

STUDIA MATHEMATICA 109 (2) (1994)

A weighted vector-valued weak type (1, 1) inequality and spherical summation

by

SHUICHI SATO (Kanazawa)

Abstract. We prove a weighted vector-valued weak type (1,1) inequality for the Bochner-Riesz means of the critical order. In fact, we prove a slightly more general result.

1. Introduction. For a nonnegative function w on \mathbb{R}^n $(n \geq 2)$, let $L^p_w(\mathbb{R}^n) = \{f : \|fw^{1/p}\|_p = \|f\|_{p,w} < \infty\}$ be the weighted L^p space and let L^p_w be the weighted weak L^1 space. We write for $f \in L^1_w$,

$$||f||_{w}^{*} = \sup_{\lambda>0} \lambda w(\{x: |f(x)| > \lambda\}),$$

where $w(E) = \int_E w$. Next for R > 0 let

$$S_R^{\delta}(f)(x) = \int_{\mathbb{R}^n} \widehat{f}(\xi)(1 - |\xi|^2 R^{-2})_+^{\delta} e^{2\pi i x \xi} d\xi$$

be the Bochner-Riesz means of order δ . In this note we shall prove a weighted vector-valued version of Christ [1, Theorem 1].

THEOREM 1. Let $w(x) = |x|^{\beta}$, $-n < \beta \le 0$, and let $\alpha = (n-1)/2$ be the critical index. Then for a sequence $\{R_k\}$ of positive numbers, we have

$$\left\| \left(\sum |S_{R_k}^{\alpha}(f_k)|^2 \right)^{1/2} \right\|_w^* \le c \left\| \left(\sum |f_k|^2 \right)^{1/2} \right\|_{1,w}.$$

See [2, 3, 4, 10] for related results. We shall prove a more general result. Following [3], we consider a sequence $\{T_k\}$ of bounded linear operators on L^2 such that there exists a sequence $\{K^k\}$ of kernels satisfying

$$\langle T_k(f), g \rangle = \iint g(x) f(y) K^k(x-y) dy dx$$

for $f,g\in C_0^\infty$ with disjoint supports. Furthermore, we assume the following.

(1.1) The operators T_k are bounded on L_w^2 and $\sup_k \|T_k\|_{2,w} = c_1 < \infty$, where $\|\cdot\|_{2,w}$ denotes the operator norm.

¹⁹⁹¹ Mathematics Subject Classification: Primary 42B08, 42B10.

(1.2) The kernels K^k can be written in polar coordinates as

$$K^k(r,\theta) = r^{-n} \Omega^k(r,\theta)$$
,

where
$$\sup_{r,\theta,k}(|\Omega^k(r,\theta)|+|\partial_\theta\Omega^k(r,\theta)|)=c_2<\infty.$$

Then we can obtain a weighted vector-valued version of a special case of [3, Theorem 4].

THEOREM 2. Let $w(x) = |x|^{\beta}$, $-n < \beta \le 0$, and $\{T_k\}$ be as above. Then there exists a constant c depending only on c_1 , c_2 , n and w such that

$$\left\| \left(\sum |T_k(f_k)|^2 \right)^{1/2} \right\|_w^* \le c \left\| \left(\sum |f_k|^2 \right)^{1/2} \right\|_{1,w}.$$

Theorem 1 immediately follows from Theorem 2. In the rest of this note, we consider only a weight w as in Theorems 1 and 2. As a consequence of Theorem 1 for $R_k = 2^k$, by a standard argument we have the following.

COROLLARY 1. Define

$$\sigma(f)(x) = \left(\sum_{k \in \mathbb{Z}} |S_{2^k}^{\alpha+1}(f)(x) - S_{2^k}^{\alpha}(f)(x)|^2\right)^{1/2}.$$

Then $\|\sigma(f)\|_w^* \le c\|f\|_{H_w^1}$, where H_w^1 denotes the weighted Hardy space (see [14]).

Here we give a sketch of the proof. First we note that there are $\widehat{\varphi}$, $\widehat{\psi} \in C_0^{\infty}$ such that $\widehat{\varphi}(0) = \widehat{\psi}(0) = 0$ and

$$S_R^{\alpha+1}(f) - S_R^{\alpha}(f) = f * \varphi_R + S_R^{\alpha}(f * \psi_R),$$

where $g_R(x) = R^n g(Rx)$. Then we have

$$\sigma(f) \le \left(\sum |f * \varphi_{2^k}|^2\right)^{1/2} + \left(\sum |S_{2^k}^{\alpha}(f * \psi_{2^k})|^2\right)^{1/2}.$$

By Chebyshev's inequality, Theorem 1 and the Littlewood–Paley inequality for H_w^1 , we obtain the assertion of Corollary 1.

By Corollary 1 we have the following.

COROLLARY 2. Let $S_*^{\delta}(f)(x) = \sup_k |S_{2k}^{\delta}(f)(x)|$. Then

$$||S_*^{\alpha}(f)||_w^* \le c||f||_{H_{\infty}^1}$$
.

