icm

STUDIA MATHEMATICA 109 (3) (1994)

Mixed-norm spaces and interpolation
by

JOAQUIN M. ORTEGA and JOAN FABREGA (Barcelona)

Abstract. Let D be a hounded strictly pseudoconvex domain of €™ with smooth
boundary. We consider the weighted mixed-norm spaces Ag‘g (D) of holomorphic functions

with norm
o a/p 1/q
, 6,k=( > f(f |D°‘f|1’dar) rs‘I/p"ldr) .

la|<k 0 8D,

We prove that these spaces can be obtained by real interpolation between Bergman-—
Sobolev spaces Ai (D) and we give results about real and complex interpolation between

them. We apply these results to prove that A’;:E(D) is the intersection of a Besov space

BY9(D) with the space of holomorphic functions on I}, Further, we obtain several prop-
erties of the mixed-norm spaces.

1. Introduction and main results. Let D = {z : g(z) < 0} be a
bounded strictly pseudoconvex domain of C™ with € boundary. Thus we
can assume that the strictly plurisubharmonic function p is of class C* in a
neighbourhood of D, that —1 < p(z) < 0 for z € D and that |8p] > co > 0
for |o| < ro.

We denote by D, the set {z: o{z) < —r}, by @D, its boundary, by do
the normalized surface measure on 8D, and by dz the normalized volume
element on D. _

Now for 0 € p< 00,0 < g <o0,8>0and k=0,1,... we define the
weighted mixed-norm spaces

AP D)= {f holomorphlc on D such that ||

gk < 00}
where

1 fllp.q.% = ( Z f ( f |D*fIP dcr) p8a/P=1 g ) 1/q

la|<k 0 BD,
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for 0 < ¢ < 0o and

fllogmse =si {( 3 [ 1D%fPaon) " 10 <r <o),

la[<k 8D

(We use the word norm although || ||p,q,6.% 18 only a quasi-norm when 0 <
p<lor0<g<l)

These spaces have been considered by many authors. For example, spaces
of this type can be found in some classical papers of G. M. Hardy and
J. E. Littlewood [HA-LIT] or in the book [DU] of P. Duren, and more
recently in several papers, like those of S. Gadbois [GA] and Shi Ji-Huai [SH].

Note that if p = ¢ these spaces are a well-known class of weighted

- Bergman-Sobolev spaces ([BEA], [BEA-BU]). In this case using standard
notations we will write A% ., || fllp,5% instead of AZY, || Fllppsk-

‘We recall that the norm

Illse= (30 J 10°5P(~0P~a) "

le| <k D

is equivalent to the norm |||, 5, and thus for 1 < p the space AL, is the
space of holomorphic functions on D intersected with the weighted Sobolev
space Wi (D, (-}’ d(). Also, E. Ligocka [LI2] proves that these spaces
are the intersection of some Besov space B¥? with the space of holomorphic
functions on D.

One of our results shows that for 1 < p < cc and 1 < ¢ < oo, the space
APE(D) is the intersection of a weighted Besov space BP(D) and the space
of holomorphic functions on D. The method used in this paper to prove this
and other properties of the mixed-norm spaces is to show that these spaces
can be obtained by real interpolation between weighted Bergman—Sobolev
spaces. The following is one of our main results.

THEOREM A. For 0 < p < 00, 0 < ¢ < o0, 0 < &,81, & #£ 8, k=
0,1,...,0<8 <1 and § = (1~ 6)6y + 081, we have

P 4 — A®G
(Aﬁu,kﬂ Aﬁl,k)g:q - Aﬁ,k '

The above theorem for starshaped domains with Lipschitz boundary and
P = ¢ has been obtained by E. Straube [STR].
Further, defining

Aig:g = ( g,k:Aggk_H)s—k,Qa 0<hk<s<k-+ 1,

and using some results of interpolation theory, we obtain the following more
complete result:

COROLLARY A. For 0 < p < 00, 0 < gy < g1 < o0, 0 < g < oo,
0<50,51,0§3[},81, 80—(n+60)/p7é31—~(n+51)/p,§=(l*~9)50~|—961
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and s = (1 — 8)sg + 051, we have
2qe 71 e AP
(A50,39’A51,S1)9:q - AE,S -

Our second result is about complex interpolation.

THEOREM B. For 0 < pg,p1 < 00, 0 < g < g1 € o0, 0 < 84,61,
0<s0,51,0<8<1],

- ] 1 1~ é & ) &
1 1 9+_, 1_ 9_!__, _=(1——8)—D+8—1
P Po P q do qi P Po n

and s = (1 — 8)sp + 0s4, we have
. , — AP
(A5E, AR e = Af -

Finally, we generalize some results on Bergman—Sobolev spaces to the
mixed-norm spaces. We obtain an atomic decomposition and a theorem on
interpolation sequences; we also consider extension problems, trace theo-
rems, the Gleason problem, and a division problem.

The paper is organized as follows. In Section 2 we prove Theorem A

and we obtain some properties of the mixed-norm spaces. Moreover, in this
section we obtain the above mentioned relation

A33(D) = BPY(D, (=)%Y n H(D)

forl<p<oo,l<g<oo, 1<fand s =0
In Section 3 we prove Theorem B and also we give other results on real
interpolation. Finally, in Section 4 we give the above mentioned applications.
We will use the notation X == I'to mean ¢1 K < I < 25K, and we denote
by c all different constants in the inequalities.

