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Some new Hardy spaces L2HE (RZ2 xR%) (0 < g < 1)
by

DACHUN YANG (Beijing)

Abstract. For 0 < q < 1, the author introduces a new Hardy space Lzl':(,g{(R%w xR%)
on the product domain, and gives its generalized Lusin-area characterization. From this
characterization, a ¢-transform characterization in M. Frazier and B. Jawerth’s sense is
deduced.

0. Introduction. S. A. Chang and R. Fefferman (1] introduced a Hardy
space H}(R2 x R2) generated by rectangle atoms. By the inspiration from
the papers [3, 4, 7, 8] concerning non-product domains, we consider its
“ocalization” at the origin. More generally, for 0 < ¢ < 1, we introduce
a new Hardy space L?Hg (R x R%). In §1, we establish its generalized
Lusin-area characterization. Applying this, in §2, we give its (-transform
characterizations in M. Frazier and B. Jawerth’s sense [5, 6]. 1t is worth
pointing out that our method in §2 differs from the ones in [5, §, 8]. We
find that the generalized Lusin-area characterization of L*>HE(R% x R%)
plays a crucial role in establishing its y-transform characterizations. Further
applications of the spaces L2 H{ (R% x R} ) are under study.

1. The generalized Lusin-area characterization of L H{ (B2 x R3.).
We first introduce the concept of a center rectangle atom.

DerNiTION 1. Let 0 < ¢ < 1. A function a(zy,z2) on R x R is sald to
be a center (g, 2)-rectangle atom if

(1) suppa C R, where R = I » J is a rectangle with center at the origin;

(2) llallz < |RI/2715,

(3) [a(z1,e2)a dry =0 = [a(z1,v2)af dog, for all @ € N with 0 <
a<1l/g—1and all 21,33 € R.

We define the Hardy space L2HE (R} x R2) to be directly generated by
center rectangle atoms: o
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218 D. C. Yang

DEFINITION 2. Let 0 < ¢ < 1. A distribution f(z1,27) on R x R belongs
to the Hardy space L*HE(R3 x R2) if and only if

F= e

in the distribution sense, where ) [A;]? < co and each a;(z) is a center
(g, 2)-rectangle atom. Moreover, we set

. 1/q
”ﬂl“ffﬁ(mixmi) == inf { (Z |)\j|Q’) } :
where the infimum is taken over all the decompositions of f as above,

The dual of the Hardy space H'(R3 x RZ) is L} (R x R) (see [1, 2)).
Our results will indicate that the dual of L2HE(R2 x R2) is the following
Herz-type space.

DEFINITION 3. For k,1 € Z, let Cy; = {z = (z1,22) e Rx R : 251 <
1| < 2%,271 < [as] < 2'}. Suppose 0 < ¢ < 1. A function f € L2 (R x R\
{(0,0)}) belongs to the space K§(R x R) if and only if

1
gy o= { 3 264900 e 1117 < oo
k€

Obviously, KI(Rx R) E LR x R) for 0 < ¢ < 1.

In order to establish the generalized Lusin-area characterization of the
Hardy space L*HZ(R? x R2), we still need some notations. Suppose that
%(t) is a sufficiently smooth function on R! with compact support (without
loss of generality, we can assume that suppy C [~1,1]), ¥(—t) = (1)
f_ll B)t dt =0 foralo e Nwith 0 < ¢ < 1/g— 1, and

?

f lﬁ(tﬁ)ﬁt'l dt =1 foreach ¢ # 0.
0

Ify >0, we write 9, (t) = y~*P(y~'t) and if y = (yy, Ya), t = (t1,t9) € R,

we define P, (t) = 9, (t1)%,,(ta2). For § € 8'(R x R), the generalized Lusin-
areg integral of f is defined as

@ ={[f |(f*%)(t)l""yfzy:?gdmy}w,

I'(=)

where I'(z) = I'(z1) x M(zz) and I'(z;) = {(&, ) € B2 : |z ~ % < wi),
i=1,2.

The space L2HE(R2 x R2 ) has the following characterization in terms
of the generalized Lusin-area function.

