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Closed subgroups in Banach spaces
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FREDRIC D. ANCEL {Milwaukee, Wis.),
TADEUSZ DOBROWOLSKI (Norman, Okla.)
and JANUSZ GRABOWSKI {Warszawa)

Abstract, We show that zevo-dimensional nondiscrete closed subgroups do exiat in
Banach spaces E. This happens exactly when E contains an isomorphic copy of cy. Other
results on subgroups of linear spaces are obtained.

1. Introduction. For a topological vector space B, we are interested
in closed additive subgroups G of E. In case F is finite-dimensional, the
structure of G is well known; namely, @ is a product of a linear subspace
of F and a discrete subgroup. The case when E is infinite-dimensional, in
general, is far from being so simple. _ .

Obviously, a (topological-group) isomorphism classification of groups G
would provide, in particular, a classification of elosed linear subspaces of
E; hence, in general, it is out of our reach. Therefore, to avoid dealing
with linear spaces, we shall mostly consider subgroups ¢ which contain
no nontrivial linear space. Such groups we shall call line-free. Note that the
maximal linear subspace V' contained in a group G is closed and the quotient
space G/V is a line-free group. ' _

If £ is a Banach space, then the topological classification of & reduces
to the line-free case as follows. Write k : B — E/V for the quotient (linear)
map. By a result of Bartle and Graves (see [BP2, p. 86]), there exists an
(in general, nonlinear) map « : E/V — E such that a0 & = idg. It follows
(see [BP2, p. 86]) that h(z) = (k(z),2 — & o (x)), z € B, establishes a
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homeomorphism of E onto E/V x V, which sends G onto G/V x V., One
sees that G/V is a line-free closed subgroup of the Banach space & /V.By [T,
Theorem 6.1], the Banach space V' is homeomorphic to a Hilbert space. So
the classification of G reduces to the classification of G/V. Consequently,
when interested in the topological classification of closed subgroups ¢f in
Banach spaces, one can assume that G is line-free. (The above argument
also works in case E is a locally convex complete metric linear space. It
also applies to the isomorphism classification in case V' is a complemented
subspace of F, which is the case when either E is a Hilbert space or E == R™;
see Sections 2 and 5.)

Some introductory facts, mainly related to the topoiogical dirnension
of closed subgroups of Hilbert spaces, were provided in [DG]. The present
paper is, to some extent, a continuation of [DG]. The main result of [DG]
stated that nondiscrete closed subgroups of Hilbert spaces have topological
dimension > 1. The proof of this fact strongly used the orthogonality. A
natural question arose whether the theorem could be generalized to the case
of arbitrary Banach spaces. We show that this is not the case. The space ¢q
contains a nondiscrete closed subgroup which is zero-dimensional. Moreover,
we prove that a Banach space E contains a nondiscrete closed subgroup of
dimension 0 if and only if E contains an isomorphic copy of cp; this is the
main result of our paper.

The paper is organized in the following way. In Section 1, we provide
four equivalent conditions describing discrete closed subgroups G of separa-
ble complete metric linear spaces. A nontrivial condition (Theorem L.1{e})
states that G is a [ree group. Section 2 contains a complete description
of closed subgroups ¢ of E = R*, It turns out that such a & is isomor-
phic to & product R® x Z*, where n,k = 0,1,2,...,00. What makes the
case of R so0 simple is the fact that the weak topology and the original
topology are the same, and that there is no strictly weaker linear topology
on R*. The above classification result, as brought to our attention by the
referee, was previously obtained by Brown, Higgins and Morris, in [BHM].
Since their approach heavily depends on Kaplan's duality theorem, we de-
cided to include our more elementary argument here. We devote Section 3
to the study of weakly closed subgroups. We make use of basic sequences
to extend to arbitrary Banach spaces some results on weakly closed sub-
groups in Hilbert spaces obtained in {D@]. Here, the orthogonality notion
of Hilbert spaces is replaced by considering bi-orthogonal sequences; along
the way, we implicitly provide an alternative proof of the main result of
[DG]. Our main result is contained in Section 4. The proof depends on
Proposition 4.3 which states that if a Banach space E containg a weakly
unconditionally Cauchy series 3 o> | yn for which one can find signs e} (i.e,,
% € {—1,0,1}) such that the sequence {Z;;l elys tor, Is discrete, then E
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contains a copy of co. (The terminology is that of [Di].) In Section 5 we make
some general remarks concerning topological isomorphism and homeomor-
phism classifications of closed subgroups G in Banach spaces E. We show
that every infinite-dimensional Banach space E contains continuum many
pairwise nonisomorphic weakly closed subgroups of dimension one. We pose
some questions and formulate some conjectures concerning the topological
classification of closed subgroups.

We work with the notion of the small inductive dimension ind (see [E));
however, we shall denote it by dim. Our statements related to dimension
concern mostly separable metric spaces, and always metric spaces. For sep-
arable metric spaces the three basic dimension functions, ind, Ind and dim,
coincide. When we deal with nonseparable spaces, we consider statements
of the form “dimension > %&”. Since Ind = dim > ind for all metric spaces
(see [EE]), our staternents hold for each of these dimension functions (and the
use of the symbol dim is justified).

