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A weighted vector-valued weak type (1,1)
inequality and spherical summation

by

SHUICHI SATO (Kanazawa)

Abstract. We prove a weighted vector-valued weak type (1,1} inequality for the
Bochner—Riesz means of the critical order. In fact, we prove a slightly more general result.

1. Introduction. For a nonnegative function w on R™ (n > 2), let
LE(R™) = {f : [ fw /Py = ||fllpaw < 00} be the weighted L? space and let
L™ be the weighted weak L' space. We write for f & LL*°,

17115 = sup dw{{z : |£(z)| > A}),
A0
where w(E) = fw. Next for R > 0 let
Sa(f)(z) = [ FOQ - |gPR2)] et g
Rn
be the Bochner-Riesz means of order 6. In this note we shall prove a weighted

vector-valued version of Christ [1, Theorem 1].

THEOREM 1. Let w(z) = |a|?, ~n < B <0, and let o« = (n—1)/2 be the
critical indez. Then for a sequence {R,} of positive numbers, we have

(2 sy <o (i)™

See [2, 3, 4, 10] for related results. We shall prove a more general result.
Following [3], we consider a sequence {Tj} of bounded linear operators on
L? such that there exists a sequence {K*} of kernels satisfying

(Tu(f) g} = ff g(u":)f(y)K’f(mfy) dy da

for f,g € CF° with disjoint supports. Furthermore, we assume the following.

Law

(1.1)  The operators T}, are bounded on L2 and sup, [1Tkll2.0 = €1 < oo,
where | - |2, denctes the operator norm.
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(1.2)  The kernels K* can be written in polar coordinates as
K*(r,0) = r ™ 02F(r,8),
where supr,gsk(\ﬂk(r, B)] + 18025 (r, 8)]) = ca < cc.

Then we can obtain a weighted vector-valued version of a special case of
13, Theorem 4].

THEOREM 2. Let w(z) = |z|?, —n < 8 <0, and {Tx} be as above. Then
there exists a constant ¢ depending only on ¢1, co, 1 and w such that

[(Smr) < (Sar)™

Theorem 1 immediately follows from Theorem 2. In the rest of this note,
we consider only a weight w as in Theorems 1 and 2. As a consequence of
Theorem 1 for R, = 2%, by a standard argument we have the following.

1w

CoroLLARY 1. Define

G(f) m) (Ztga—i—l

ke

- sa(p@E)”.

Then [la(F)ll% < ell fllg, where H, denotes the weighted Hardy space (see
[14]).

Here we give a sketch of the proof. First we note that there are &, 1?; e C§°
such that $(0) = ¥(0) = 0 and

SEFL(f) — SE(f) = f+ pr + SH(f x¢R),

where gr(z) = R"g(Rz). Then we have

pe(Sirsenl)”+ (S5 evar)”

By Chebyshev’s inequality, Theorem 1 and the Littlewood-Paley inequality
for H},, we obtain the assertion of Corollary 1.
By Corollary 1 we have the following,.

COROLLARY 2. Let S(f)(2) = supy, |55, (f)(x)|. Then
IS < el flimy -

The inequality S¢{f) < SZT1(f) + o{f) proves the corollary. From this
we obtain almost everywhere convergence of the lacunary Bochner—Riesz
means for HY. See [13] and alse {7], [8], [16, Chap. XV]. We can prove in
the same way a continuous analogue of Theorem 1 where £2 is replaced by
L2({0,00),dR/R). Using this, we obtain the following similarly to Corol-
lary 1.
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COROLLARY 3. Let f € HL. Then |5(f Wi < ellfilay, where
1/2
5@ = ([ 1857 (0@ - ssn@rE)
([ 15700 - ss0)@r )

See [6] for the pointwise equivalence between # and other square fune-
tions.

r1"he proof we shall give below is a combination of arguments of Christ—
Rubio de Francia [3] and Hofmann [5]. Theorems 1, 2 and their corollaries
for w = 1 can be found in [9].

