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A localization property for B;, and F;, spaces
by

HANS TRIEBEL (Jena)

Abstract. Let f7 = P akf(zj“:r. — 2k), where the sum is taken over the lattice of
all points k in R™ having integer-valued components, j € N and ap € C. Let A7, be either
Bpg or Fg (s €R, 0 < p < 00,0 < g < oo) on R". The aim of the paper is to clarify
under what conditions ||f7 | A3 | is equivalent to Zj(a-—n/p)(zk lax |PYPIEF | Adgll.

1. Introduction and theorem. The spaces B, and Fj, with s € R,
0 <p < oo(p< oo for the Fscale), 0 < ¢ < o0, on R™ cover many
well-known classical function spaces, such as the Sobolev spaces Wzﬁc = F;,z
(with k& € Np, 1 < p < ©0), the fractional Sobolev spaces H; = F}, (with
s € R, 1 <p < o0), the Holder-Zygmund spaces C* = B, , (with s > 0),
the (inhomogeneous) Hardy spaces hy, = Fl), (with 0 < p < oc) and the
classical Besov spaces By, (with s > 0,1 < p < 00,1 < g < 00). The theory
of these spaces has been developed in [8, 9]. The aim of this paper is to prove
a localization property for all these spaces which in this generality and in
its almost final form is unexpected and rather surprising.

Let Z™ be the lattice of all points in R™ having integer-valued com-
ponents. Let $%7 = 279k with k € Z" and j € N. Let f € &' with
suppf C @y = {z e R" : |oy| <« dif{ = 1,...,n}, where d > 0 is as-
sumed to be small, at least d £ 1/2, and let

(1) Fllzy =3 af(2H(z — M),

kezn

ar € C.

Of course, the terms in (1) have mutually disjoint supports. Let o, =
max(0,n(l/p — 1)) and let [a] be the largest integer less than or equal to
a € R

THEOREM. Let s €R, 0 < p < oo (p < oo for the F-scale), 0 < g < 0.
Let A;q be either B;q or Fp, and let 0 < d < 1/4.

1091 Mathematics Subject Classification: Primary 46E35.
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(i) There exist two constants ¢; > 0 and cg > 0 such that for oll f & qu
with supp f C @« and

(2) f 2P f(z)de =0  for |8 < L = max([o, — 5], 1),
all j €N, and all 7 given by (1),

. . /e B \
(8)  eall s | Agll < DI ( S anP) T Al < eall ] A
k

(i) Let oy —s > [op~ 8] = L &€ Ny and let 0 < ¢y € ¢2 < c0. Then there
exists an f € A3, with supp f C Qq and

(4) [P f@)dz=0 for|f] <L-1

such that (3) fails for some j, with f7 given by (1).
(i) Let op —s=L e N and let 0 < ¢1 < ¢cp < 00. Then there exists an
f € Ap, with supp f C Qq and

{5) f:cﬁf(a:)d:c=0 Jor |B| <L -2
such that (3) fails for some j, with {7 given by (1).

Remark 1.1. We add a few technical explanations. Of course, Aj, In
(3) is always the same space, that is, either Bj, or Fj for all three oc-
currences. The infegrals in (2), (4) and (5) are over R™. Furthermore, these
three moment conditions must be understood in the distributional sense, i.e.
D?f(0) = 0, where f is the Fourier transform of f,and zf = m’f". .. &P has

the usual meaning for the multi-index 8 = (81,...,8,). Of course, L = —1-

in (2) means that no moment conditions are required. In the same way,
L —1=—1in (4) and L — 2 = ~1 in (5) indicates that there exist coun-
terexamples to (3) with no moment conditions. Finally, N and Ny stand for
the natural numbers and the non-negative integers, respectively.

Remark1.2.If o;,~s is not an integer then (ii) shows that condition (2)
is sharp. There are no counterexamples in the delicate limiting case Tp = 8.
If 0, — s € N then there is a gap of length 1 between (2} and (B).

Remark 1.3. Constructions of type (1) are now rather fashionable: a
generating function which is dyadically dilated and translated. This is a typ-
ical procedure in connection with wavelets, spline bases, and, in a more qual-
itative version, atomic representations of elements of some function Spaces.
We refer to [3, 4, 5, 1] and [9; 1.9.2, 1.9.4, 3.2].