The inequality $S^{\alpha}_*(f) \leq S^{\alpha+1}_*(f) + \sigma(f)$ proves the corollary. From this we obtain almost everywhere convergence of the lacunary Bochner–Riesz means for H^1_w . See [13] and also [7], [8], [16, Chap. XV]. We can prove in the same way a continuous analogue of Theorem 1 where ℓ^2 is replaced by $L^2((0,\infty),dR/R)$. Using this, we obtain the following similarly to Corollary 1.

COROLLARY 3. Let $f \in H^1_w$. Then $\|\widetilde{\sigma}(f)\|_w^* \leq c\|f\|_{H^1_w}$, where

$$\widetilde{\sigma}(f)(x) = \left(\int\limits_0^\infty |S_R^{\alpha+1}(f)(x) - S_R^{\alpha}(f)(x)|^2 \frac{dR}{R}\right)^{1/2}.$$

See [6] for the pointwise equivalence between $\tilde{\sigma}$ and other square functions.

The proof we shall give below is a combination of arguments of Christ-Rubio de Francia [3] and Hofmann [5]. Theorems 1, 2 and their corollaries for w = 1 can be found in [9].

2. Outline of proof of Theorem 2. Let $L^p_w(\ell^q)$ be the space of ℓ^q -valued functions $f=(f_k)$ such that $|f|_q \in L^p_w$, where $|\cdot|_q$ denotes the ℓ^q norm. We also write $||f||_{p,w} = (\int |f|_2^p w \, dx)^{1/p}$ for the norm of $f \in L^p_w(\ell^2)$ and when w=1 this norm is denoted by $||\cdot||_p$ (this will not cause any confusion).

Let $f = (f_k) \in L^1_w(\ell^2) \cap L^2_w(\ell^2)$ and $\lambda > 0$. We use a Calderón-Zygmund decomposition, i.e. a collection $\{Q\}$ of nonoverlapping dyadic cubes and a decomposition f = g + b, $b = \sum b_Q$, with the following properties:

$$(2.1) ||g||_{\infty} \le c\lambda, ||g||_{1,w} \le c||f||_{1,w},$$

$$(2.2) w\left(\bigcup Q\right) \le c||f||_{1,w}/\lambda,$$

(2.3)
$$||b_Q||_1 \le c\lambda |Q|$$
, $\int b_Q = 0$, b_Q is supported on Q .

Define $S(f) = (T_k(f_k))$. Then by (1.1), S is bounded on $L_w^2(\ell^2)$. Thus by (2.1) we have

$$w(\{|S(g)|_2 > \lambda\}) \le \lambda^{-2} ||S(g)||_{2,w}^2 \le c\lambda^{-2} ||g||_{2,w}^2 \le c\lambda^{-1} ||f||_{1,w},$$

so that, by (2.2), Theorem 2 follows from

(2.4)
$$w(\{x \in \mathbb{R}^n \setminus E^* : |S(b)(x)|_2 > \lambda\}) \le \frac{c}{\lambda} ||f||_{1,w},$$

where $E^* = \bigcup Q^*$ with Q^* denoting the cube with the same center as Q and with sidelength 2^{10+n} times that of Q.

Let $\eta \in C_0^{\infty}$ be radial $(\eta(x) = \eta_0(|x|))$, nonnegative and such that $\operatorname{supp}(\eta) \subset \{1/4 \leq |x| \leq 4\}$ and $\sum_{j \in \mathbb{Z}} \eta(2^{-j}x) = 1$ for $x \in \mathbb{R}^n \setminus \{0\}$. Define $K_j(x) = (\eta(2^{-j}x)K^k(x))$. Then to obtain (2.4) it is sufficient to prove that

(2.5)
$$\left\| \sum_{j} K_{j} * B_{j-s} \right\|_{2,w}^{2} \le c 2^{-\varepsilon s} \lambda \|f\|_{1,w}$$

for all s > n + 4 with some $\varepsilon > 0$, where $B_i = \sum_{|Q|=2^{in}} b_Q$, the convolution is defined by $f * g(x) = (f_k * g_k(x))$ for $f = (f_k)$, $g = (g_k)$ and by our

A weighted weak type (1,1) inequality

163

construction of the exceptional set E^* we may assume that s > n + 4. (See [3].)

Now using the Schwarz inequality, we see that

$$\left\| \sum_{j} K_{j} * B_{j-s} \right\|_{2,w}^{2}$$

$$\leq c \sum_{j} \|K_{j} * B_{j-s}\|_{2,w}^{2} + c \sum_{j} \sum_{i \leq j-10} |\langle K_{j} * B_{j-s}, K_{i} * B_{i-s} \rangle_{w}|,$$

where \langle , \rangle_w denotes the inner product of the Hilbert space $L^2_w(\ell^2)$. Let $K_j = (K_i^k), B_i = (B_i^k)$. Then

$$\langle K_{j} * B_{j-s}, K_{i} * B_{i-s} \rangle_{w} = \sum_{k} \int K_{j}^{k} * B_{j-s}^{k}(x) \overline{K}_{i}^{k} * \overline{B}_{i-s}^{k}(x) w(x) dx$$

$$= \sum_{k} \int \int K_{j}^{k}(x-y) B_{j-s}^{k}(y) dy \int \overline{K}_{i}^{k}(x-z) \overline{B}_{i-s}^{k}(z) dz w(x) dx$$