2. Real interpolation between Bergman-Sobolev spaces. The
main goal of this section is to prove Theorem A.

We will follow the notations of [BER-LO]. We recall that for every com-
patible couple of two quasi-normed spaces (Ag, A1) the interpolation space
(AQ,Al)glq, D<tt<],0<g<on,is defined by

(Ao, A1)pg ={f € Ao+ A1 : ||flla,e < oo}

where 1
(2.1) £l = ] QLY

and

K(f?f) =K(t7faA01Al)
= inf{| follao +til f1llay : £ = fo + fr, fo € Ao, f1 € As}.
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The first step is to compute K (¢, f, A
technical results.

For ¢, z in a neighbourhood of D, we denote by &((,z) the support
function of Henkin and we write a{(, z) = —g({) + ?(¢, z). We recall that ¢
and a are functions of class C*(D x D) and holomorphic in 2.

Now using a result of Berndtsson-Andersson [B-AN] and integrations
by parts (see Lemma 2.3 of [BEA]) we have the following representation
formula.

» P ;
5o,k A5, 1)+ To do this we need some

LevmMa 2.1. Let s be a nonnegative integer. There exist kernels K4 (¢, 2),
|| < k, each holomorphic in z, such that

fley="3" [ D*f(O)Ka(C 2)(—0($)) ™ dg
jal<k D
for every function f of class Ai,k and
|DPK (¢, 2) < ¢egla(C, z)|~(ntitetisl)
for every mulli-indez 3. m
The next lemma gives a well-known estimate for these kernels.

LEMMA 2.2, Fors > —1 and t € R we have

fn+l+s+t>0,
f( o($))*[a(¢, )]t d¢ = log|g(z)| Fatltstt=0,
lo(z)|mHitett if s+t <0, m

The following lemma is a version of Corollary 2.7 of [BEA].

LeMMA 2.3. For0 < e < g small enough, 0 <p <1,s> (1/p—1)(n+1)
and f holomorphic in D, we have

(i) ( f f1|(|ﬂ+3+3 dc) <o [t

D\Dze

)[n+1+s)p n—1
Ia‘ (n+1+a8)p dC’

n+1+a)p n—1

) € f'fp( Q|a,3(n~+~ws dg,

Deya

& ( i R

uniformly in z € D and with ¢ independent of . m
Now using the above lemmas, we give an estimate of K (2, f).
LEMMA 2.4. If 0 < 6; < &y, B=p/ (80 — 61) and m(t) = min(1, t7¥) then

K(ta f) = K(ta f: Ago,.k’Agl R:) s
Y (et tacee [ Do sp-ottac) T =t 5.
algk DAD, (15 : Lty
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Proof. To prove K(t, f) < cI(t, f) we need to find a decomposition
f=fo+ fowith fo € AL | and fi € Af  such that

(2.2) folls,0, + ¢l fullor & < (2, ).

We point out that in the following proof of this inequality we do not use
the explicit expression of m(t). We only use the fact that 0 < m(t) < 1.
Lemma 2.1 gives the representation

= 37 [ DUF(OKalS, 2) (o)) TR dC for s > Gu/p.
la|<k D ’
Define

(C} z)(_Q(C))5+k dC H

=Y [ DK

|0:|Sk D\Dm(t}

A=Y [ DK 2 (—e(Q)) &

iﬂ!‘sk Dm(t)
To prove (2.2) we will consider two cases.

Case 1:1 < p. Taking 0 < A < éo/p and using Hélder’s inequality,
Fubini’s theorem and Lemma 2.2 we have

s+k p
“f()”;a,ﬁo,k = Z f( f ‘Daf g)ﬁ"%d() (—Q(Z))ﬁo_ldz

le|€k D “D\Dy¢
o 17 (_ -(C))('Enl—k)p
e 5 [ J gy
|| <k D D\Drsy

x( I dg)m'(_

D\Dm(t)
. —g(gy)lethe
=c Z f f ID f(C)lpla{C(’ z)|n+1+(s+k-)\)'p dg
||

k D D\Dpyy

o(2)) "t dz

x (—e(2)) 77 dz
<o [ D=} e
|| S DA D m 4y

In the same way we obtain

Hfln;&,k <e Z f |D°‘f|p(-g)ﬁl_1 &

[oe| £k Dongsy

and therefore (2.2) is proved.
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Case 2: 0 < p £1. As in the above case, using the kernels of Lemma 2.1,
we define

folzy=Y [ D*FOKS2)(~e({))THde,

|| £k D\ Dagsy
Al =Y [ D*FOKa(C 2)(—(¢)) "+ d¢
lee| Sk Dagagey
for 8 > 6o/p.
To prove (2.2) we will consider two cases.
In the first case we take 0 < tg < 1 small enough and we assume 0 < 1 <
tg. Now, using the estimate of Lemma 2.3 we obtain

Vollp sor € D2 f( S Daf(CNW(—Q(C))SMJC)p

le|€k D “D\Dgpmgy
x (—g(2))* " de
— (n+1+s+k)p—n—1
o)ttt
(¢, 2) G

<ed [ [ 1P

[at<hk D D\Dapqy
x (—o(2))00~1 dz

<ed [ IDEFOP(—e(0) o dc

l) <k DA\ Dypasy
<e Y [ IDFOP(—e(¢)) 1 dc.
la| €k DA\Dhy

In the last inequality we have used the fact that [, |D*f|Pdo, is a non-
increasing function of r. "

In the same way we obtain
IAlEs e Se > [ IDfP(~e) " dt
|| <k D'm(t)

and therefore (2.2) is proved for 0 < ¢ < ¢g.