The authors are grateful to the referee for a thorough reading of the
previous version of this paper and for pointing out many discrepancies.

1. Discrete subgroups in complete metric linear spaces. Let £ =
(E,| - |) be a separable complete metric linear space (|- | is the so-called
F-norm on F). Let G be a closed (additive) subgroup of E. Let us recall
that & is line-free if it contains no line.

1.1. THEOREM. The following conditions are equivalent:

(a) G is discrete,

(b) G is locally compact and line-free,

(¢) G is countable, '

(d) G is isomorphic fo a (finite or infinite) direct sum of copies of Z,
(e) G is a frec abelian group.

Proof. The implications (a)=>(b) and {d)=>(e) are obvious.

The implication (b)=-(a) follows from the structure theorem of van Kam-
pen for locally compact abellan groups. The group G contains an open sub-
group Gy topologically isomorphic to R™ x H for some n = 0,1,..., and
some cornpact group K. Since (7 is line-free, we have n = 0, and since G does
not contain nontrivial compact groups, we have H = {0}. Thus Gp = {0}
and G is discrete. Clearly, (a) implies (c).

The proof of (¢)=>(d) employs a standard inductive procedure for ex-
hibiting generators of G. Let G = {gn}22, U {0}, gn % 0. The group
G1 = G Nspan{g,} is a closed, countable subgroup of the line span{g:}.
Fix ¢; to be a generator of Gy. Pick.gi, to be the first element g3, ¢9s,... s0
that gy, & span{gs}. The group G =ispan{gy, ¢, } NG is a closed, countable
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subgroup of the plane span{gi, gi,} (With z1 € G4). Pick z2 € Gy so that
{z1,22} generate Gy (consider G'3/Gy and pick xg so that the coset [x,]
generates G /Gy ). Continuing this process, we inductively determine gener-
ators of G. If the set of generators is finite, then G is isemorphic to a finite
product of copies of Z. Otherwise, G' is isomorphic to P2, Z;, Z; = Z.

To show (e)=(a) assume G is not discrete. We can inductively construct
a sequence {z,}32; C G\{0} such that

() |2 < 47" and |27 g, 41| < [2%8,)/4
For k € 7Z, let
P(k) = max{n € N : 2" divides k} .
== 00.) Consider the set

(We agree P(0)

H= {Zmnmn cE: P(mn) — 00 and my €2}
n==l

Hence H is the set of all points of the form $ 0 | mpzy, where {m,,}22,

is a sequence of integers such that P(m,) — co as n ~ oo and the series
E:;l MnTy i8 convergent in F. It is easy to see that H is a group. Since
G is closed in E, H is contained in G. Consequently, H is a free group. We
claim that H has the cardinality of the continuum. Let € = {—1,1}* be
the Cantor set. For ¢ = (e,,) € C, consider

e o]
w(e) = Z e Ty -
n=1

By (i), |2"enzn| < 2%|z,| < 27" It follows that ¢ transforms C into H.
We shall show that ¢ is injective. Assume } 0 2,2, = 3 oo 2%6n2,
for some (g,,), (6n) € C. Pick the first k with g5 # 6. Then

o0
+2F 5, + Z 2Py, = 0
n=k-41

for some (1) € {0,21}. By (i), we have

o oo
1 1
ko | n Ky | N 19k | S0k
0> 2%z E 22| = 2%z E 4n|2 ok = 2|2 zk|
n=k-+1 n==1l

a contradiction.

Since H has the cardinality of the continuum, so does H/2H. (If (zo)
is a system of generators for H, then the cosets [z,] in H/2H are distinct.)
To get a contradiction, we shall argue that H/2H is countable. Let & =
[Somey Mnn) € H/2H; hence P(m,) — co. Take kg € N so large that
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if k > ko, then P{my) > 4. We have

Zmnmn = Zmnmn + Z 2.

nehg1

and my/2 € Z. It follows that z = [En 1 Mn&n]. So, every element z
H/2H is the coset of a finite sura ¥ mpx,. Hence H /2H is countable, m

2. Subgroups of R™. Here is a complete description of closed, additive
subgroups of R*, the countable product of lines. This result was previously
obtained by Brown, Higgins and Morris in [BHM] by analyzing the structure
of the direct sum of lines and applying Kaplan’s duality theorem. (Their
version, formally stronger than the statement of Theorem 2.1 below, can
easily be recovered from our proof.)

2.1. THEOREM. Every closed subgroup of R™ is a product of lines R and
integers Z.

Proof Let V be the maximal linear subspace contained in @. Since
V' is closed, V' is isomorphic to a finite or infinite product of lines [BPRJ.
Moreover, there exists a continuous linear projection of R* onto V' [P, The-
orem 3. This gives rise to a group-isomorphism of G onto V x (G/V) (cf.
Introduction). The line-free, quotient group I' = G/V can then be identi-
fied as a closed subgroup of R*®, We shall show that I' is a finite or infinite
product of copies of Z.