$$= \sum_{k} \int B_{j-s}^{k}(y) \int \overline{B}_{i-s}^{k}(z) \int K_{j}^{k}(x-y) \overline{K}_{i}^{k}(x-z) w(x) dx dz dy$$

$$= \sum_{k} \int B_{j-s}^{k}(y) \int \overline{B}_{i-s}^{k}(z) (K_{j}^{k} w_{y}) * \widetilde{K}_{i}^{k}(z-y) dz dy$$

$$= \int (B_{j-s}(y), B_{i-s} * L_{ij}^{y}(y))_{2} dy ,$$

where $\widetilde{K}_i^k(x) = \overline{K}_i^k(-x)$, $w_y(x) = w(x+y)$, $L_{ij}^y(z) = (\widetilde{K}_j^k \widetilde{w}_y * K_i^k(z))$ and (,)₂ denotes the inner product in ℓ^2 .

Next, let $B_{1,j-s} = \sum b_Q$, where b_Q ranges over the collection of those b_Q which satisfy $\operatorname{supp}(b_Q) \subset \{2^{j-3} \le |x| \le 2^{j+3}\}^c$ and $|Q| = 2^{n(j-s)}$. Then following Hofmann [5], we make a decomposition

$$B_{j-s} = B_{1,j-s} + B_{2,j-s}$$
.

We note that since s > n+4, if $B_{2,j-s} = \sum b_Q$, then each Q is contained in $\{2^{j-4} \le |x| \le 2^{j+4}\}$. We shall prove (2.5) for $B_{1,j-s}$ and $B_{2,j-s}$ separately. By the above expression of $\langle K_j * B_{j-s}, K_i * B_{i-s} \rangle_w$ and the inequality $\sum_j \|B_{j-s}\|_{1,w} \le c\|f\|_{1,w}$, for this it is sufficient to prove the following results.

LEMMA 1. Let $y \in \text{supp}(B_{1,j-s})$. Then

$$\sum_{i \leq j-10} |B_{1,i-s} * L^y_{ij}(y)|_2 \leq c \lambda 2^{-\varepsilon s} w(y).$$

LEMMA 2. Let $y \in \text{supp}(B_{2,j-s})$. Then

$$\sum_{i \leq j-10} |B_{2,i-s} * L^y_{ij}(y)|_2 \leq c \lambda 2^{-\varepsilon s} w(y) \,.$$

LEMMA 3. Let $y \in \text{supp}(B_{1,j-s})$. Then

$$|B_{1,j-s}*L_{ij}^y(y)|_2 \leq c\lambda 2^{-\varepsilon s}w(y)$$
.

LEMMA 4. Let $y \in \text{supp}(B_{2,j-s})$. Then

$$|B_{2,j-s}*L_{ij}^y(y)|_2 \leq c\lambda 2^{-\varepsilon s}w(y)$$
.

We observe that by dilation invariance, to prove these lemmas we may assume that j=0. Thus in the following sections, we shall give the proofs only for j=0, and then we shall use a (vector-valued) version of [3, Lemma 6.1]. Let $E=(E^k)$ and $F_i=(F_i^k)$ be kernels which can be written in polar coordinates as

$$E^{k}(r,\theta) = r^{-n} \Phi^{k}(r,\theta) \eta_{0}(r) , \quad F_{i}^{k}(r,\theta) = r^{-n} \Psi^{k}(r,\theta) \eta_{0}(2^{-i}r) .$$

We assume that

(2.6)
$$\sup_{r,\theta} (|\Phi^k(r,\theta)| + |\partial_\theta \Phi^k(r,\theta)|) \le 1 \quad \text{uniformly in } k,$$

(2.7)
$$\sup_{r,\theta} (|\Psi^k(r,\theta)| + |\partial_\theta \Psi^k(r,\theta)|) \le 1 \quad \text{ uniformly in } k.$$

Then we have the following (see [3, Lemma 6.1]).

LEMMA 5. Let $x \in \mathbb{R}^n \setminus \{0\}$, |h| < |x|/2. Then

(a)
$$|E * F_i(x+h) - E * F_i(x)|_{\infty} \le c|2^{-i}h|^{1/2}$$
 $(i \le -10)$,

(b)
$$|E * F_0(x+h) - E * F_0(x)|_{\infty} < c|h|^{1/2}|x|^{-3/2}$$

We shall give a sketch of the proof in §7 for completeness.

3. Proof of Lemma 1. Let $\zeta \in C_0^{\infty}(\mathbb{R})$ be nonnegative and such that $\zeta(r) = 1$ if $1/4 \le r \le 4$ and $\operatorname{supp}(\zeta) \subset \{1/5 \le r \le 5\}$. We define

$$K^{y}(x) = (\widetilde{K}_0^{k}(x)\widetilde{w}_y(x)) = (r^{-n}\omega_y^{k}(r,\theta)\eta_0(r)),$$

where $\omega_y^k(r,\theta) = \overline{\Omega}^k(r,-\theta)|y-r\theta|^{\beta}\zeta(r)$. Then $L_{i0}^y(z) = K^y * K_i(z)$.