If ¢y < ¢ the estimates of || folp.60,4 80d || fillp6, & are trivially satisfied.
More precisely, in this case we have

follp,6o.k + el fillpsr ke = T(, £) 2 1| Fllp,so,i -

To complete the proof of the lemma, we will show that I(t, f) < eK (¢, f).
To do this, it is sufficient to prove that

1t 1) < el follpso ke + 2l Fllp,60,6)
for all decompositions f = fy + fi.
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First note that m(t) = min(1,#%), 8 = p/(6y — 61), implies
(—g(z))’su“l < tp(—g(z))“_l ifze D\ Dy, and
< (~g(z))6°_51 ifze Dm(t} .
Now from the definition of I(%, f), and (2.3), we have
16r<e Y ([ ID*RP(-gf v [ D folP(-0) dg)

lal€k  D\Dpy Dongey

+e ([ I aP-ota
|| <k D\Dm@)
+o0 [ DA (-0)% 7 dc)
Dongsy
< el follp.tos + tfalpse,s) -

The next two lemmas will be used to prove the interpolation theorem.

(2.3)

LEMMA 2.5. For 0 < § < &y and f holomorphic in D, we have || f||p,50,k <
chHP’Q:ﬁak'
Proof. It is sufficient to prove the lemma for k = 0. We write h(r) =
Jop, |fIP do,. We consider three cases.
If p < ¢, by Hdlder’s inequality we have
To - o 1/
Hf“p,&n,oﬁ( f plé—bo)a/la=p)=1 d’r‘)(q p)/(qp)( f h(r)9/? do,re/P71 dr) !
0 0
~<—C!|f”P)q:‘510 '

The case p == ¢ is obvious.
If p > ¢, using the fact that A{r) is a nonincreasing function of r we
obtain

- oyl ) /P ad . X 1
1 1g,60.0 < ﬂ( Z ’1(2_:’)2_"’60) < c( Z h(g""J)EI/PQ—Jqu/p)

F=in Ji=io

/a

o foa/p—1 1/q
<o [ heyenerrdr) " = el fllpasos < elflpaso-
0

This completes the proof of the lemma. m
The next lemma is a special version of Hardy’s inequalities.

LEMMA 2.6. Let g be a real number, r >0 and 0 < p < co. Then
0 oo

{i) f ( f yih(y) dy)P:c"T_l d & f (22 h(z)Pe—" de,
0 : .

0 0
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[=.e] [+7) P o0
(ii) f ( f y9h{y) dy) 21 do my f (mq+1h(m>)pmrn1 dz,
0 z o

for each positive nonincreasing function h(z).

Proof. The proof of “<” for 1 < p is well known (see [ST]). For 0 < p <
1 the proof is obtained by discretization of the integrals, as in Lemma 2.5
(see [STR]).

The reverse inequality in (i) follows from
i
f h(y)dy ifg>0,

&=
391 h(z) = ————h ) [ o
0 0

291 h(z) = x%h(z) f dy < f yh(y)dy ifg<0.
0 0

Further, observe that the above reagoning gives

o9t 1h(z cfth(y dy ,
/2
and thus, we have
f (z" 1 h(z))Pe" L de < ¢ T ( f Y fy)d ) r=1 g

z/2

oC

(f Y f( )dy) " lde.

@

C

0%8 [=)

Hence (ii) is proved. m

THEOREM 2.7. For 0 < p < 00,0 < ¢ < 00, 0 < 6,81,80 # 61, k =
0,1,...,0< 8 <1andé=(1—08)b+ 061, we have

D AP YNt
(A ko AG, k)0 = Agy -

Proof. First, we consider the case 0 < ¢ < co. We want to show that

1£6.4 = 11fIpask- Using (Ao, A1)aq = (A1,40)1-8,¢; We can assume by
> 8.

To simplify the notations, we write
hm(r) = { fBD lDa.ﬂ do,, 0<r<mrg,
g < T,

for each || < k. We recall that he(r) are positive nonincreasing functions.
Now, using Lemma 2.4, the change of coordinates s = t? and the fact

icm
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that K(t, f) & || fllp,50,% for ¥ > 7o, we have

1#gm 3 f ([ halr)r
0

/
it ) 01 g

lof<k 0
+ Z }9 ( Tha(r).r&l"-l d’.")Q/ptCI-“G')q—l i
|a|<k O Y
0 It
|| <k To
o 8 o/
~ Z f ( fha(r)r‘sf'“ldr) s—0Bom61)a/p—1 g
|| <k O 0

+ Z j? ( j‘ohu(’r)ral"'l d"") Q/ps(l—e)(ﬁo ~ouelpl ds + Hf”p fo,k

|e|<k O 8

Finally, by Lemmas 2.5 and 2.6 we obtain

”f”g'q Z j‘ 50 q/P,,,.—é'(b'u 61)a/p=1 g
lajsh ©
30 [ (halryrs o0 b 4l
|a|<k 0
~ g6 -

Therefore the theorem is proved for 0 < ¢ < 0.