2. Outline of proof of Theorem 2. Let ILZ,(£7) be the space of
£2-valued functions f = (fi) such that |f{, € LE,, where |- |, denotes the ¢
norm. We also write (| flip.w = ([ |f|5w dz)V/? for the norm of f € L% (£?)
and when w = 1 this norm is denoted by | - ]l, (this will not cause any
confusion).

Let f = (fx) € Ly, (£*)N L2 (#%) and A > 0. We use a Calderén-Zygmund
decomposition, i.e. a collection {@Q} of nonoverlapping dyadic cubes and a
decomposition f = g +b, b=} by, with the following properties:

(2.1) lglleo S Xy Tlglirw < el flliw,
(2.2) w(JQ) < ellfliu/r,
(2.3) leglli € eAl@], f bg =0, bg is supported on Q.
Define S(f) = (T%(fx))- Then by (1.1), S is bounded on L2 (£2). Thus

by (2.1) we have

w({I8(9)l2 > A}) S ATS)Fw < AP 9l30 < AT FllLw,
so that, by (2.2), Theorem 2 follows from

(2.4) w({z € R\ B* 1 |S(b)(z)]2 > A}) < ~||.f||1 w)

where E* = | J@" with @ denoting the cube with the same center as Q
and with sidelength 219+ times that of Q.

Let n € CF° be radial (n(z) = no(|z()), nonnegative and such that
supp(n) C {1/4 S| <4} and 30,0, n(277x) = 1 for ¢ € R™\ {0}. Define
Kj(z) = (n(2772)K*(z)). Then to obtain (2.4) it is sufficient to prove that

(2.5) ” ZKJ. B

for all s > n + 4 with some € > 0, where B; = Z |Q|=2= bQ, the convolution
5 defined by f * g(z) = (fx % gx(a)) for f = (fi), 9 = (g&) and by our

2
2N f
S
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construction of the exceptional set E* we may assume that s > n + 4.

(See [3].)

Now using the Schwarz inequality, we see that

2
”ZKj*Bj_S 5w
7

<CZ”K:*BJ 5“2w+cz Z K*BJ o Ki* By a) |
§ i<i—10
where {, ), denotes the inner product of the Hilbert space L2,(€%). Let K =
(KF), Bi = (B}). Then

(K % Bj_q, Ki % Biy)
:Zk: ff Kfm—y)B
::Xk: [ B [ Bi.(2)
:Xk: [ Bf

= f (Bj—-s(y):Bi-s*L?j(y)hdyﬂ

where K#(z) = K¥(—z), wy(z) = w(z + 1), L?’j(z)
(,)2 denotes the inner product in £2.

Next, let By j_s = 2, bg, where bg ranges over the collection of those
b which satisfy supp(bg) C {2773 < |z] < 27+%}¢ and |Q| = 2"U~*). Then
following Hofmann [5], we make a decornposition

Bj_s = Byjs T Byjs-

We note that since s > n + 4, if By ;_, = 3, bg, then each @ is contained
in {297% < |z| < 294}, We shall prove (2.5) for By ;_, and By j., sepa-
rately. By the above expression of (K % Bj._4, Ki*B;_ )., and the inequality
35 [ Bj—slltw < efl fllw. for this it is sufficient to prove the following re-
sults.

Z ka*Bk (2)K¥ % BE_, (z)w(z) da

(y) dy f K:z — 2)BY () dzw(z)dz

f K¥(z - y)Ki (2 — 2)w(z) dz dz dy

) [ BE(2)(Kfwy) = KF (7 —y) dzdy

= (K}, x KF(z)) and

- LEMMA 1. Let y € supp(Bi,;—s). Then
Z [B1,i—s * LY (y)|2 < cA27%w(y) .
<5 -10
LeMMA 2. Let y € supp(B3,j—s). Then

Z IB2 j—g ¥ Ly y)|2 ﬁ c'\2_esw(y) -
< §~-10
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LeMMaA 3. Let y € supp(B;;_,). Then

|B1j-s % LY ()2 < eX27%w(y).
LEMMA 4. Let y € supp(By;_s). Then

|Bz,j—s * LY; (9) ]2 < eA27 % w{y).