Remark 1.4, Of course, (3) is obvious for L, and, more generally, for
the Sobolev spaces W;“ with k& € Ny and 1 < p < oc. On that basis we proved
(8) in [10; 3.1.1] via interpolation, duality and some atomic representations
for the fractional Sobolev spaces H. » and the special Besov spaces B =B,
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with s € R and 1 < p < oo. In [10; 4.4.3] we used this result to obtain
estimates from below for approximation numbers and eniropy numbers of
compact embeddings between function spaces of the above type defined on
bounded domains in R™. In other words, the equivalence relation (3) is use-
ful in proving “only if” parts (estimates from below) in related theorems by
reducing these problems to I, {or better, to their finite-dimensional coun-
terparts l;,v ). In turn, these sharp estimates, especially for entropy numbers,
proved to be a decisive instrument to obtain rather sharp assertions for the
distributions of eigenvalues of some degenerate elliptic differential operators
(see [2}). A second useful application of (3) is connected with sharp Hélder
inequalities of the type

(6) Apy g1 A0 C Apg

P1,917"P2,q92

where s > 0 is given and where one asks for sharp conditions on the p’s and
¢’s for (6) to hold. Again we proved in {6; 4.2, 5.5] the “only if” parts of
corresponding results on the basis of a forerunner of part (i) of the above
theorem (in an unpublished preprint version of this paper}. In other words,
the above theorem is not only of interest for its own sake, but it is also a
powerful tool to reduce “only if” parts of theorems of the sketched type to
the ly-level.

The plan of the paper is simple. In Section 2 we recall very briefly the
definition of B, and Fy , and we prove a proposition about homogeneity
properties of these inhomogeneous spaces which are of independent interest.
The proof of the theorem is then given in Section 3.

2. Preliminaries

2.1. Definitions. Let R™ be the Euclidean n-space. The Schwartz space
S(R™) and its dual space S'(R") of all complex-valued tempered distribu-
tions have the usual meaning here. All gpaces in this paper are defined on
R™, so we omit “R™” in the sequel and write simply S5, §' etc. Furthermore,
Ly with 0 < p € oo is the usual quasi-Banach space with respect to the
Lebesgue measure, quasi-normed by || - | Ly|l. Let g € § be such that

(7}  supppg C{y €R™: |y <2} and @olz) =1 if|z/<1,

and let o;(w} = wo(2772) — (279 2) for each 5 € N. Then since 1 =
Z?i—u w;(z) for all @ € R™, the p; form a dyadic resolution of unity. Let f
and f be the Fourier transform and its inverse, respectively, of f € S’. Then
(¢; F}Y is an entire analytic function on R™ for any f € §'.

DEFINITION. (i) Let s € R, 0 < p < oo and 0 < ¢ < co. Then B}, is the
collection of all f € 8 such that
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®) 171 Bl = (320 es Y | Lall?)
7=0

(with the usual modification if ¢ = oo) is finite.
(i) Let s € R, 0 <p < oo and 0 < ¢ < cc. Then Fj, is the collection of
all f € & such that
NI

(9) 11 Bzl = | ZWI esf)”

(with the usual modification if ¢ = oc) is finite,

Remark 2.1. The theory of these spaces has been developed system-
atically in [8, 9]. In particular, both B, and Fy, are quasi-Banach spaces
which are independent of g € § chosen according to (7). This justifies our
omission of the subscript v in (8) and (9) in what follows. If p > 1 and ¢ > 1,
then both Bj, and Fy, are Banach spaces. As mentioned in the introduction,

these two scales cover many well-known classical spaces.

2.2. Homogeneity properties. As in the introduction and in the formula-
tion of the theorem, A7, stands either for B, or for FJ,.