Now, we consider the case ¢ = oo. First we prove that | f 6,00 <
¢l fll 00,6,k

Using the definitions of the corresponding norms and Lemma 2.4, We
have

”f”ﬂoc --C Z Eup

||k 0<tf<rg

-9p f o (
fsc-or fhm(m

"I'"CZ sup {t~ BPHf
o S o <1 <0

t? ) ;
{t“ap f ||pr,oo,6,k7"‘s“"5"1dT}
0 o

60 ! dr}

+cz sup

f1-1 dr}
|m!Sk0<ﬂ3<7“o ?

paaﬂlk}

<c Z sup
lal<k 0<t? <rg
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0
£ sup {100 [ Fliponsar® T dr}
|a1$k0<tﬂ<m t@

DI I PN
ialsk'r'o<t <o

-6 bg—8)/(6a—6
<O fI8 o5 sup {£TPPTPEOTON/ Bty
U(’i«"@<’l‘g
bl Mg smp {H ORI E oFE
0<tP <rg

Now, since § = {1 — #)& + 881, we find that the exponents of ¢ in
the last expressions are 0, and therefore by Lemma 2.5 we have ||f 5,00 <
cil £ llp,00,6,k-

To finish, we prove the reverse inequality. Since A4 (r) is a nonincreasing
function of r, for 0 < r < 7o, the same reasoning used in the proof of
Lemma 2.6 gives

2P
#Pha(2tP) < e [ halr)r®tdr
4
(28 438
< c(t_gp f he(r)r® dr 4 1-0P f by (r)rf—t d?")
t# 27

< ct™PPE(, ).

Thus taking the supremum in ¢ and summing over |a| < k, we complete the
proof. m

The next result summarizes several properties of the mixed-norm spaces.
Some of these results can be obtained using the standard methods (see [GA],
[SH] for example). In our case they are an easy consequence of the above
theorem.

COROLLARY 2.8. If 0 < pg <p1 <00, 0 < go < 1 €00, 0 < g < 00,
0 < by, 61, 50#51 and k,n=10,1,..., then

(1) Aquo c Apom’
n+& n+d

2 Pn,tn PI,QI with ,
(2) 4G m Bo
(3) jggmgl ggf;pu,k+m )
(4) AP C VMOA  4f h— ";‘50 =0,
0
(8) ( f;’g’,‘i“, PO""1) 6q= Ap""’ with § = (1 — )& + 86 .
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Proof. (1) This result follows from the property {Ag, A1)s,q C
(Ao, A1)s,q: if g0 < g1 (see Theorem 3.4.1 of [BER-LO]).

(2) Since A5 is continuously contained in AL}, with § = (p1/pa)(n +
bg) —n we have

?g’ql = (AED..E,knA§S-|-g,,k-,)l/2,q1 - (Aféoﬁg)’,k7‘4ﬁ;n+e)’, hizae = Aalm .

(8) If g1 = po this result is well known. Thus, (3) follows trivially from
Theorem 2.7.

(4) As in the above cases this result is well known if pg = ¢p. On the
other hand, using (1) and (2) we have AJ0° C Apéyk with p = max{po, ¢o)
and & satisfying k — (n + 84)/p = 0. Hence (4) is proved.

(6) This result is the well-known reiteration theorem applied o these
spaces (see [BER-LO], [HO]). =

The next result completes property (4) of Corollary 2.8.

We recall that BMOA(D) = {f € H*(D) : f* € BMO(8D)} where f*
denotes the boundary functlon and H? denotes the classical Hardy space,
and that the averages of BMO(dD) functions are taken over Kordnyi pseu-
doballs (see [VA] for precise definitions). _

PROPOSITION 2.9. If k — (n+8)/p = 0 then A" is a subset of BMOA.

Proof. By property (2) of Corollary 2.8, it will be enough to prove this
result for p > 1.

Using a result of [VA], to show the inclusion A%¥ ¢ BMOA it is sufficient
to see that there exists pp snuch that each funct1on f of AL is in HP® and
that (|f| + |8f1) dz is a Carlesen measure. i

First we prove the inclusion of A} ff in H?o, for some po.

We write AP = (A5, oAb e, k)lfz oo for an £ > 0 small enough.

Now if we take py > p and € < np/po, then by Theorem 1.5 of [BEA],
we have

AL L C A4S CHY C H¥
and therefore the inclusion is proved.

To prove that (|f] +|8f|) dz is a Carleson measure we want to show that
for every 0 < ¢ < tp small encugh,

(2.4) = [ (i1 +18f1) dx £ ellfllpe0808"
K(w,t)_ﬂD

where K (w,t) = {z : d(w, z) <t} denotes the Kordnyi ball with respect to
the pseudodistance

.
Za§<

nipo—e/p

d{w, z) =

Zﬁmmwm
=1

+|z—'w|2.
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We recall that the volume of this ball is of order of t™+1,
We write K, instead of K{w,t) N D. By Lemma 2.1 we have

I<c | j / Z|D“f|Hn+2+3daT e dr dz

K. 0 aDr |ee| e

+c f f f S ipey n+2+sdwﬂ+’“drdz—rl+rg
Ky ¢ r |alZk I I

Now, applying Hélder’s inequality, taking 0 < A < 1/p’, and using well-
known estimates, we get

nx(f f ] S

K: 0 8D, |a|<k

1 1/1’-"
( f f f Wdard’f‘ dZ)

K;O@IJ

< CHpr,oo,.S,k( f T(S+E)P—5—(S+1—A)Pdlr) 1/77( f (_g)—Ap’ dz)l/p;
i) K

<ellf

To estimate [y we recall that the Lebesgue measure of K is of the order
of t"*! and therefore taking 0 < A < 1, we have