THEOREM 1. Let0 < ¢ < 1, f € S'(R x R). Then f € L*HE (R x R2)
if and only if 5(f) € KJ(RxR), and for each ¢ € S(R x R), f*py, 1, — 0.in
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1, -1 -1
the distribution sense as ti,tz — o0, where py, b, =t Y to(ty e, i T 2a).
Furthermore,

£l oy e <2y ~ Is(H) xgmeem) -

Proof. For the sufficiency, we only give the center atom decomposition
of f. Write Qp = {z € R: o] < 2¥}for k € Z. Let Q= {z €R: Wr—k €
[0,1)}, where j,k € Z; Do ={Qyr:J, k€ Z} and D = {Ix J:I,J € Do}
Moreover, let D} = {Q € @ : Q=TIxJ, I C @ I ¢ Qr-1; J C G,
J g Quq}for k,l € Z

For Q € ®}, write
Q= {ty) e R xRL 1€ Q=TxJ |I| <y <2}, |J] <wa £ 211}
Then Uz oo U2 oo Ugeny @+ is a disjoint decomposition of R% x R3.
By the Calderén representation formula [2], we have

f@) = [ [ ey, (e -ty dtdy

2, mp?
Ry xRy

i i > /S (6 y) 0, (z — Oy v dtdy,

k=—col=—00 QED] Q4+
where f(t,y) = (f *%,)(t).
Write
aj(z) = ’\]:j z f f f(t,y)‘{b_y(a: - t)'yl—ly;]- didy,

QeD! @+

i

where Ap; is a constant to be determined. in the following. W? want to
verify that al(z) is a center (g,2)-rectangle atom. If z € suppay, then we
can assume that for some Q € D% and some (¢, y) € QJ;; _:n;e havfigi—fii_s glh-.
Thus, |z5| < |6 + v In particular, 21| < ok 9. 2k+l < 2%F3. Similar v,
|zg| < 2473, Thus, supp o), € Qie+2 X Qi+z, where k,! € Z. By the hypothesis
about v, we easily deduce that

f ab (z1,z2)2f dag = 0= f al (w1, 32)2f day

for all 1,22 € Rand alla e Nwith0< a < 1/g ~ 1. Setting

1/2
Mg 1= (|Qual - |Qz+2|)l/q—1/2( > ff [Pt 0) Py e dtdy) ,
, Qeni Q4

we now estimate ||a,[|2. In fact, we have

lakla= sup | [ [ ak(e)ota)ds],

lgllz=1 ' gy
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and

EC

@da| =5kl 30 [ [ st vt deay

et Q4

<A, {Z ([ [ i) yzldtdy)/

QeD, Q.
x (ff lotea)utv aray) )
Q4

< (1Qutal - 1Queal) /214 g, .
Thus,

”a’i’“2 < (IQFG-}-Z‘ . .Q£+2‘)1/2“1/q .

Therefore, al(z} is a center (g,2)-rectangle atom. It remains to estimate
Ek,lez | A,1|9. We first have

JJ s@yae= [ [ { ][ 1)y dray}an

Crn Cr,i I'(e)
ff Fit, ) {z € Chy: (ty) € D) Yy 2yy ? didy
R2 xIRE
2C Y [ 1ftty) Py e tdtdy.
QRedl Q4
So,

)\k,l < C(|Qk’+2! : 1Ql+2|)1/q—1/2||3(f)xck,; Hz
= Q22D 5(F1x0, 2 -

Therefore,

1/q
(3 Pale) ™ < CHa®00-D) s )y, [817 = Clls(Fll gy
klecZ

This proves the sufficiency of the theorem. Now, we turn to the proof of
the necessity. We only need to show that

ls(e)lxsmxmy < C

for any center (g, 2)-rectangle atom a, where € is independent of a.
Suppose that suppa C I % J, Qo1 C I C Qro and Q-1 C J C Q-
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Then
o0 o
HS(G)||§<;(R><R)= Z Z Z(kH)(l_q'/z)"S(a)XCk,z“g
k= —oo l=—o0
ko-+10 in+10 ko-+10 0o
=2 2 ot 2 )
k=—oo l=—0no k=-—o0i=l+11
oa lo+10 oo oo
D IEDIENE DI
k=kog+1ll=—co k=ko+11I=lg+11
=h+L+Is+ 1.
Now,

ko+10 lg+10

I < Clald Z Z olk+i)(1~g/2)

k=-—o0 l=—00

< C(1]- |J|)(1/2—1/4)42(k0+:n)(1—q/2) <c,

where ' is independent of a. The estimations of Iy and Iz are similar; we
only compute Is. First, we have

ls@xcnlE = [ [ dz [ [(ax¥,) )Py %" dtdy

Cr1 I'(x)
<C [ dm [yt dtadys [ ((alb,) =By, ) (0P dér,
[0} I'(zs)

where Oy = {@p € R: 207! < |2p| < 2!}, Takinga e Nwith 1/g -2 <a <
1/g — 1, from the Taylor formula we deduce that

f I(G’(gl; ) * wyz)(tZ)lz dEl
= f f G’(Els 52) (Eyg (t2 - {:2) - _Eyz (‘tg) - [Eyg]’{tz)(_gi’) -