We observe that by dilation invariance, to prove these lemmas we may as-
sume that 7 = 0. Thus in the following sections, we shall give the proofs only
for j = 0, and then we shall use a (vector-valued) version of [3, Lemma 6.1].

Let E = (E*) and F; = (FF) be kernels which can be written in polar
coordinates as

Ek(r, ) = T“"@k(r, Nno(r),
We assume that

(28)  sup(6(r,0)]| = |06 (r,0)) <

FE(r,0) = v~ ™% (7, @)no(27r) .

unifermly in &,

(2.7) Sq}lg]aj(ly?k(ﬂ )| + |8  (r,0)) < 1

uniformly in k.

Then we have the following (see [3, Lemma 6.1]).

LEMMA 5. Let @ € R™\ {0}, |h| < |z|/2. Then
(a) \B* Fi{z + h) — B« Fi(2)|oo < c27°RY2 (i< -10),

(b) |E * Fy(z + h) — E * Fy(z)|eo < c|hI12|z| 32

We shall give a sketch of the proof in §7 for completeness.

3. Proof of Lemma 1. Let { € C§°(R) be nonnegative and such that
{(r)=1if 1/4 <r < 4 and supp(¢) C {1/5 < r < 5}. We define

K (@) = (R (@), (2)) = (r~wh (r, O)o(r)

where wi(r, 8) = 2%(r, ~0)|y - r8|P¢(r). Then LY (z) = K¥ # K;(2).

SUBLEMMA 1. Let y € supp(By _,). Then
(2) sup [w(r, )] < elyl”,

ke 6

(b) sup [Bpus (r, O)] < ely!”.

Proof. If y € supp(By,—s), then |y| < 273 or |y| > 2% Thus forr €
[1/5,5], we have |y — r8| =~ max(|y|, 1), so that

ly — 8] < cmax(ly|,1)® < cy)?.
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Combined with {1.2), this proves (a). Similarly we have
(Ot (r, )] < ey — P81 + Iy~ 78*~ 1))
< cmax(ly], 1)? + cmax(Jy|, 1)P " < emax(Jyl, 1) < elyi?,

proving (b).

By Lemma 5 and Sublemma 1 we have the following.

SUBLEMMA 2. Let y € supp(Bi1 —s), = € R*\ {0} and [h| < ||/2. Then
(a) LY (@ + h) - Li(z)|ee < cw(y)27'R'? (i 5 -10),
(b) LEa(w +h) = Liy(@)|oa S cwr(@)|hf*/?2|7>/2.

Now we prove Lemma 1. Denote by co and d(Q) the center and the
diameter of a cube @, respectively. Then for ¢ > n+4 and y € supp(B;,—s),
we have

Y| Bume@Lb-2dz = 3] PRSI

i<—10 i |eg—ul>d(@

where [ f(2)g{z)dz = ([ fu(2)gu(2)dz) for f = (f), g = (gx). By Sub-
lemma 2(a), (2 3) and Mmkowskl S mequallty, this is majorized by

YN S eIy - 2) - Tiply ~ el da],
i Q
<CZZ [ etz

/257 1Q] < A/ 2u(y),

where in the last summation, @ ranges over a family of nonoverlapping
dyadic cubes contained in {z : |z — y| < 100}. This completes the proof of
Lemma 1.