ProPOSITION. (i) Let 0 < p < oc (p < oo in the F-case), 0 < ¢ £ >
and s > o, = max(0,n(1/p — 1)). There exists a constant ¢ > 0 such that
forall f € A;q and all R > 1,

(10) [F(R-) | Aggll € cRTP||f | Az,

(i) Let 0 < p < o0 (p < ¢ in the F-case), 0 < ¢ < oo and s < 0. Then
there ezists o constant ¢ > 0 such that for all f € A and all 0 < R <1,

(11) [F(R) [ Al < cRTMP| f | A; q”
Remarlk 2.2. Of course, 47, in (10) and (11) stands either for By,

both sides or for Fy, on both sides. The restrictions £ > 1 and 0 < R < 1
in (i) and (i), respectwely, come from the inhomogeneity of the spaces By,
and Fj, given by the terms with j = 0 in (8) and (9). Furthermore, one can
ask whether s > oy in (i) and s < 0 in (i) are natural. We shall not discuss
this point in detail. However, in the course of the proof of parts (ii) and (iii)
of the Theorem in 3.9, formula (62), we disprove

(12) [F(R) | A% |l < cR*™™2||f | A3 forall R> 1 and all f € A3,

pall
if0<p<1lands <n(l/p—1). But this makes it clear that at least the
most suspicious restriction in (i) is natural. By similar arguments one can
see that the remaining restrictions s > 0 in (i) and s < 0 in (ii) are also
natural.

icm
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Proof. Step 1. We prove (i) for 43, = F,- The proof for A5, =
B;, is the same. Let w(x) = p1(z) Where <,o1 ha,s the same meaning as in
Definition 2.1. Since s > oy,

" dt 1/9’
HoRE)

o0
N AP

0
is an equivalent quasi-norm in F;, (see [%; 2.3.3, p. 99]). Furthermore, by
elementary calculations we have

(14) (@) (BN (=) = (p(t )BT F(R™))Y ()

= (p(Rt ) ()" (Rax).
We use (13) with f(Rx) in place of f(z), insert {14), and obtain
(15)  [IF(R) | Foll < cR7™7||F | Ly||

T -3 Y qd Ya
(J e ewanory)

Then (10) with F;, follows from s > 0, R > 1 and the equivalent quasi-
norm (13).

Lp

+cReMP

Lyl

Step 2. We prove (ii) for A3, = Fp . The proof for A3 = B:_ is the
same. By [9; 2.4.1, p. 100],

L,

00 eod)” 125+ Of (e ) Y ) ‘“)”q

is an equivalent quasi-norm in Fj} , where gy and ¢ have the above meaning.
By (14) the second term in (16) with f(R.) in place of f equals

R N 1/a
(e ory)

Since R < 1, the integral over (0, R) can be estimated from above by the inte-
gral over (0, 1) and hence by the second term in (16) multiplied with R*—"/7.
We estimate the first term in (16) with f(R-) in place of f. Let 251 <
R < 2% for some k & N. Then we have @o{Rz) = Eki'g wo(Rz)pi(z) and
by (14) with g in place of (¢),

(17) Re~/P L.

k+2

M Lol <R3 ealR 3O A

(18) ||(‘P0f

By the Fourier multiplier theorem in [8; 1.6.3, p. 31] the nght-ha.ﬁd gide of
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(18) can be estimated from above by

k+2

(19) R S 1ws V()
J=0

which, in turn, since s < 0, can be estimated from above by

(20) cR™™MPaR | sup 295 (0, YV ()| | Ly € R MP|FES
0<i<k

Now (11) with A}, = F,, follows from (18)-(20) and from what was said
after (17). :
3. Proof of the Theorem

3.1. A preparation. First we prove the right-hand inequality of (3). For
this purpose we need a preparation. By (1) we have

(21) P70 =Y af(z—2k), aeC,
kezn
with f € A7, and supp f C @ in accordance with the theorem. We claim
that
i/p
@ I3 anfC—2m) [ Ag |~ (30 tel) s | A,
keZn keZn

where the equivalence relation “~” means that each side of (22) can be esti-
mated (from above) by the other side times a constant which is independent
of f and {ax}. Since the f(z — 2k) have disjoint supports in unit cubes
centered at 2k, the relation (22) with A5, = Fj follows immediately from
the locahzatlon property of the spaces FS (see [9; 2.4.7, p. 124]). To prove
(22) for A3, = Bg, we use the chara.cterlzatlon of By, via local means (see

pq
[9; 2.5.3, p. 138]). Let K be a C™-function in R™ with

(23) supp Ko C {y €R": [y| <c}, Ko(0) #0,
for some ¢ > 0, let K(z) = (31, 8%/02)N Ky(z) for some N &€ N and let
(24) EWo(e)= [ K@ee+ty)dy, 0<t<l,