2
déy

- &T[Eyz](a)(tz)(—fg)a) d§2
< C\J!Z (oe-+1) y;2 {a+2) f (f %G 51,{;'2 dfg) &y
< CI|t=2/a) gjRe-Yate), ~3let?)

Noting that z2 & Qi+10 and taking into account the supports of ¥ and a,
from yq > |72 — fo| and yo 2> [f2 = £5] we obtain yg > |z — £a|/2 = |z2|/4.
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Therefore,

H ( )XG'HH2<C f dzs f Iﬂl Z/Q}J|22 1/'1+0¢) (2a+5) dy2
01 |m2|/4
Ou'|1—2/q|J‘Q(Q*l/qﬁ«a)2—(2a+3)l ]

Thus,
Ko+ L0 o]
I < C’!I“J/Q_l!qu(Z——l/Q-i'a) Z Z g(k+)(1-a/2)g—alet8/2! <
k=—c0 l=lg+1L
where C is independent of a.
‘We now estimate I4. Similarly to I3, we can assume that ¥ > [21]/4,
y2 > |xa|/4. Taking & € N with 1/¢ —2 < @ < 1/¢ — 1 and using the Taylor
formula, we have

(@e 30 = | ] o(68) (B = &) ~ o)~ BT (1) -60) -
- LB, 1)) ) (Funlta = )~ (8
- B ) (65) = = B, 02)(~8a)" ) s
<O 1IN yn) ™) [ [ a6, &) dér déa
C(I- [T (gyy) =+
Thus,

Is@xciE <C [ [ do [ [ Q1] 1702710 () =223 dyy iy
Cri lwul/dme|/4
< O] - |J)) K21/ g-(k+iH2a48)

From this, it is easy to verify that Iy < C, where C is independent of a.
This finishes the proof of Theorem 1.

2. The p-transform characterizations of L2H{(R? x R%). Now, we
give the p-transform characterizations of L2HE (R2 x R3 ) in M. Frazier and
B. Jawerth's sense [5, 6] by using its generalized Lusin-area characterization.
For this, we first introduce some notations. Let @, % € S{R), supp &, supp {5
C{teR:1/2 <|¢ <2}, and |B(E)], [%(€)] > C > 0 whenever 3/5 <
|¢] < 5/3. In addition, ¥, .z B(2°E)9(2°€) = 1 for £ # 0. Write ¢, () =
2p(2x), . (2) = 2¢90(2"z) for v € Z. Let Q; 5, Do, D be as in the proof of
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Theorem 1. If I = Q; », we define
or(z) = 17202 — k) = 1Y *p,(z — 21),
where |I| = 27" and z;y = 27k. Moreover, for R = I x J € D, let g =
@1 @ @y Similarly, we define ¥yp. Then, for f € &'(R x R), we easily obtain
flon,m) =3 (f,9r)ba(1,22)
RED

in the distribution sense (see [5, 6]). The space LZHE(R% x R3) has the
following characterization.

THEOREM 2. Suppose that 0 < g < 1 and @, ore as above. Consider
the distribution

=Y S(R)pr(x)
ReD
on R x B, where S(R) = (f,pr). Then the following four statements are
equivalent.
(1) G{f) = (g IS(R)Plr(=) )2 € Ki(R x R);

(2) There extsts a constant Cy > 0 such that for any dyadic rectangle
R e D, there is a dyadic rectangle Q(R) C R such that |Q(R)| > Co|R| and

= (Z }S(R)\2|RV1XQ(R)(m))1/2 e KR xR);

(8) W(f) = (g IS(R)F|BI™ xr(2))? € K3 (R x R);
(4) f € LPHE(RY x RY).

Moreover, the related norms are mutually equivalent.