Sublemma 1. Let $y \in \text{supp}(B_{1,-s})$. Then

(a)
$$\sup_{k,r,\theta} |\omega_y^k(r,\theta)| \le c|y|^{\beta},$$

(b)
$$\sup_{k,r,\theta} |\partial_{\theta} \omega_y^k(r,\theta)| \le c|y|^{\beta}.$$

Proof. If $y \in \text{supp}(B_{1,-s})$, then $|y| \leq 2^{-3}$ or $|y| \geq 2^3$. Thus for $r \in [1/5,5]$, we have $|y-r\theta| \approx \max(|y|,1)$, so that

$$|y - r\theta|^{\beta} \le c \max(|y|, 1)^{\beta} \le c|y|^{\beta}.$$

Combined with (1.2), this proves (a). Similarly we have

$$\begin{aligned} |\partial_{\theta}\omega_{y}^{k}(r,\theta)| &\leq c(|y-r\theta|^{\beta}+|y-r\theta|^{\beta-1})\zeta(r) \\ &\leq c\max(|y|,1)^{\beta}+c\max(|y|,1)^{\beta-1} \leq c\max(|y|,1)^{\beta} \leq c|y|^{\beta}, \end{aligned}$$

proving (b).

By Lemma 5 and Sublemma 1 we have the following

Sublemma 2. Let $y \in \text{supp}(B_{1,-s}), x \in \mathbb{R}^n \setminus \{0\}$ and |h| < |x|/2. Then

(a)
$$|L_{i0}^y(x+h) - L_{i0}^y(x)|_{\infty} \le cw(y)|2^{-i}h|^{1/2} \quad (i \le -10),$$

(b)
$$|L_{00}^{y}(x+h) - L_{00}^{y}(x)|_{\infty} \le cw(y)|h|^{1/2}|x|^{-3/2}$$
.

Now we prove Lemma 1. Denote by c_Q and d(Q) the center and the diameter of a cube Q, respectively. Then for s > n+4 and $y \in \text{supp}(B_{1,-s})$, we have

$$\sum_{i \le -10} \left| \int B_{1,i-s}(z) L_{i0}^{y}(y-z) dz \right|_{2} = \sum_{i} \left| \sum_{|c_{Q}-y| > d(Q)} \int b_{Q}(z) L_{i0}^{y}(y-z) dz \right|_{2},$$

where $\int f(z)g(z) dz = (\int f_k(z)g_k(z) dz)$ for $f = (f_k)$, $g = (g_k)$. By Sublemma 2(a), (2.3) and Minkowski's inequality, this is majorized by

$$\begin{split} \sum_{i} \sum_{Q} \left| \int b_{Q}(z) (L_{i0}^{y}(y-z) - L_{i0}^{y}(y-c_{Q})) dz \right|_{2} \\ & \leq c \sum_{i} \sum_{Q} \int |b_{Q}(z)|_{2} |z-c_{Q}|^{1/2} w(y) 2^{-i/2} dz \\ & \leq c \lambda w(y) 2^{-s/2} \sum |Q| \leq c \lambda 2^{-s/2} w(y) \,, \end{split}$$

where in the last summation, Q ranges over a family of nonoverlapping dyadic cubes contained in $\{x : |x-y| < 100\}$. This completes the proof of Lemma 1.

4. Proof of Lemma 2. Let $\mu, \nu \in C^{\infty}(\mathbb{R}^n)$ be radial, nonnegative and such that $\mu(x) + \nu(x) = 1$ for all $x \in \mathbb{R}^n$, supp $(\mu) \subset \{|x| \leq 1\}$ and $\mu(x) = 1$ if $|x| \leq 1/2$. Let

$$w_y^0(x) = w(x+y)\mu(2^{\delta s}(x+y))$$
 and $w_y^1(x) = w(x+y)\nu(2^{\delta s}(x+y))$

with $\delta > 0$ which will be specified later. We decompose L^y_{ij} as $L^y_{ij}(z) = M^y_{ij}(z) + N^y_{ij}(z)$, where

$$M_{ij}^y(z) = \left((\widetilde{K}_i^k \widetilde{w}_y^0) * K_i^k(z) \right), \quad N_{ij}^y(z) = \left((\widetilde{K}_i^k \widetilde{w}_y^1) * K_i^k(z) \right).$$

Let $y \in \text{supp}(B_{2,-s})$. We note that $|y| \approx 1$. Thus in order to prove Lemma 2

it is sufficient to prove

(4.1)
$$\sum_{i \le -10} |B_{2,i-s} * M_{i0}^{y}(y)|_{2} \le c\lambda 2^{-\varepsilon s}$$

and

(4.2)
$$\sum_{i \le -10} |B_{2,i-s} * N_{i0}^{y}(y)|_{2} \le c\lambda 2^{-\varepsilon s}.$$

First we prove (4.1). Since $|z| \leq 2^{i+4}$ if $z \in \text{supp}(B_{2,i-s})$, we have

$$\begin{split} |B_{2,i-s}^k*(\widetilde{K}_0^k\widetilde{w}_y^0)*K_i^k(y)| &= \bigg|\int B_{2,i-s}^k(z) \int\limits_{|y-x| \le c2^i} \widetilde{K}_0^k(x) \\ &\times w(x-y)\mu(2^{\delta s}(x-y))K_i^k(y-z-x)\,dx\,dz\bigg| \\ &\le c2^{-in}\,\int \,|B_{2,i-s}^k(z)|\,dz\,\int\limits_{|x| \le c2^i} w(x)\mu(2^{\delta s}x)\,dx\,. \end{split}$$