Nalz ~ cQ\lﬂw(yﬂ—’:/z dz

< chw(y)2

4. Proof of Lemma 2. Let p, v € C*™(R") be radial, nonnegative and
such that p(z) 4+ v(z) =1 for all € R", supp() € {|z| < 1} and p(z) =1
if @] < 1/2. Let

wy(z) = wlz +y)p(2*(z +y) and wy(z) = w(z + yw(2™(z +y))

with & > 0 which will be specified later. We decompose L¥; as Lf;(z) =
MZ(2) + N (2), where

Ml(z) = (KFiy) « K}(2)),  N¥(2) = (K¥)) « KE(2)).
Let y € supp(By,.s). We note that {y| &~ 1. Thus in order to prove Lemma 2

icm
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it is sufficient to prove

(4.1) D Baioy s ME(y)ls < a2~
i< 10

and

(4.2) > IBres = NG ()]s < cx27=.

i<—10
First we prove (4.1). Since |z < 27 if » € supp(Bs ;-,), We have
B ox BE)KFW) = | [ BEo(d) [ Eh(w)
ly—m|<c2?
x w(z — y)u(2(a — y)) Ky — 2z — x) do dz
s [ 1By (9)dz [ w(@)@w)de
|| < e’

Thus by Minkowskl’s inequality we have

|B2;’i'5‘ * Mz%(y)lz —<- 62—7;” f w( ) (253 dE HB21. .8”1
| L2t
< el f u(2%%2) d
fai<en?

where we have used
[B2imslh < €AY [Q] < ex2™,

which holds since in the last summation () ranges over a family of nonover-
lapping dyadic cubes contained in {2°7* < |z| < 2!+*}, Thus

> Bri s Miwllaser Y, [ w

i5-10 i 101m|<c2“

< ch Z f[mﬂdr—f*c)\ Z f |a:j'6dm

202788 | 5| < 21>275% |3 gep—te

<A Z 24 +E) 4 o) Z 9-d8(ntA) < op g2 0s(ntA)
2«:52-—63 2ing-ba )

15(2%52) da

which proves (4.1).
Next we prove (4.2). Let

TV (@) = (K§(z)w(z — y(2( — ) = (r "ok (r,0)mo(r)),



icm

166 5. Bato

where ¥ (r, 0) = $2(r, =)y — r0|Pvo(2°°|y — rO1)((r), wo(|z]) = v(z) and ¢
is as in §3, Then NX(2) = JY * K;(2). In order to apply Lemma 5 we use
the following obvious estimates.

SUBLEMMA 3. Let y € supp(Ba,—s). Then

(a) sup of(r, §)] < 2%,
,T'.,
(b) sup |Bgot (r, §)] < c2l=A L0
k7.0

By Lemma 5 and Sublemma 3 we have the following.

SUBLEMMA 4. Let y € supp{Bz, ), = € R*\ {0} and |h| < |2]/2. Then
(2)  INH(z+h) = Nj(a)|oo < cf2*h[M2207HI0 (4 < —10),
(b) INgy( + B) — Ngy()]oo < clh[*/?|z| 5200 P 4002,

We first see that

S B NS Y| S [ bl@Nhy—2)de|,

i€—10 i leo-yi<d{@)
S be () Ny~ ) de]
[ leq—ylzd(Q
=I41I, say.

By Sublemma 3(a) we have sup, |N%(2)|eo < ¢27%. Thus by Minkowski’s

inequality and (2.3) we see that

1<ty 3N [ |bg(2))adz

i |eq-¥{<d(Q)
<e2”F3 0 M|
i jeg-yl<d(@)
< cAzwﬁsﬁZQH(i—-s) < C)\2—-63ﬁ2—-ns .
i
Next, using Sublemma 4(a), (2.3) and Minkowski’s inequality, we have

m<Y Y | [ @ Ny - ) - Nhly ~ ca))dz

i leg-yl2d(Q)

<Y Y [ Ible)alz — cq|tF2m22(=AH gy
i @

< Ao AR R TIQ < eap T AR,

where the last inequality follows as in the proof of Lemma 1. Combining the
estimates for I, IT and taking § small enough, we obtain (4.2).
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5. Proof of Lemma 3. Let y € B, 5. Then

Bt Lol < 3| [ bo(Thy—2)ds]
icg—vl<d(Q)

+ ‘ >
le@—#24(Q)
=I+1II, say.