1/p
s+k
Lcf ( f f > |Daf|p|a|n+1+(s+1 Nz dogr(*¥H? dr)

K, “t 8D, |aj<k

iy 1 l/f
x(f IWdawdr) " dz
£t oD,

< CHf”'p 0.6 ktn+1+(ap+kp—6'-—n-(s+1—A)p)/;p—)\ < C”f”p 0.6 ktn

(248) l/p
5
n+1+(s+1 v do.r pdrdz)

(apkp =5 —(s+1-Np+1)/p+ (4 1-M) 2! < o £

00,6,k o0&kt .

and thus (2.4) is proved. m

Remark. In the above proposition we cannot replace BMOA by VMOA,

For example, if we consider the unit disk of €, then log(l — z) belongs
to A5, 5\ Bo where By denotes the little Bloch space. Since VMOA < By
we find that log(l — 2) € A5, , \ VMOA. »

Up to now, we have only considered the mixed-norm spaces whose order
of derivation is a nonnegative integer k. Next we generalize this definition
to the noninteger case.
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DEFINITION 2,10. For0<p< oo, 0<g<co,6>0andk<s<k+1
we define

APl = (Afy. 4%, e with 0 =s—k.

The next lemma generalizes property (3) of Corollary 2.8 and it permits
us to reduce the study of the mixed-norm spaces with noninteger order of
derivation to the case with integer derivatives.

LeMMA 211 For0<p <00, 0<g<o00, 6 >0andk<s<k-+1we
have

Biq .. ADsQ
AS F] A6+(k+1 —a)p,k+1"

Proof. Using property (3) of Corollary 2.8 we have

Pg (AP P )
Aﬁ‘s = (A5+p k+l’A6,k+1)9"~k=q AeH— ktl-s)pktl: ™

Now we compare the result of Theorem 2.7 with the well-known inter-
polation results for nonholomorphic weighted Sobolev spaces.
For 0 < p < oo, we denote by Lg,k(D) the weighted Sobolev space

LE(D,(—g)*~1 d(). Further, we recall the definition of the weighted Besov
space By'7 given in Section 3.3.3 of [TR1].

DeriNIiTION 2,12, For l<p<oo,1<g<o0, §>land0<k <5<
k -+ 1, the weighted Besov space Bf'] is defined by

BYI(DY = {f € L; (D) : £l .06, < o0}

where
HAz_Daf“ » o b 1/q
”Iﬂ“p,q,&,s = Hf|]p,6,0 + Z ( f Ih|2n+(sL k);) dh) 7
o] <k “h|<e
145Dz comy
Wl = s+ ip { 32 =i,
ARDf(¢) = DF (G +2h) -+ DF({) ~ 2D F (¢ + 1),

and D" C D iy a certain domain where the function A3 D*F(() is defined.
THEOREM 2.13. For l<p<oo,1<g<oo, 1 <8 and ko, by =0,1,...
we hove
‘ (Lg,ko’L‘g,kl)g,q =B§p,'f, s ﬁ(l m@)ko+9k1.
If p=6=1 then the above result also holds.

Proof, The result for 1 < p follows from Theorem 3.3.3 of [TR1]. If
= § = 1 then the result follows from the results of Section 2.5.7 of [TR2]
and Theorem 3.1.5 of [ST}. =
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Now, using the above theorem we obtain a new characterization of the
Ag:g spaces.

THEOREM 2.14. For l < p< o0, 1< g <0, 1 <6 and 0 < 5, we have

ApJ(D) = BR{(D)n H(D)

with equivalent norms. If p = § = 1 the result also holds. Furthermore, A’g:g
is o retract of BY'Y.

Proof. Since the reproducing kernel for holomorphic functions of type

(—o(Nel¢, 2) 6
K{( 2)= Ta(C, Sy t> pe

maps continuously L(s  onto A.s & it follows that A% 5, 15 a retract of L
Thus, Theorem 2. 14 follows from Theorems 2.7 and 2.13. w

3. Complex interpolation between mixed-norm spaces. The aim
of this section is to prove the following theorem:

THEOREM 3.1. For 0 < pg,p1 < 00, 0 < gp < o < 00, 0 < &g, ¢ and
0 < sg, 81, we have
(APO)QD Am Q‘l)[e Aiﬂyq

50,‘30’ 51 81

with
1 1—6 9 1 1-8 8
—_ "J['“_'_ — +m7
p o n q o0 g1
) (50 61
s=(1-Msg+0sy and —=(1-80)—+80—.
P Po P

The result of this theorem for 1 < pp,p1 and po = go, p1 = q1 is due to
E. Ligocka [LI1], and for 0 < pp = p1 = go = q1 to F. Beatrous [BEA]. Also
E. Straube [STR] proves that if D is a starshaped domain with Lipschitz
boundary and 0 < py = p1 = go = ¢ then the interpolation result of the
theorem is true.

We briefly recall the complex method of interpolation (see [BER-LO]).
Although this method is not defined for a general couple of quasi-Banach
spaces, in our case, as in [BEA] or [STR], the construction is also meaningful
for 0<p<1lor0<gq<1 (see [BE-CE]).