Thus by Minkowski's inequality we have

$$|B_{2,i-s} * M_{i0}^{y}(y)|_{2} \le c2^{-in} \int_{|x| \le c2^{i}} w(x)\mu(2^{\delta s}x) dx \|B_{2,i-s}\|_{1}$$

$$\le c\lambda \int_{|x| \le c2^{i}} w(x)\mu(2^{\delta s}x) dx,$$

where we have used

$$||B_{2,i-s}||_1 \le c\lambda \sum |Q| \le c\lambda 2^{ni}$$
,

which holds since in the last summation Q ranges over a family of nonoverlapping dyadic cubes contained in $\{2^{i-4} \le |x| \le 2^{i+4}\}$. Thus

$$\begin{split} \sum_{i \leq -10} |B_{2,i-s} * M^y_{i0}(y)|_2 &\leq c \lambda \sum_{i \leq -10} \int\limits_{|x| \leq c2^i} w(x) \mu(2^{\delta s} x) \, dx \\ &\leq c \lambda \sum_{2^i \leq 2^{-\delta s}} \int\limits_{|x| \leq c2^i} |x|^{\beta} \, dx + c \lambda \sum_{2^i > 2^{-\delta s}} \int\limits_{|x| \leq c2^{-\delta s}} |x|^{\beta} \, dx \\ &\leq c \lambda \sum_{2^i \leq 2^{-\delta s}} 2^{i(n+\beta)} + c \lambda \sum_{2^i > 2^{-\delta s}} 2^{-\delta s(n+\beta)} \leq c \lambda s 2^{-\delta s(n+\beta)} \,, \end{split}$$

which proves (4.1).

Next we prove (4.2). Let

$$J^{y}(x) = (\widetilde{K}_{0}^{k}(x)w(x-y)\nu(2^{\delta s}(x-y))) = (r^{-n}\sigma_{v}^{k}(r,\theta)\eta_{0}(r)),$$

166

where $\sigma_y^k(r,\theta) = \overline{\Omega}^k(r,-\theta)|y-r\theta|^{\beta}\nu_0(2^{\delta s}|y-r\theta|)\zeta(r), \nu_0(|x|) = \nu(x)$ and ζ is as in §3. Then $N_{i0}^y(z) = J^y * K_i(z)$. In order to apply Lemma 5 we use the following obvious estimates.

Sublemma 3. Let $y \in \text{supp}(B_{2,-s})$. Then

(a)
$$\sup_{k,r,\theta} |\sigma_y^k(r,\theta)| \le c2^{-\delta s\beta},$$

(b)
$$\sup_{k,r,\theta} |\partial_{\theta} \sigma_{y}^{k}(r,\theta)| \leq c2^{(-\beta+1)\delta s}.$$

By Lemma 5 and Sublemma 3 we have the following

Sublemma 4. Let $y \in \text{supp}(B_{2,-s}), x \in \mathbb{R}^n \setminus \{0\}$ and |h| < |x|/2. Then

(a)
$$|N_{i0}^{y}(x+h) - N_{i0}^{y}(x)|_{\infty} \le c|2^{-i}h|^{1/2}2^{(-\beta+1)\delta s}$$
 $(i \le -10)$,

(b)
$$|N_{00}^{y}(x+h) - N_{00}^{y}(x)|_{\infty} \le c|h|^{1/2}|x|^{-3/2}2^{(-\beta+1)\delta s}$$

We first see that

$$\begin{split} \sum_{i \le -10} |B_{2,i-s} * N_{i0}^y(y)|_2 &\le \sum_i \Big| \sum_{|c_Q - y| < d(Q)} \int b_Q(z) N_{i0}^y(y - z) \, dz \Big|_2 \\ &+ \sum_i \Big| \sum_{|c_Q - y| \ge d(Q)} \int b_Q(z) N_{i0}^y(y - z) \, dz \Big|_2 \\ &= I + II, \quad \text{say} \, . \end{split}$$

By Sublemma 3(a) we have $\sup_z |N^y_{i0}(z)|_\infty \le c2^{-\delta s\beta}$. Thus by Minkowski's inequality and (2.3) we see that

$$I \le c2^{-\delta s\beta} \sum_{i} \sum_{|c_Q - y| < d(Q)} \int |b_Q(z)|_2 dz$$

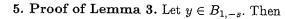
$$\le c\lambda 2^{-\delta s\beta} \sum_{i} \sum_{|c_Q - y| < d(Q)} |Q|$$

$$\le c\lambda 2^{-\delta s\beta} \sum_{i} 2^{n(i-s)} \le c\lambda 2^{-\delta s\beta} 2^{-ns}.$$

