzero
isolated point of Sp(uz) and let p be the spectral idempotent associated
with A. By 2], Lerama 5.7.1, p € soc B and Sp(uzp) = {0, A}, which means
that wxp # 0. But p € soc B, contradicting Theorem 3.2. =

If B is a modular annihilator algebra. (sce [1], p. 82) then B = kh{soc B)
80, by the above lemma, T is Jordan. In this situation the spectrum of Bvery
element has at most zero as a limit point. This result can be extended to the
more general situation of scattered Banach algebras, that is, Banach algebras
for which the spectrum of every element is finite or countable. By Barnes's
theorem their socle is nonzero and they have a very particnlar algebraic
structure (see [2], Theorems 5.7.8 and 5.7.9).

THEOREM 3.7. If B is a separable scattered Banach algebra, then T is
Jordan. '

Proof. Let I = kh(socA) and J; = kh(soc B). By Theorem 3.1(5),
T(I1} = Ji. Define semisimple Banach algebras 4, and By by Ay = A/l
By = B/Jy and let w1 and ; denote the corresponding canonica) maps onto
A1 and By respectively. Define a linear map Ty : Ay - By by T)(@) = Ta.
Then Harte’s theorem ([2], Theorem 3.8.8) and the fact that the spectrum

of every element of A and B is totally disconnected haply that
Sp(@) = ) Spla+z) = () Sp(Ta+y) = Sp(Tya),
aely ye.Jy

and hence T} is spectrum preserving. Furthermore, if @ € Iy, then by
Lemma, 3.6 we have T'a® = (I'a)?. Continuing inductively, we defing A, =
An-1/kh(soc Ay_1), By = B,y / kh(soc By,_1) and let x,, and «y, denote the
canonical maps from A4,_; onto 4, and from B,y onto B,, respectively.
Let I = ker(mno...om), J, = ker(7y,0...09,) and note that J, = T(J,).
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Define a linear map Ty, : A, — By, by Ty(@) = T—1(a). Then T, is:spec-
trum preserving and by using Lemma 3.6 it is easy to see that if o € [,
then Te? = (Ta)?. If w is the first infinite ordinal, we define

=w(J5), s=x{lUn)
n2l nzl .
and note that T(U, s In) = U,»; Jn- The linear mapping T being con-

tinuous aud one-to-one we have T{J, », In) = Unzl Ju. Define a linear
wapping

TJ, ' A/U Iy — B/U Ju by TLL(E) =Ta.
nzl nzl
Again by using Harte’s theorem it follows that T, is spectrum preserving and
by the remark following Theorem 3.1 we have J,, = T([,,). Let A, = A/_Ii,
B, = B/J, and define a linear operator T, : A, — B, by 1,(3) = Ta.
Note that T, is spectrum preserving and that A, and B, are simisimple.

We claim that Ta? = (Ta)? for every a € I,. Let o € I, and suppose that
u=Ta? — (T'a)* is not zero. By applying Lemma 3.6, it is easy to see that
Yno...0m(u) # 0forn=1,2,... and by Theorem 3.2, (yn0...om(u))y = 0
for every y € soc By, Since u # 0 and B is semisimple, there exists b € B
such that Sp(ub) # {0} and since ub € J., again by Harte's theorem we
know that the intersection of all Sp(ub +y), for y € [J,51 Jn, is zero.

We now prove that there exists an integer n such that S? B, ('7/,-L o...0
Yo(ub)) # Spp,,, (a1 0 ... 0 ~+o(ub)), where By = B and o is the idengity
map on B. Suppose the contrary; then Sp{ub) = Sp(yno... 0 'yg(ub)) -
Sp(ub + y) for every n > 1 and y € J,, and consequently, by COI:I.tIHIllt.y of
the spectrum, Sp(ub) C Sp(ub+y) for every y € [, Jn. 50, by a previous
remark, we have Sp{ub) = {0}, which is a contradiction.

Hence suppose Spp,_ (7 © - .. © Yo(ub)) # Spp,,, (Yat1 0 ... © Yo{ub)) for
some n > 0 and let @ = (v, 0...0p)(ub). Then there exists an isolated point
A# 0 of Spp_(z) such that A € Sps, ., (Tm+1(z)). If p denotes the spectral
projection associated with ¢ and A we have p € soc By and 0 # zp = (yn ©
...oyg(u))(mo. . .ovo(b))p, contradicting the fact that (yao. . .oryogu))y =0
for every y € soc B,,. So finally we have proved that Ta? — (Ta)* = 0 for
every @ € L.

érontinuui)ug by transfinite induction, there exists an ordinal 3 in the first
clags of ordinals such that 4 = Iz ([2], Theorem 5.7.a). By the arguments
above it is easy to see that B = Jg and Ta? = (Ta)? foreverya € 4. w

Remark. The argument used in the proof'qf the above theorem im-~
proves Theorem 3.2. It implies that (Ta® — (Ta)?)z = 0 for every = € 1,
where I is the largest closed two-sided ideal having elements with countable
spectrum, that is, the union of all J, over ail ordinals ce.
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On the best constant in the Khinchin-Kahane
inequality

by

RATAEL LATALA and KRZYSZTOF OLESZKIEWICZ (Warszawa)

Abstract. We prove that if »; 18 the Rademacher system of functions then

(J IS0 )" <3 ] |$amiofa
d=1 d==]

for any sequence of vectors z; in any normed linear space F.

Introduction. The classical result of Khinchin [3] states that for each
p,q > 0 there exists a constant ¢, ¢ such that for any real numbers 1, ..., Zn,

(S [3enol )" <ol J [ Sente] )

The smallest constant ¢p o will be denoted by C}f’q. Obviously, C’,“f,q =1 for
p < g, but it took some efort to calculate the other best constants. The
especially interesting case p = 2,¢ = 1 was first solved by S. J. Szarek [4],
who proved OF, = +/2. A simpler proof was given by U. Haagerup {1] whio
also found C'ffz and C'Ep for each p > 0. A simple and elementary proof that

#

C%, = v/2 was also presented by B. Tomaszewski [6].

J.-P. Kahane [2] generalized the result of Khinchin to sequences 21, . .,
r, in & normed linear space F, replacing in (1) the absolute value by the
worm in 7. Let €, denote the smallest constant in the vector-valued in-
equalities, over all normed linear spaces F. It is of interest to know if the
constants are the same in the vector and real cases. As far as we know
the best result for p = 2 and ¢ = 1 known up to now was obtained by
B. Tomaszewski [5], who proved that C,; < v/3. In this paper we show that
Cy1 = +/2; we think that our proof is simpler than the cnes known for real
nurmbers.
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