Let (Ap, A1) be a compatible pair of complete quasi-Banach spaces. We
will denote by | ||o and || |j1 the corresponding quasi-norms of Ay and 4.
We also consider the space 4p + A; with quasi-norm given by

NN =1t follo + |fillr: fo € Ao, fr € A, f=fo+ fr}.

Let 5 be the strip {A € C: 0 < Re A < 1}. Now, we consider the space
F = F(Ap, Az) of all Ag + As-valued functions F' on § which are bounded
and continuous on S, holomorphic on S and such that F;(t) = F(j + it)
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defines a bounded continuous function from R to A4;, j = 0,1, with the
complete quasi-norm

| ElF = max{sup |!F(ft)|io=sgp 1 F(L + 2} -
For 0 < § < 1 the interpolating space of exponent ¢ is defined by
(Ao, A1) = {F(8) : F € F}
with the complete quasi-norm
If iy = f{ | F||= : F € F, F(6) = f}.
To prove Theorem 3.1 we need some definitions and technical results.

DeriNITION 3.2. For every 0 < g, 0 < p < 00, 0 < ¢ < 0o and every real
v, we define I£:% to be the space of sequences ¢ = {cy, ;) such that

- > q/p 1/q
llellp,q.e = ( Z (Z o, |p) Emug/p) < 00,

m=0 =0

mss = sy S ) <o

Now we prove the following interpolation lemma.

0<g<oo,

LemMA 3.3, Let 0 < po,p; < 00, 0 < ¢p < ¢1 € o0, Vg, 1 € R and
0<d<1.

(i) If vg £ 11 and v = (1 — @)y + By, then
(lﬂg,qoaf, lﬁ;”m’s)a,q = ;go,qﬁ .

(i) If
1 1—-6 8 1 1—-6 @
e o - = + —
P Po P1 q do ()]
and
Lalen)2 4922
P Do
then

(l'f’gaqﬂee,lgiuqhs) lgaqu ,

el =
Proof. First, observe that for 0 < &g,£1 the spaces {£:90 and P91
are isomorphic. Further, note that if € = 2 these spaces are considered in
Section 1.18 of [TR1] and in Section 5.6 of [BER-LO]. Thus (i) follows from
Theorem 1.18.2 of [TR1].
Now we prove (ii). Without lost of generality we can assume £ = 2, First
we want to see that | cl|je < [lellp,q,2-
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If ¢ = {Cm,} € 1292, then we write ¢m = (0072, |Crm4P)*P and we

define
F(0,6) = {emlen s 760710 F0 gmtiab= o) 707 |

where p(A), g(A) and »(}) are defined by

1 1-Xx A 1 =X A

(&1) T m T a . w @ v

It is clear that F' satisfies F(8, ¢) = c. Further, using an easy computation
we obtain ||F(5)|py,q0,v0,2 S llellpgr,2 and [F(1+ @) p1q00.2 < llellpame-
Therefore we have [lcfljg) < licllp,gm2-

The reverse inequality follows using the nsual steps as in Theorem 1.18.1
of [TR1] for p;, ¢; > 1,1 =0, 1, or as in Theorem 3 of [BE-CE] for the general
case. m

DeFmNITION 3.4. Let D = {(: o(¢) < 0} be a bounded strictly convex
domain of C*, with smooth boundary and such that 0 € D. For ¢,t = 0 we

define the kernels
Ko, = o, CHELO (5200Y' _ o) oCO) g

(1= Nwg + A

a(¢, z)t a((, 2) a((,z)n i
where
_In+s+1) 1
G(gs + g an ; Cg = ’n'I‘(S T 1) (271_%)”

We denote by K the corresponding integral operators.

Note that for s = ¢ the kernels K** are reproducing kernels for smooth
holomorphic functions on D (see [B-ANY).

We also define the differential operators

Ry=1+ n——~R, where R = Zziw

LEMMA 35. If0<p<o0,6§>0,k=0,1,..., 8> 8/p, andm is a
positive integer, then the operator K*t™* gives an isomorphism from A’g,k
to A%, .- The inverse operator is given by Roym-1...Rs. m

Proof. First, note that the operator R; maps AL 5, into AP 5,k~1 and that
if R,f = 0 for a holomorphic function f on D, then f =0.

On the other hand, K*+™* maps A into AT, (see [BEA]). Also,
we have the identity R,K® = K50+ thag follows by direct computation:

Bt e (1a L Y (eld)?al(, 0] (¢
R K *(é,z)_(1+n+1+tﬂ) d G(C(jz)n31+z@ :
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= (=0(0))"a(6.0~*0,(0) (v
_ (zaldh#a(¢, 0)*1 2 p,(¢)
alC, T

Thus, since K is the identity operator on A“, we have Ry ...
LR KEt™S f = [ and the lemma is proved. m

LEMMA 3.6. Let D be a strictly pseudoconver domain of C™, with smooth
boundary,

d(¢,z) =

9
. i 3o )

g, 2y

= E*TH(,5).

H k)
d9(¢) do(z)
Z e (G- z) |+ ; Ga (i =
the Kordnyi pseudodistance, K((, ) the Kordnys ball centered at ¢ of radius
g, and d{z) = d(z,0D). Then, for eachn > 0 and 0 < £ < 1, there exist
0<n<m <n and a sequence {am ;} of points of D which satisfies
) Upj K(@m,5,m d(am,5)) = D,

(1
(2) K (@m,g, 70 d(@rm,)) N K (@m0, 10 4, 5)) # D zﬁm m', j=j,
(8) —o(tm ) = ™ for eachm > 0, and each j =0,...,jm.