Next, using Sublemma 4(a), (2.3) and Minkowski's inequality, we have

$$\begin{split} II &\leq \sum_{i} \sum_{|c_Q - y| \geq d(Q)} \left| \int b_Q(z) (N_{i0}^y (y - z) - N_{i0}^y (y - c_Q)) \, dz \right|_2 \\ &\leq c \sum_{i} \sum_{Q} \int |b_Q(z)|_2 |z - c_Q|^{1/2} 2^{-i/2} 2^{(-\beta + 1)\delta s} \, dz \\ &\leq c \lambda 2^{-s/2} 2^{(-\beta + 1)\delta s} \sum |Q| \leq c \lambda 2^{-s/2} 2^{(-\beta + 1)\delta s} \,, \end{split}$$

where the last inequality follows as in the proof of Lemma 1. Combining the estimates for I, II and taking δ small enough, we obtain (4.2).



$$|B_{1,-s} * L_{00}^{y}(y)|_{2} \leq \sum_{|c_{Q}-y| < d(Q)} \left| \int b_{Q}(z) L_{00}^{y}(y-z) dz \right|_{2}$$

$$+ \left| \sum_{|c_{Q}-y| \geq d(Q)} \int b_{Q}(z) L_{00}^{y}(y-z) dz \right|_{2}$$

$$= I + II, \quad \text{say}.$$

By Sublemma 1(a) we have $\sup_z |L^y_{00}(z)|_{\infty} \le cw(y)$. Thus by Minkowski's inequality we see that

$$I \le cw(y) \sum_{|c_Q - y| < d(Q)} ||b_Q||_1 \le c\lambda w(y) \sum |Q| \le c\lambda w(y) 2^{-sn}$$
.

Next by Sublemma 2(b), (2.3) and Minkowski's inequality, we have

$$\begin{split} II &\leq \sum_{|c_Q - y| \geq d(Q)} \left| \int b_Q(z) (L_{00}^y(y - z) - L_{00}^y(y - c_Q)) \, dz \right|_2 \\ &\leq c \sum_Q \int |b_Q(z)|_2 w(y) |z - c_Q|^{1/2} |c_Q - y|^{-3/2} \, dz \\ &\leq c \lambda w(y) 2^{-s/2} \sum |Q| \, |c_Q - y|^{-3/2} \, . \end{split}$$

If $|c_Q - y| \ge d(Q)$, we have $|c_Q - y| \approx |x - y|$ for $x \in Q$. Thus

$$II \le c\lambda w(y)2^{-s/2} \sum_{Q} \int_{Q} |x-y|^{-3/2} dx \le c\lambda w(y)2^{-s/2} \int_{B} |x|^{-3/2} dx$$

where B is a fixed bounded set. Combining the estimates for I and II, we obtain the conclusion of Lemma 3.

6. Proof of Lemma 4. Let M_{ij}^y and N_{ij}^y be as in §4. Then to obtain Lemma 4, it is sufficient to prove the following estimates for $y \in B_{2,-s}$:

$$(6.1) |B_{2,-s} * M_{00}^{y}(y)|_{2} < c\lambda 2^{-\varepsilon s}.$$

$$(6.2) |B_{2,-s} * N_{00}^y(y)|_2 \le c\lambda 2^{-\varepsilon s}$$

We first prove (6.1). As in the proof of (4.1) we see that

$$|B_{2,-s} * M_{00}^{y}(y)|_{2} \le c \int w(x)\mu(2^{\delta s}x) dx ||B_{2,-s}||_{1}$$

$$\le c\lambda 2^{-\delta s(n+\beta)} \sum |Q| \le c\lambda 2^{-\delta s(n+\beta)},$$

since in the last summation Q ranges over a family of cubes contained in a fixed bounded set. This proves (6.1).

Next we prove (6.2). First we have

$$|B_{2,-s} * N_{00}^{y}(y)|_{2} \le \Big| \sum_{|c_{Q}-y| < d(Q)} \int b_{Q}(z) N_{00}^{y}(y-z) dz \Big|_{2}$$

$$+ \Big| \sum_{|c_{Q}-y| \ge d(Q)} \int b_{Q}(z) N_{00}^{y}(y-z) dz \Big|_{2}$$

$$= I + II, \quad \text{say}.$$

Since $\sup_z |N_{00}^y(z)|_{\infty} \le c2^{-\delta s\beta}$ by Sublemma 3(a), using Minkowski's inequality and (2.3), we see that

$$I \le c 2^{-\delta s \beta} \sum_{|c_Q - y| < d(Q)} ||b_Q||_1 \le c \lambda 2^{-\delta s \beta} \sum_{|c_Q - y| < d(Q)} |Q| \le c \lambda 2^{-\delta s \beta} 2^{-sn}.$$

Next by Sublemma 4(b), (2.3) and Minkowski's inequality, arguing as in §5 we have

$$\begin{split} II &= \Big| \sum_{|c_Q - y| \ge d(Q)} \int b_Q(z) (N_{00}^y(y - z) - N_{00}^y(y - c_Q)) \, dz \Big|_2 \\ &\le c \sum_Q \int |b_Q(z)|_2 |z - c_Q|^{1/2} |y - c_Q|^{-3/2} 2^{(-\beta + 1)\delta s} \, dz \\ &\le c \lambda 2^{-s/2} 2^{(-\beta + 1)\delta s} \sum |Q| \, |y - c_Q|^{-3/2} \le c \lambda 2^{-s/2} 2^{(-\beta + 1)\delta s} \, . \end{split}$$

Combining the estimates for I and II and taking δ small enough, we obtain (6.2).