[ baloly - 2 ds|,

By Sublemma 1(a) we have sup, |L¥;(2)|cc < cw(y). Thus by Minkowski’s
inequality we see that

I<ewly) Y

leq—yl<d(Q)

lbeli < chu(y) Y 1QI < ehuw(y)2="".

Next by Sublemma 2(b), (2.3) and Minkowski’s inequality, we have

rs 3| [ @)@y —2) - Ly - cq)) da,
leq-v|2d(Q)

<CZ f [bo(2)|awly |z—cQ|1/2]cQ—~y| 324y

< c/\w(y)z*s/"’ > @lleq —yl™*2.
If g~y > d(Q), we have |eg — y| = |z — y| for z € Q. Thus

I< 4'3)\’&4‘(1/)2—3/2 Z f lz - yl“af2 dr < C/\w(y)2‘3/2 f |:l’,"_3/2 de,
Q Q

where B is a fixed bounded set. Combining the estimates for T and II, we
obtain the conclusion of Lemma 3.

6. Proof of Lemma 4. Let M, and N be as in §4. Then to obtam
Lemma 4, it is sufficient to prove the followmg estimates for y € By _

(6.1) | Bz, —s * Mip(1)|2 < eX27°¢,
(6.2) [By, % N (y)]2 £ 2755,

We first prove (6.1). As in the proof of (4.1) we see that
|Ba, s % M3 (y |2 <e [ w(z)u(2%w) de | Byl
.S C/\Q—JS ﬂ+5) Z ’Q‘ g c)\z"‘s\?(”“ﬁ@) ,

since in the last summation ) ranges over a family of cubes contained in a
fixed bounded set. This proves (6.1).
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Next we prove (6.2). First we have

Boex N2 < | 3
lea—yl<d(Q)
X [ Ny - 2
leq~y|zd(Q)
=TI+, say.

f bo(z) N (y — 2) dz|2

2

Since sup, [Ni(2)jeo € €277 by Sublemma 3(a), using Minkowski’s in-
equality and (2.3), we see that
I<ca®f 3" fibglagene™® 3 |Ql<err 2,
leq—y|<d(Q) leg—y[<d(Q)
Next by Sublemma 4(b), (2.3) and Minkowski’s inequality, arguing as
in §5 we have
T=| Y [ ol (Nhly—2)~ Ny~ ca)) dz|,
len—yl2d(Q]
<cY [ Iba(2)lalz - gl Iy — cq ¥ A+ 4,

Q@

< cAg—s/Ro(—B+1)bs Z Q! ly — CQ‘"B/L’ < c\9—8/29(~F+1)8s
Combining the estimates for I and IT and taking § small enough, we ob-

tain (6.2).

7. Sketch of proof of Lemma 5. We fix k and write E = E*, F; = FF,
$ =@ ¥ =0" Then

(7.1)  ExFy(z)=c >

T (@0do) « (Wade ) o (rymo(2~2) 22
0

where @,.(8) = $(r,8), ¥,(0) = ¥{s,0) and o, denotes the uniform surface
probability measure of the sphere {z : |z| = r}. By (2.6) and (2.7) we have
the following result of [3] {see {3, Lemma 6.2]).

SUBLEMMA. 5. Let r 2 s and r € [1/4,4]. Then ($,do.,) * (¥udos){z) =
iflzg| <r—gor|z|Zr+s, and if r — s < |z| <r+ 5 we have

|(#rdoy) * (Wados)(2)] < e(|o|(r + 5 — |2|)(|a] — 7 + 5))7*/2,
V{(@rday) * (Pudos)) (2)] < es(lel(r + s — |z){je] ~ r +5) 7%/,
When r > s, by a straightforward computation we see that
or 04() = ear ™ 2| HA((r )2 ~ o) (af? (1 = 5)2) "2

if r—s < |x| < r+ 5, and oy * 0.{x) = 0 otherwise. From this, Sublemma 5
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follows when $, = W, = 1. The proof of the general case is similar. We omit;
the details.