R'ﬂ

with its obvious counterpart Ko(l, f) (local means). If 2V > max(s, o)
then

r dt\
(25) ”g|B;3q”N|K0(1:Q)|Lp['i‘(fﬂ'sqllK(t,g)JLp{"T)
' 0

in the sense of equivalent quasi-norms. The proof in [9] shows that we may
assume that ¢ > 0 in (23) is small. We insert (21) in (24) and obtain, by the
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support properties of f(z — 2k),

(26) K(6 Y anf(~20)) (@) = 3 anK(t, £)(z - 26)
k k
en  |x(s > ot (= 20) [ L[ = W 1) Lol 3 o
k

and finally (22) with 4] = B} .
3.2. The right-hand inequality of (8). Let s < 0. Using (22), (21), and
(11) we obtain

(25) (3 anl#) 17 dzgll < el #2570y | gy
k

<2 1| g

This is the right-hand inequality of (3) if s < 0. Let now s > 0 and s—m < 0
for some m € N. We uge

(29) L7 T AZell ~ 187 | Apg ™+ 3 1D | Agy™)

|er|=m.

(see [8; 2.3.8, p. 59]). By (28) with s — m in place of s and (D*f7)(z) =
(D™ Y (z )2(J *1 ™ we have

Vpy .
(30) I | 45l 2 c(}j lasl?) " (20 mnin 5 | g

+ 30 PPl pes | are|)

|| >
l/p .
2 o 3 laxfr) T2immn S peg| A
k jce|=mmn
If supp g C @, the unit cube, then
(31) lo | 457" < e D 1D | Az,
|e|=m

where ¢ is independent of g. The proof of (31) is standard. Assume there does
not exist a constant ¢ > 0 such that (31) holds for all g with suppg C Q.
Then we find a sequence {g}72, with
suppg CQ, gt | Azg ™ =1,
(32) Z D% | Apy™ | =0 asl—co.
|ee|=rm

Then {g;} is bounded in A3 and hence pre-compact in A5;™. By the obvious
counterpart of (29) and the last part of (32) it follows that {g;} is also
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pre-compact in A7 . We may assume g, - g in A7 . By (32) we have
(33) suppgcC @, |lg|lAp,;™l=1 and D% =0if|a|=m.

By the last part of {(33), g must be a polynomial, which contradicts the first
and second parts of (33). This justifies (31). Hence in the last factor in (30)
we can add the term ||f | A5 ™| (with a different constant ¢ in (30)). Then
(28) follows from {29) and this modification of (30}.

3.8. The left-hand inequality of (3): the case s > op. Let s > 0. Then

we have I = —1 in (2), which means that no moment conditions for f are
necessary. By (1) and (10) we have
(34) 1# 1 gyl < 2| 7 ay (-~ 28) | A3,

k

Now the left-hand inequality of (3) follows from (34) and (22).

3.4. Atoms. To prove the left-hand inequality of (3} also for s < o,
we need atomic representations of By, and Fj,. We recall the necessary
notations and results in a form which is convenient for us. Let v € Ny
and k& € Z”. Then Q. stands for the cube in R" centered at 2~k with
side-length 27", Let x,x(x) be the characteristic function of Q. and let

(35) X&) (z) = 2Py (),

be the Ly-normalized characteristic function of Q. Let A= {A\,z € C: v €
No, k € Z"}. We introduce the sequence spaces

(59 10 bl = (3 (b)), 0<pgo0, 0<a <o,
v k

and

(51 N ol = | (X Porr01) ™| 2
w,k

0<p<oo, 0<g< oo,

0<p<oo,

with obvious modifications if p = oo and/or ¢ = co. Let r@Q,; be the cube
centered at 27"k with side-length r2—%,

lg-atoms, Let K € Np. Then a function b(z) is called a 1x-atom if
suppb C 5Quy for some k € Z™ and

(38) |ID%b(z)| <1 if lo| < K.
(s, P)xc,r-atoms. Let K € No, L+1 € Ny, s € R and 0 < p < 0o. Then a
function b(z) is called an (s, p)x r-atom if
(39) . suppbC 5Q,m  for some v € Ny and k € Z",
(40)  |Db(x)| < |QuilHrHH/nmlol/n = gevtemn/oiidal i (o] < K

icm
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and
(41) [ ab(z)de =0 18 <L
(again L = —1 means that there are no moment conditions).