+ ¢ — 2?

Proof. Consider a Whitney covering of D by Koré.nyl balls (see Chap-
ter 3 of [CO-WE]) such that for some 0 < np < m < 0,

UK snnld ))—'

mJ
K(bs,m) d(bs)) N K(bsf,'r]() d(bsl')) 2 B iff s=4..
We conclude the proof by renumbering the points {b,} such that ™! <
d(bs) < ™ a8 0, -

As usnal, a set {a., ;} which satisfies properties (1) and (2) will be called
an no-n1~lattice.

) aam,’jm. ]

Proof of Theorem 3.1. By property (3) of Corollary 2.8 and Lem-
ma 2.11 we can assume that gy = sy = k and g, §; are large enough.

Now using Forneess’ embedding thecrem [FOR] and the extension the-
orems of [BEA], we find there is a bounded strictly convex domain M of
C™t"' with smooth boundary and continuous linear operators

Eo A?,k (D) — Af_,, (M), By: Agwn’,k(M) — A7 (D)
such that £y Fy is the identity on Ag. + (D). Thus, by Lemma 3.4 the operators
S 1= Rgik—1-.. RsBo : Af (D) — Agﬁn,.’o'(M),
Ty o= By KO0 AR nolM) — A5,(D)

are continunous and satisfy TSy = Id.
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On the other hand, using Lemma 3.6 and Theorem 1 of [COU] we see
that for 0 < £ < £o small enough, there exists a sequence of points {¢m,ih
m=0,1,...,5=0,1,...,jm, of M and continuous linear operators

Sl : Ag—n’,O(M) liﬁ% n't T lP:PS nt 7 AS [ O(M)
such that:
( Sl(f {.f(Cm,j }

Jm
(ii) 71 ({em.g 1=

Z ZC Kn+l+s ) C ’j’z):

m=L j=0
(iii) T1.8; is bijective,

where the kernel K nt1+9:s ig

(—one ()40, (0)
K'I’L+1—|—S,3 L7 = - -
(C ) (_H QM(C) + zn—}-n agM C (C . zj)) +14

and where pas denotes the defining function for M .

Therefore, using the operators § == 518y and T' = To(TlSl)‘lTl, we see
that A}, (D) is a retract of B - Thus, by Lemma 3.3(i) and Theorem 2.7
we find that A% P2(D) s also aretract of I7°17_ .. Finally, using Lemma 3. 3(ii)
together with Theorem 4.2.1 of [BER-LOJ in the cases p;, g = 1, or Theo-
rem 2 of [BE-CE] in the general case, we obtain

(ARS8, A = (s B8 S0 i) = TR0 ) = Af) -
Hence the theorem is proved. w

Observe that the same method gives the following real interpolation
regult.

THEOREM 3.7. Let 0 < pg,p1 < 00, 0 < gy < g1 < 00 and 0 < fp, 1.
Then

(Algg,go)APwh)g,q T((li?ﬁ%ﬂ;n;, ﬂr’%i’fn,)g,q) "

4. Applications. In the same way as in Corcllary 2.8, Theorem 2.7
gives an easy method to obtain some properties of the mixed-norm spaces
from the properties of the Bergman-Sobolev spaces. Roughly speaking, in
many cases the results on Bergman—Sobolev spaces cited in the literature
can be extended to the mixed-norm spaces upon replacing A , by Apg. In
this section we state some of these properties.

A. Atfomic decomposition. The main result of this section is a gen-
eralization of those obtained by R. Coifman and R. Rochberg [CO-RO],
E. Amar [AM], D. Luecking [LU], S. Gadbois [GA] and B. Coupet [COU].
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THEOREM 4.1. Let D be a bounded strictly convex domain of C™ with
smooth boundary and let {am,;} be an no-mi-lattice in D, like the one of
Lemma 3.6. Then for all 0 < p < oo, 0<g<00,6>0,k=0,1,... and
5 > 0/p the operator defined by

00 Im
(o) = 3 ) emg K™% (e 5, 2),

m=0 j=0

where K" T1T9#(() 2) ds the kernel of Definition 3.4, is continuous and onto
from I to ARL(B). If D is the unit ball, then

oo Jm

=5 (1 = Jap,g[*)ntits
™l )n+l+s ’

me0 jo0 1~a

Proof As shown in the proof of Theorem 3.1, using Lemma 3.6 and
Theorem 1 of [COU], the operator Ty}, is continuous and onto from [ i’p 3
to A5 o and there exists a continnous linear operator S,y from AZ &0 1O [P i’
guch that Tk Ssrk is the identity on A% 5,0- Thus, by Lemma 3.5 the operator
Ket3T, s also continuous and onto from 575 to A .. But using the
explicit formula for the inverse of K*+%° obtained in Lemma 3.5, we find
that

I
Z Z Cm K-n-l—l—l—s-fwk,S( g z) ‘
m=0 j=0

Note that T, = K*+%T, Uy, where U}, is the isomorphism from lfb’ff_ kp
to 2P defined by Ug(c) = {em;(~0(am;))""}. Thus, defining 5 =

UMK e+e) =15, we find that TS, is the identity operator on A% . Fi-
nally, using Theorem 2.7 and Lemma 3.3(i) we conclude that T Ss IS the
identity on AYY and hence the first part of the theorem is proved.