7. Sketch of proof of Lemma 5. We fix k and write $E = E^k$, $F_i = F_i^k$, $\Phi = \Phi^k$, $\Psi = \Psi^k$. Then

(7.1)
$$E * F_i(x) = c \int_0^\infty \int_0^\infty (\Phi_r d\sigma_r) * (\Psi_s d\sigma_s)(x) \eta_0(r) \eta_0(2^{-i}s) \frac{dr ds}{rs}$$
,

where $\Phi_r(\theta) = \Phi(r,\theta)$, $\Psi_s(\theta) = \Psi(s,\theta)$ and σ_r denotes the uniform surface probability measure of the sphere $\{x : |x| = r\}$. By (2.6) and (2.7) we have the following result of [3] (see [3, Lemma 6.2]).

SUBLEMMA 5. Let $r \ge s$ and $r \in [1/4, 4]$. Then $(\Phi_r d\sigma_r) * (\Psi_s d\sigma_s)(x) = 0$ if $|x| \le r - s$ or $|x| \ge r + s$, and if r - s < |x| < r + s we have

$$|(\varPhi_r d\sigma_r) * (\varPsi_s d\sigma_s)(x)| \le c(|x|(r+s-|x|)(|x|-r+s))^{-1/2}, |\nabla ((\varPhi_r d\sigma_r) * (\varPsi_s d\sigma_s))(x)| \le cs(|x|(r+s-|x|)(|x|-r+s))^{-3/2}.$$

When $r \geq s$, by a straightforward computation we see that $\sigma_r * \sigma_s(x) = c_n r^{-n+2} s^{-n+2} |x|^{-n+2} (((r+s)^2 - |x|^2)(|x|^2 - (r-s)^2))^{(n-3)/2}$ if r-s < |x| < r+s, and $\sigma_r * \sigma_s(x) = 0$ otherwise. From this, Sublemma 5

follows when $\Phi_r = \Psi_s = 1$. The proof of the general case is similar. We omit the details.

We can prove (a) and (b) of Lemma 5 similarly by using Sublemma 5. Here we only give the proof of (b). First we may assume that |x| < 100 and $|h| < 10^{-10}|x|$ since $E * F_0$ is bounded and supported in $\{|x| \le 10\}$. Put $G(r, s, x, h) = |(\Phi_r d\sigma_r) * (\Psi_s d\sigma_s)(x + h) - (\Phi_r d\sigma_r) * (\Psi_s d\sigma_s)(x)|$. Then let

$$\iint G(r, s, x, h) \eta_0(r) \eta_0(s) dr ds = \iint_{r \ge s} G(r, s, x, h) \eta_0(r) \eta_0(s) dr ds
+ \iint_{r \le s} G(r, s, x, h) \eta_0(r) \eta_0(s) dr ds
= I_1 + I_2, \quad \text{say}.$$

We can estimate I_1 and I_2 similarly. We consider I_1 . For $s \in [1/4, 4]$, let $A = \{r : r \ge s, ||x| - s - r| < 2|h| \text{ or } ||x| + s - r| < 2|h|\}$, $B = \{r : r \ge s, |x| - s + 2|h| < r < |x| + s - 2|h|\}$ and put

$$J_1(s) = \int\limits_A G(r,s,x,h) \eta_0(r) \, dr \,, \quad J_2(s) = \int\limits_B G(r,s,x,h) \eta_0(r) \, dr \,.$$

Then since $\operatorname{supp}((\Phi_r d\sigma_r) * (\Psi_s d\sigma_s)) \subset \{x : r-s \leq |x| \leq r+s\} \ (r \geq s)$, we have $I_1 = \int (J_1(s) + J_2(s)) \eta_0(s) \ ds$. By Sublemma 5, for $s \in [1/4, 4]$ we see that $J_1(s)$ is dominated by

$$c \int_{A} ((|x+h| \cdot |r+s-|x+h| |\cdot| |x+h|-r+s|)^{-1/2} + (|x| \cdot |r+s-|x| |\cdot| |x|-r+s|)^{-1/2}) dr.$$

By a direct computation, this is bounded by

$$c|x|^{-1/2} \int_{|r| \le 5|h|} |r|^{-1/2} dr \le c|x|^{-1/2}|h|^{1/2}.$$

Next by Sublemma 5 and the mean value theorem, via a direct computation, for $s \in [1/4, 4]$ we see that $J_2(s)$ is bounded by

$$c|h| \int_{|x|-s+2|h|}^{|x|+s-2|h|} \sup_{0<\theta<1} (|x+\theta h| \cdot |r+s-|x+\theta h| |\cdot| |x+\theta h| -r+s|)^{-3/2} dr$$

$$\leq c|h|\cdot|x|^{-3/2}\int_{|h|}^{10}r^{-3/2}dr\leq c|h|^{1/2}|x|^{-3/2}.$$

Collecting the results we have $I_1 \leq c|h|^{1/2}|x|^{-3/2}$. We obtain the same estimate for I_2 . Since these estimates are uniform in k, by (7.1) we obtain Lemma 5(b).