Atlomic representations for B, Let s ¢R, 0 <p<o0,0<g< oo,
K > ([s] + 1)+ and L = max(~1,]o, — s]). Then f € By, if and only if f
can be represented as

(42) F= 30 (Mba@)+ 3 Aabia(s)
kEE» v==0

where by () and b,y (z) are 1 x-atoms located in Qo and by () are (s, p)x. 1~
atoms located in @k, respectively, and

1/p
(43) (S 1AP) " 4 10 byl < o0
k
The infimum over all quasi-norms (43) with respect to all possible represen-
tations (42) is an equivalent quasi-norm in B,

Atomic representations for Flplet s e R, 0<p<oo,0<g < oo,
Opg = max(0, —n + n/min(p, g}),

(44) K2z ([s]+ 14, L2max(=1,{op — s]).
Then f € Fy, if and only if f can be represented by (42) and
1/p :
(45) (S u) ™+ I | foall < 00
k

The infimmum over all quasi-norms (45) with respect to all possible represen-
tations (42) is an equivalent quasi-norm in Fp, .

The theory of these atomic decompositions has been developed essen-
tially in {3], [4] (see also [5; Section 5], [7] and [9; 1.9]).

8.5. The left-hand inequality of (3): the case Bj, with s < op. Since f
is supported near the origin we may assume that an optimal atomic decom-
position of f in the sense of (42) has the form

(46) f = /\Ob(}(m) + Z Z)\ukbuk (I),

ke@n v=0
where bg(x) is the only 1x-atom needed, located near the origin. The mo-
ment conditions in (2) and those in (46) for the (s,p)xk r-atoms may be
assumed to be the same. Then bo(%) also satisfles these moment, conditions
and may be incorporated in the sum in (46). Hence we may assume Ag = 0
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and
(47) 1 1 Bpgll =~ 1IA [ gl -

By (1) and (46) with Ay = 0 we have

(48)  flz) = Z 0 Z/\ng(:iﬂ)(s—n/p)buk(gﬂl(m — ghi))g~ile=n/p)
Al kv

Since supp f < @4 with d > 0 small we may assume that all non-vanishing

terms in (46) are located near the origin, say, within @, /2- Hence the atoms

2~ UFe—n/B)p,, . (29 (z — 28)) belonging to different I-terms have disjoint

supports. In other words, (48) is an atomic representation of f7(z) and we

have

oC

(48) 177 | BS, |l < cgj(s-n/p)(z (Z gl /\yﬂp)q/p)uq
Ik

v=0
) 1/
= e (37 jayf?) | )
i

Now the left-hand inequality of (3) follows from (47) and (49).

8.8. The left-hand inequality of (3): the case Fy with s < op, I. We
proceed as in 3.5. But there is an additional difficulty since the assumed
moment conditions in (2) and those needed in {41) and (44) are different
if ¢ < p. In that case we assume temporarily that (2) holds with I =
[0pg — 5] (and s € o,). Then we have (46) again with Ay = 0, the atomic
representation {48) and

(50) 171 Fpgll ~ AT Feal -

Now again, since different i-terms in (48) have disjoint supports, (37) yields
the counterpart of (49),

. . , 1/
(51) 1571 Fgl < 2 (37 af) YA fl
!

Now the left-hand inequality of (3) follows from (50) and (51).