In order to simplify the proof of Theorem 2, we need to introduce some
“tent” space TK§(R x R). For this, we define a measurable function

s@e) = (X la@a)"

Roz
for any sequence of complex numbers o = {a(R)}ren, and write
SUpPPp ¢ = U R,
{R:ae(R)#0}
DEFINITION 4. Let 0 < ¢ < 1. Wesay that & = {a(R)} ren € TK{(R x R)
if S( ) S Kq(R X R) Moreover let HO‘HTKQ(ERXR = ||S(a) |Kq (RXR)-

DEFINITION 5. Let 0 < ¢ < 1. If there exists a rectangle @ with center
at the origin such that @ O supp o and

S (B <1QPe,

Re®
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then we call & = {a(R)}rep & center (g, 2)-atom sequence, and the smallest
rectangle @) as above the base of a.

The “tent” space TKJ(R x R) has the following characterization.

THEOREM 3. Let 0 < g < 1. The following three statements are equive-
ient.

(1) o € TKI(R x R);
(2) There exists a constant Cp > 0 such that for any dyadic rectangle
R €D, there is a dyadic rectangle Q(R) C R such that |Q(R)| > Cu|R| and

= (D latmPE " xam(@) " € KI®xR);

(3) There exists a constant Cy > 0, a sequence of center (g,2)-atom
sequences {o k) kez and o sequence of numbers {A; ik} kez Such that
supp oy i C C]_(Qj x Qk) and o = Ej,k:e‘Z )\j,kaj,k; with Zj,]iZEZ I)‘j,qu < 00,

In addition, the related norms |lallrximxmy and ||o||kamxry and

inf{(3°; yez [Nkl VY are mutually equivalent, where the infimum is taken
over all the decompositions of o as in (3).

Ag the proof of Theorem 3 Is, in essence, similar to that for non-product
domains [7], we omit the details.

Now, we show Theorem 2 by using Theorems 1 and 3. First of all, we
point out that equivalence of (2) and (3) has been proven in Theorem 3,
while the proof of (1)=+(2) is trivial. Thus, we only need to show (3)=(1)
and (3}<(4).

We first prove that (3)=(4), which is the crux of the proof of The-
orem 2. For this, by Theorems 1 and 3, we only have to prove that if

f(z) =35 S(R)¥r(x), where {S(R)}reo is a center (g, 2)-atom sequence
supported on Qp, x @, then |/s (f)HK“’(Rx[R) < C, where s(f) is the gener-
alized Lusin-area integral of f and C is independent of &, and {y. In fact,

00

Z Z 2(-’n~l'5)(1"‘q/2)HS(f)XCJ'}e,L“g

bz oo I —o0

||S(f)||§{g(mm) =

ky410 410 ky-R10 o
=D 2t X
k=—o0l=-00 k=—ool=l;+11

oo {1410

+ 3 Y.

k=ki+1li=—-00
h+h+L+14.

+ Yy

ksky+11 1=l +11
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Now,
k110 14+10

I < C||fiI3 Z 3 at+h-a)

k=00 I=—00

< 0(213 ) ol +1)(1-2/2) < (7

where ' is independent of Icl and [;. The estimations of I; and I3 are similar;
we only compute Ip. For this, let x(t) be the characteristic function of the
interval (0,1). We first have

Hs(f)xak,z”g
= [ [ xeo(@de [10F*F,)0 %" dtdy
I'z)

<C [ das fyzn:zdthyQ T 10 En) # 8, )1 de
Cy I(zg)

=C'f dry [ y3?dtady,
= I'(x2)
<[ X AS@ T )]

R=IxJc®

< [de [} l N SRy *by,) tg)i v dtgdy2
e} I(m2) 1600 JEDo .

<o) [am [( X |S(R)x-lwu*ayz)(m\)‘y;?dtzdyg

I G M(zy) JE€Dg

<o) Ism?)
R
x( i S [ das f|('¢’J*Eyz)(tgﬂzygzdtzdy«;)

p=rI1 [(J}=2"Y O} Ilaxz)

502(k1+11)(1—2/€0 i Z f dzo

ve—ly W J)=2-" &
co zg —
e
0 R

For zo € C) with [ = 11 +11, since J C @)y, , there exists a geometric constant

) (97 * 0y, ) (t2) Pz 2 dta dys -
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Cp > 0 such that |zy — zs| > Cojzz|. Fix any 3o € C) with I > Iy + 11
Write

T

) (47 * By, ) (02)|Py7 ? dta dys

|zal/4

Of Rf+ ff...=:111+112.