170 S. Sato

Acknowledgements. I would like to thank the referee for the comment and information, from which I have learned, in particular, that some related results have been obtained in X. Shi and Q. Sun [11], F. Soria and G. Weiss [12] and Ana Vargas [15].

References

- M. Christ, Weak type (1, 1) bounds for rough operators, Ann. of Math. 128 (1988), 19-42.
- [2] —, Weak type endpoint bounds for Bochner-Riesz multipliers, Rev. Mat. Iberoamericana 3 (1987), 25-31.
- [3] M. Christ and J. L. Rubio de Francia, Weak type (1,1) bounds for rough operators, II, Invent. Math. 93 (1988), 225-237.
- [4] M. Christ and C. D. Sogge, The weak type L¹ convergence of eigenfunction expansions for pseudodifferential operators, ibid. 94 (1988), 421-453.
- [5] S. Hofmann, Weighted weak-type (1,1) inequalities for rough operators, Proc. Amer. Math. Soc. 107 (1989), 423-435.
- [6] M. Kaneko and G. Sunouchi, On the Littlewood-Paley and Marcinkiewicz functions in higher dimensions, Tôhoku Math. J. 37 (1985), 343-365.
- [7] S. Z. Lu, M. Taibleson and G. Weiss, On the almost everywhere convergence of Bochner-Riesz means of multiple Fourier series, in: Lecture Notes in Math. 908, Springer, Berlin, 1982, 311-318.
- [8] S. Sato, Entropy and almost everywhere convergence of Fourier series, Tôhoku Math. J. 33 (1981), 593-597.
- [9] Spherical summability and a vector-valued inequality, preprint, 1992.
- [10] A. Seeger, Endpoint estimates for multiplier transformations on compact manifolds, Indiana Univ. Math. J. 40 (1991), 471-533.
- [11] X. Shi and Q. Sun, preprint, Hangzhou University, Hangzhou, 1991.
- [12] F. Soria and G. Weiss, Indiana Univ. Math. J., to appear.
- [13] E. M. Stein, An H¹ function with non-summable Fourier expansion, in: Lecture Notes in Math. 992, Springer, Berlin, 1983, 193-200.
- [14] J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, Berlin, 1989.
- [15] A. Vargas, Ph.D. thesis, Universidad Autónoma de Madrid.
- 16] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, 1968.

DEPARTMENT OF MATHEMATICS FACULTY OF EDUCATION KANAZAWA UNIVERSITY KANAZAWA, 920-11, JAPAN

> Received March 2, 1993 (3067) Revised version August 25, 1993

STUDIA MATHEMATICA 109 (2) (1994)

The converse of the Hölder inequality and its generalizations

by

JANUSZ MATKOWSKI (Bielsko-Biała)

Abstract. Let $(\Omega, \mathcal{E}, \mu)$ be a measure space with two sets $A, B \in \Sigma$ such that $0 < \mu(A) < 1 < \mu(B) < \infty$ and suppose that ϕ and ψ are arbitrary bijections of $[0, \infty)$ such that $\phi(0) = \psi(0) = 0$. The main result says that if

$$\int_{\Omega} xy \, d\mu \le \phi^{-1} \bigg(\int_{\Omega} \phi \circ x \, d\mu \bigg) \psi^{-1} \bigg(\int_{\Omega} \psi \circ x \, d\mu \bigg)$$

for all μ -integrable nonnegative step functions x,y then ϕ and ψ must be conjugate power functions.

If the measure space (Ω, Σ, μ) has one of the following properties:

- (a) $\mu(A) \leq 1$ for every $A \in \Sigma$ of finite measure:
- (b) $\mu(A) \geq 1$ for every $A \in \Sigma$ of positive measure,

then there exist some broad classes of nonpower bijections ϕ and ψ such that the above inequality holds true.

A general inequality which contains integral Hölder and Minkowski inequalities as very special cases is also given.

Introduction. Let (Ω, Σ, μ) be a measure space. Denote by $\mathbf{S} = \mathbf{S}(\Omega, \Sigma, \mu)$ the linear space of all μ -integrable step functions $x : \Omega \to \mathbb{R}$ and by \mathbf{S}_+ the set of all $x \in \mathbf{S}$ such that $x : \Omega \to \mathbb{R}_+$ where $\mathbb{R}_+ = [0, \infty)$. One can easily verify that for every bijective function $\phi : \mathbb{R}_+ \to \mathbb{R}_+$ such that $\phi(0) = 0$ the functional $\mathbf{p}_{\phi} : \mathbf{S}_+ \to \mathbb{R}_+$ given by the formula

(1)
$$\mathbf{p}_{\phi}(x) = \phi^{-1} \Big(\int_{\Omega} \phi \circ x \, d\mu \Big) \quad (x \in \mathbf{S}_{+})$$

is well defined. In a recent paper [8] the author proved the following converse of Minkowski's inequality.

¹⁹⁹¹ Mathematics Subject Classification: Primary 46E30, 26D15, 26A51, 39C05.

Key words and phrases: measure space, integrable step functions, conjugate functions, a converse of Hölder inequality, subadditive function, convex function, generalized Hölder–Minkowski inequality.

Supported by KBN (Poland) grant 2 P301 053 03.