3.7. The left-hand inequality of (3): the case Fpy with s <oy, II. Now
let I = [0, — s] as assumed in (2). Let temporarily L = lopg — 8] = L be
the number from 3.6. (Of course, besides s < op We may assume ¢ < p.) We
have (46) where b, (z) are (s,p)  7-atoms. Then by(z) is an (s, p) k,-atom

located in Qg 9. We assume that we have an optimal atomic decomposition,
hence

(52) Pol + 1A | Fell ~ [1£ 1 Egyl-

A localization property 193

We write
(53) F=h+f  with fi(z) = Aobo(z).
We apply 3.6 to f,. Then we obtain, by (51) and (52),
i (5 /p
(54) |7 ES) < 2O/ (5 ae) g |

i

For f! we may use 3.5 to obtain
; (g— l/p
65) A Bl < ol (3 auf#) g | B
k

However, we have [|by | B} || < ¢ uniformly for all admissible atoms bg.
Hence by (52) and B;, C F?, it follows that

\ s (a—n 1/p .
(56) I gyl < 20 (5w ) ) £ B
k

Now the left-hand inequality of (3) with A3, = Fg, follows from (53), (54)
and (56). The proof of part (i) of the Theorem is complete.

8.8. Parts (ii) and (iii) of the Theorem: the case 1 < p < oo. Let s < 0,
1<p<co(p<ointhe Fcase) and 0 < ¢ < o0, Let n = 1 and let
x(z) be the characteristic function of the interval [0, 1]. Then x € A3, since
Lp C A7, Let m € No. Then f(z) = (d™/da™)x(z) € A3, if s < —m. Let
zhd = 279k, Then we have, in accordance with (1),

27 —1

(BT FE)= Y FR(e—oh)
k=0

qm 273

w gim ig— 2PN = 9=9m p ()
=2 dmm(%x@ (2 - 57))) =277 f(z)
Assume that (3) holds. Then we have

(88) 277N F | Ayl = 1177 | Ap

P

ALY .
< RN S | A < 2 F | Ayl
=0
We obtain a contradiction as § — oo since s < —m. Of course,
(59) [ 2P flz)ds=0 #[f<m~1.

We ‘have op =0sgince 1 £p<ooand hence L=[-s]=mif -m~1<s <
~m in accordance with (ii) of the Theorem. Thus (59} coincides with (4) and
we have the desired counterexample in that special case. If s = —m—1 then
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L = m+1 and (59) coincides with (5). If the number d used in (1) is such that
the above arguments cannot be applied immediately, then we decompose
x{z) in a finite sum (in dependence on d), apply (3} to each component
and sum up. We arrive again at (38) and the above contradiction. Upon
replacing the interval [0, 1] by the unit cube in R™, there are no problems in
extending these arguments from n = 1 to n > 1, which completes the proof
of (ii) and (iii) if 1 < p < co.

3.9. The parts (i) and (iil) of the Theorem: the case 0 < p < 1. Let
D<p<l,0<ggo0and s < op = n(l/p—1). Then we have L =
[2(1/p~1) ~s] € Ny in (4) and L € N in (5). Let f € 4;, with a compact
support such that (4) resp. (5) holds, but

(60)  (D=F)(0)#0

(see also Remark 1.1 for technical explanations). Then f(z) is an entire
analytic function with the Taylor expansion

(61) flz) = Z aqz® withk=_Lresp. k=L-1,
lal>k

for some o with |a] = L, resp. ja| = L — 1

convergent, in R™. We assume that (3) holds with only one summanc, hence

(62) IF(20) | A,ll < e/l p ] A2 .
Then we have, by (8) and (9) with ¢ = @,
(63) @MY | Lyl € 2772 £ ] 42 1.
Furthermore, we obtain
(64) p(2)F(27)N(2) = 277"p(2) f(277 )
= (P(m)Z_jn_jk’ Z aaz_“al—k)jma,
|2k
(65) e(z) D a2 0 R o o(a) 3 au2® i S
|| 2k ||k

a8 j — oo and hence
. \'

66)  (p(e) 3 a2 #1=Ra2} () - (<)t 3" aaDp(e) in S

la|>k |ev|=k
as j — 00. We assume that the function on the right-hand side of (66) does
not vanish identically. Then (63), (65) and (66) yield
67) || 32 aab | L] < tim aite-nimriean) | e

J—reo
loe|=k

But this is a contradiction since k < —s5 + op=—s-+n(l/p-1).
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