Go‘mzi/ll i

Using the fact that suppt C (0,1}, the regularity of 17 and its vanishing
moments, from the mean value theorem, we easily compute that

Col}zi/‘l j‘ 23 — b
" ()
' 0 R Y2
J— 2
x| [ Wole) = a8y, e — £2) déa| w7 dta di

Colza]/4 .

< O, f fx( 2
0 B

X (f Itz — &alyz

=27 v{2L— 1)!:1: |-2L

)lJl 2yiw2D 2(L+1)

2
E(t—%_—gg) 1 d§2> yy 2 dta dys
Y2

where I is a constant to be determined in the following. For II,, taking

a € Nwith 1/¢g—2 < o € 1/g — 1, from the Taylor formula we ob-
tain

m= [ [x(%

Cplza|/4 R )
—ty, (ta — 7)) — [,,]'(ts — 1) (w1 — &2) —

) (‘ib‘,,z (ty ~ &)

1 2
- a['%z](a)(tz -z )(zy —~ 52)"‘) des y{z dts din
L P R~
Colza|/a R

2
< ([l —asl (1 + 2160 — 2} P dbs ) O dty dys
< el lnid v(2ce4-3) |m2!—‘2a—4.

Therefore,
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Is(f)xcn, 12
< O olktili=2/a)

x( i > f(2—'v(2L~»1)|m2|_2L+2ﬁ”(2“+3)|332|-20_4)dmz)

[PEE Y (=2~ C
< (g olkrth)(1-2/a)

o0
X Z {ZHV(QL—1)+I1+U—~I(2L~1)+2-—v(2a+3)+£1+uﬁt(2a+3))
Vﬂ.—ll

= Oy (21«1 (1— 2/q)+l1(2L»—2/q)—-£(2L—l)+2k1(1—2/q)+l1{2a+4—2/q)—l(2a+3))‘

Selecting I > 1/g, it is now easy to verify that I» < C, where (' is indepen-
dent of ky and [;.

Next, we estimate I,. For this, let D, 1, = {: S(R) # 0} and let Co
be the geometric constant as in the estimation of I,. First,

HS( )XOJHH

ff e HZS(R)(«/JRW (t)] =2y 2 dt dy

< (Siswr) [ ] dw;zggx(ﬂiﬁ)x(%@)

(X wae T e dbdy

BEDry,1

Colz|/4 Cg!wzl

< gt a=2/a) [ [ dm{ f Bf an”!m

Cr, 0

olwwl/4 [o%]
+ [ [ T)-
0 Coles|/4R R
oo Colzz]/4 oo
« o7 JT S
Colwal/d O R R ou|m1 /4 Golza]/t R R
oUett)(1=2/9) [ [ ([ITy 4 HI> + I+ Iy deo.

Chyt

For III,, noting that = € Ci,p with k& > ky +11 and ! > I + 11, by the
regularity of ¢ as well as supp 3  (0,1) and their vanlshmg moments, it is
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eagy to prove that
Wrx PO = | [ [ Wr(&0) = br(00))Ws(E) - puta))

X by, (b1 = €10y, (t2 — &a) déx déy
< Cp(|I] - |J))~3/ o= CatuallLsl) (| | (g1
where L is a constant to be determined. Therefore,
Colzi|/4 Colmal/e

ms<c Y. [ [ (n-upt
0

ReDy, 1, 0
% 2 *2(!—’1 +1g )(L+1) (

< C(lwal - fwal)2F

|z [ |) 2 E Dy 4, dy, dys

[s.o]

oQ
X( Z zaul—zvlcz,+1)+k1+m)( Z 93v2 ~2ua (L+1)+i1 1

=k s —]q

= 02(k1+I1)(2L—1)U$1| )2

The estimations of II7; and i3 are similar; we only compute IITs. Take
@€ Nwith1/g—2 <o < 1/g— 1. Similarly to the computation of [II,

(b * B, )(8)]
=i T Grlen) — ()%, (11 — &)