We can prove (a) and (b) of Lemma 5 similarly by using Sublema. 5.
Here we only give the proof of (b). First we may assume that |z| < 100 and
|h| < 107'°z| since E # Fy is bounded and supported in {lz] € 10}. Put
G(r,s,z,h) = |(®rdoy) * (Tedos)(z + h) — (B,doy) * (¥,dos)(z)]. Then let

ff G(r,s,z, h)no(r)no(s) drds = ffG(r,s,m,h)ng(r)ng(s) dr ds

r=a
+ ffG(r,s,cc, hina(r)no(s) drds
r<s
=L +5L, say.

We can estimate I and Ip similarly. We consider I;. For s € [1/4,4], let
A={rir>zs,|le|—s—r/<2h|or||z|+s—r| <2k}, B={r:r>s,
|z] —s +2|h] < r < |z{+ s — 2|h|} and put

N(s)= [ Glr,s,e,hymo(r)dr, Ja(s)= [ Glr,s,2,h)no(r)dr.
A B

Then since supp(($rdor) * (Fado,)) C{z: 7~ s < |g| <7+ 5} (r > 8), we
have Iy = [(Ji(s) + Ja(s})no(s) ds. By Sublemma 5, for s € [1/4,4] we see
that J1(s) is dominated by

¢ [ (e+hl Ir+s—|e+hl| o+ hl -7+ s
A
+(la| - |r+s— ||| - |z —r +s) Y2 dr .
By a direct computation, this is bounded by
de|™? [ {72 dr < celV2 ]R3,
| <5k

Next by Sublemma 5 and the mean value theorem, via a direct compu-
tation, for s € [1/4, 4] we see that Jy(s) is bounded by

J|-+8—2| k]
bl [ sup (lz-+6h| |r+s—|z+0RE|- ||z + 8] —r + 8]}~ dy
lal—anpaln| 0<O<T

10
< clh| - |z|"3/2 f 32 g < el |} 3|z| 3%
ih
Collecting the results we have Iy < c/h*/?|&[~3/2. We obtain the same

estimate for I5. Since these estimates are uniform in k, by (7.1) we obtain
Lemma 5(b}.
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The converse of the Hélder inequality and its generalizations
by

JANUSZ MATKOWSKI (Bielsko-Biala)

Abstract. Let (2, X, 1) be a measure ipace with two sets 4, B € X such that 0 <
u(4) < 1 < pu(B) < oo and suppose that ¢ and ¢ are arbitrary bijections of [0, c0) such
that ¢(0) = 14{0} = 0. The main result says that if

fmyduﬁqb"l(fqbomdu)w"l(fwomd‘u>
2 n

2

for all p-integrable noennegative step functions , y then ¢ and ¥ must be conjugate power
functions.

If the measure space ({2, I7, 1) has one of the following properties:

(a) u(A) <1 for every A € T of finite measure; .

(b) (A) > 1 for every 4 € I of positive measure,
then there exist some broad classes of nonpower bijections ¢ and 1 such that the above
inequality holds true.

A general inequality which contains integral Holder and Minkowski inequalities as
very special cases is also given.

Introduction. Let (2, X, 4) be a measure space. Denote by § =
S(£2, X, p) the linear space of all u-integrable step functions = : 2 — R
and by 8. the set of all z € § such that z : 2 — Ry where R = [0, 00).
One can easily verify that for every bijective function ¢ : Ry — R, such
that $(0) = 0 the functional py4 : 84 ~+ Ry given by the formula

(1) polz) = qS"l( f qgomd,u) (z € Sy)
p]

is well defined. In a recent paper [8] the author proved the following converse
of Minkowski’s inequality.
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