If D is the unit ball of T™ it is well known that the reproducing kernel
K** of Definition 3.4 is

[
Ka+ ey _H

K&,s(g’z) = Gq"“"‘_‘—““_‘““'(l — ‘Cﬁz)g

T(1 = Cz)ntits
and thus, by the same Definition 3.4, we have
mtbas oy g (L= [CF)HTR
K (C’ Z) =Cs (1 ,_ Ez)n+1+s ’
Henge the theorem ig proved. m

B. Interpolation seguences. The next result follows from the interpola~
tion result of Theorem 2.7 and the results obtained by E. Amar [AM] and
R. Rochberg [RO] for the Bergman~-Sobolev spaces in the unit ball of C™.
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THEOREM 4.2. If {ay ;} i8 an no-m-lattice on the unit ball B of C*
satisfying properties (1)-(3) of Lemma 3.6 and with ng large enough, then
there exist continuous linear operators

L ADE [P

Be and Sy lly — AR
such that Sp(f) = {f(am,j)} and S5 =1d. =
Proof. This follows from the result of [RO] and Theorem 2.7. m

C. Exiension theorems from holomorphic submanifolds. First, note that
if D is a bounded strictly pseudoconvex domain in a Stein submanifold of
C*, with smooth boundary, then we can define the spaces AL{(D) in the
same way. Moreover, the same method gives Theorem 2.7 also in this case.
Thus using the results of F. Beatrous {Theorems 1.5 and 1.6 of [BEA]), we
obtain:

THEOREM 4.3. Let D be a bounded strictly pseudoconver domain of C*
with smooth boundary and Y a Stein submanifold defined in a neighbourhood
of D, of codimension | and transversal to the boundary of D. Let M = DNY.
LetO0<p<oo,0<g<e0,0<éandk=0,1,... Then

ALE (DY = ARV (M) . m

D. Trace theorems. The result of this section is an extension of the trace
theorems on curves in the boundary of B, obtained by J. Bruna and J. M. Or-
tega [BR-OR1], [BR-OR2].

THEOREM 4.4. Let B be the unit ball of C™ and let I' be a simple closed
smooth curve in the boundary of B. For 1 <p< oo, 1 <g<o0,0<§ and
kE>(mn+8Ypifp>1, ork>n+6ifp=1, we have

AEBIrc B, s=r-"E01

Moreover, if I' is complex-tangential, then
A2 o _ n+ 5) 1
r =BT s=2 (k e -,
& (B)] (I, v P
Proof This result follows from the theorems of Section 5.1 of [BR-OR]
and Theorems 2.2 and 3.1 of [BR-OR2), the interpolation theorems between

Besov spaces (Section 3.3.6 of [TR2]) and Theorem 2.7. =

E. The Gleason problem. The next result is a generalization of that ob-
tained by J. M. Ortega (Theorem 1 of [OR]).

THEOREM 4.5. Let D be o bounded strictly pseudoconvez domain of C*
with C> boundary, aond 1 < p <00, 0 < g <00, 0< 8§ and k= 0,1,...
Then, for every ¢ in D, there exist continuous linear operators T 7 =

icm
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L,...,m, from AQY to AP such that

Fzy = () = Zij(z)(zj —¢).
j=l1

F. A division problem. This result is a generalization of that obtained
by ourselves (Theorem 1.1 of [OR-FA)).

THEOREM 4.6. Lel D be a bounded strictly pseudoconver domain with C°

boundary. Let ¥ = {z t uy = ... = u; = 0} be a holomorphic submanifold
defined in o neighbourhood of D such that

(Gur AL ABu)(2)#0 forzeY,
(Pur Ao ABu ANB)(2)#0 forze Y NaD.

Then there exist continuous linear operators Ty, j = 1,...,1, from Am
Agfp/z,w 1<p<o0,1<g<e0,0<6, k= D,l,...,suchthcszf vamshes
on M =DnY, then

{
=Y u()T;f(z). =
j=1
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Calderén-Zygmund operators and
unconditional bases of weighted Hardy spaces

by

J. GARCIA-CUERVA and K. S. KAZARIAN {Madrid)

Abstract. We study sufficient conditions on the weight w, in terms of membership
in the Ap classes, for the spline wavelet systems to be unconditional bases of the weighted
space HP(w). The main tool to obtain these results is a very simple theory of regular
Calderén—Zygmund operators.

0. Introduction. The purpose of this article is twofold. First of all, we
present (in Section 2) a very simple theory of regular Calderén—Zygmund
operators, based upon the notion of weighted atom and a general extra-
polation principle. The whole theory develops almost immediately from the
basic estimate in Theorem 2.3 below. This estimate containg almost all the
information about the boundedness properties of the operator.

Secondly, as an illustration and an extension of the theory, we find (in
Section 3) sufficient conditions on the weight w, in terms of membership
in the A, classes, for the systems of m-splines to be unconditional bases
of H?(w}. Only the unweighted case has been treated so far in the litera-
ture. For this problem, the operators to be studied are different from the
Calderén-Zygmund operators of Section 2, but the basic estimates they sat-
isfy turn out to be the same. This unity makes the theory transparent, The
first estimates for the basic m-splines appear in the work of Z. Ciesielski.
We improve the estimates which were obtained in [St] to deal with the un-
weighted case. Moreover, we show that the high-dimensional case, which is
treated in [St] in a way far from satisfactory, is not essentially different from
the one-dimensional case.
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