X (Eyz(tz - 62) - Ey:(tz - 55'_]) - [Eyg]l(h - mJ)(mJ - 52) B

= é[@yz](a)(h —z5)(z; ~ 52)“) (&) déy déy

SO )72t [y gy [y, (8 — 1)) déy

x [ IR+ 2 g — 7)) — 2|ty a2 g,

< cLm~3/22—V1(L+1)-—wa(a+3/2 2

vy “ 77,
where L is a constant to be determined. Therefore,
oy g0 Y o7nlietd)
REDy, 1y
Colai|/4 )
(S nllP@ ) gy) [ ey,
: 0 Chlea|/d’

)I$1|—L-1
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S CL‘xlt—QL]mzl—Qa—-ll

oo oo
x( Z 23u1—2v1(L+1)+k1+v1)( Z 2—ug(2a—§-3)+ll~|—uz)

vy=—ky vo=-—I1
2k (L—1)+ky+1 {200+3 —2L —2a-4
=2 1( Yk 4+ {20+ )|$1| |$2| a4

For 1114, we obtain similarly

(%5 +B,)(0)
[ @) (B2~ €)= Fyp i —2)

[y, by = )mr — &) ~ .. — %[ﬁﬂ;ﬁyl]m(tl — )z — 61)“) ds,

X

[ ds(é) (Eyz (t2 — &2} — ¥y, (t2 — )

— Wyz]’(tz - ﬂ.’?J)(ﬂ’»'J - 62) — .. —i-i[ayz](cx) (t2 _ ﬁ?J)(L‘J - 52)0:) dffz
< 02~(V1+V:)(a+3/2)(ylyg)—za_2 _

Therefore,

oo o
me<e o [ [ artabeedsiiy, )-8 gy dy,
Refgkl,ll Cglmlj/‘! 00[22]/4 .

< Oflan] - 2oy~

je =}
x( i 2-V1(2a+3)+k1+m)( Z 2-Vz(2a+3)+l1+vz)

vy =~ky ve=—ly

— 02(k1+11)(2a+3)(|$1| . |w2|)—-2a—4 .

Thus,
|i3(f)>cc,,,1||§ < 0{2(k1+l1)(2L—2/q)—(k+l)(2L—1)
okt (2L-2/g)+h (20-+4-2/q) ~k(2L-1)~1(20+8)
4 ok (20-+4-2/q)+11 (2L~2/9)~ k(20+3)~1(2L~1)
ol et 4-2/g)~ (BHDRertd)y

Taking L > 1/q, we now easily get Iy < C, where (' is independent of &; anfi
l,. We have thus proven (3)=(4). The proof of (4)=(3), by properly classi-
fying the dyadic rectangles, is essentially similar to that' of Propesition 2.1
in [8]; we omit the details so as to limit the length of this paper.

Now, in order to complete the proof of Theorem 2, we only need to show
that (3)=>(1). Similarly to the proof of (3)=-(4), without loss of generality,
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we can suppose that f = ¥, pco S(R)Yr, where {S(R)}rep is a center
(¢, 2)-atom sequence supported on Qp, X @Q,. We only need to bound

oo

Y, D, 2EYNG()xe, 3

k=—coil=—00

ko+3 o483 kp+3 oo

=3 Y .+3 ¥

k==~ 00 l=--00 k=—o0 [=lo+4

o0 lo-k3 =) =4}
+ Y Y.y T
k=ko+4 l=lp+8

k=ko+4 l=—co
=L+ L+ 13+ 1.

For I, we can estimate as follows:

||G(f)H§<g(me) =

kp+8 lo+3
3TN 2= G( fxe, I
k=—o00 I=—o0

glhotio)(1-9/2) < (7|

<O(Z{S(R )

where C is independent of kg and Iy. As before, the computations for I, and
I3 are similar; we only estimate I, Note that if J C ¢, and zz € ) with

1> ly+4, then |¢y(3)| € Cr2/*~*%|zo|~%. We choose L > 1/¢ to deduce
that

IG(xelz= [ f Zzs Plp ()2 da

Chuyt

< Z|S (R [ s (2)]? daze
Cy
< Ozko(1~z/q)+zn(zL—z/q)— (22-1)

We can now easily verify that Iy < €, where ¢ is independent of #. Finally,
we estimate Iy. Again, we have

lCxclz =D [ [ ISR |gr(a) dz

B Ok
S CYIS(R)PHEHDEY [ 151728 gy [ || 2 i
R Cx o]

< Oalkorto) (BL-2/0) - (k+))(2L-1)

and it easily follows that Iy < C, where C is independent of f. We have
finished the proof of (3)=(1). This proves Theorem 2.
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