In case span(I") is finite-dimensional, I" is a finite product of copies of
Z, Therefore, applying the above result of [BPR], we can assume that I” is
linearly dense in R®°.

We congider (R®)*, the dual of R®, with the weak #-topology. We let

™= {.'L'* e (Roo)* E*(I‘) C Z}.

Clearly, I'™* is a closed subgroup of {IR*)*. Since I' is linearly dense in R*,
I™ ig line-free. It follows that I'* is finitely discrete (i.e., the intersection
of I'™ with every finite-dimensional linear subspace of (R>)* is discrete).
Since (R*)* iy a countable union of finite-dimensional linear subspaces, [™*
is countable. Now, the argument of the proof of Theorem 1.1{¢c)=>(d) applies
to yield that I™ is free abelian.

Let F' = {x}}52 , be a set of free generators of ™. Consider T : R*® —
R* given by T(z} = (2(2)), € R*®. Since F is total (cf. [DG, Corol-
lary 2.2]), T is a continuous linear injection. For every m 2> 1, T, =
(xf,...,2%) : R® — R™ is a surjection, and hence T' has dense image.
Since there is no strictly weaker linear topology on R* (see [K]), the weak
topology induced by F coincides with the original one. Hence, by Banach’
Open Mapping Principle, T is a surjection.
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We will show that 7(I') = Z*°, which yields that 7' : I' — Z* is an
isomorphism as required. Clearly, T'(I") € Z* and it is enough to show that
T-1{Z) C I'. One sees that T~*(Z°) is contained in "™ = {z € R> :
z*(z) € Z for every z* € I'*}, which is, by [DG, Theorem 2.1], the weak
closure of I'. Since the weak topology on E™ coincides with the original
topology (see, e.g., K|), ™ =1T. Hence T"HZ®) C . u

3. Weakly closed subgroups in Banach spaces. Recall that a subset
A of a Banach space F is called weakly closed if it is closed in the wealk
topology on E generated by E*, the dual of E. A space is totally disconnected
if each of its points is the intersection of a family of clopen subsets.

Below we generalize [DG, Corollary 3.3] to arbitrary separable Banach
spaces.

3.1. THEOREM. If G is a line-free, weakly closed subgroup of a separable
Banach space E, then G is totally disconnected and dim(G) < 1.

We need the following counterpart of {DG, Theorem 3.2].

3.2. PROPOSITION. If there exists a total sequence A C E* such that the
dimension of G relative to the weak topology generated by A is < k, then
dim(G) < k1.

Proof. First note that the weak topology generated by A coincides with
the weak topology w generated by span(A4) C E*. We claim that there exists
an equivalent norm [ - [| on E such that the norm topology on || - || -spheres
coincides with the w-topology. It then easily follows that dim(G) < k+ 1.

Since span(A) is a total linear space, it is weak =dense in E* (ie.,
span(A) is dense in the weak *topology). Moreover, span(A4) N B* is weak
x-dense in B* = {2* € B* : ||z*| < 1} (see [Da, p. 20]). Now, inspecting the
proof of Theorem 3.1 in {BP2, p. 177], we see that for an arbitrary sequence
{z}22, C B* which is *-dense in B* one can produce an equivalent norm
1 on B so that it Jzal — lzoll avd of(z2) — 23(w0), i = 1,2,...,
then |z ~ @of — 0 (see also |BP2, Remark, p. 178]). If we additionally
pick {z}}32, C span(4), then the above condition assures that the original
topology coincides with the w-topology on the || - |l -spheres. m

Proof of 3.1. Let G* = {z* € E* : *(G) C Z}. Since G ig weakly
closed, the proof of [DG, Corollary 2.2] agsures that G* is total. Since F
is separable, we can select a total sequence A C G*. (Choose a countable
subcover of {{z € E: z*(z) # 0} : 2* € G*}, the cover of E\{0}.) Clearly
(7 is 0-dimensional in the weak topology induced by A. By 3.2, we get
dim{@) < 1. w _

‘Below we show that every infinite-dimensional Banach space contains
sufficiently many nontrivial weakly closed subgroups. A sequence {z,}5%;
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in a Banach space E is called a basic sequence if it is a Schauder basis for
the closed linear subspace spafi{z,}>.; C E. (A Schauder basis will often
be called a basis.) By a result of Banach, every Banach space contains a
basic sequence (sce [BP2, p. 215]).

3.3. THEOREM. Let G be a nondiscrete, closed subgroup of o Buanach
space E. Assume that either G is line-free or G contains an infinite-dimen-
sional linear subspace of E. Then G conlains a separable, nondiscrete,
weakly closed, line-free subgroup Gyg.

3.4. PROPOSITION. There exists a basic sequence {2,}%., C G C E such
that |xy] — 0.

Proof. Assume that & contains an infinite~-dimensional linear subspace
Ep. We can obviously require that Ey is a closed subspace of E. By the
classical result of Banach (see [BP2, p. 215]), By contains a basic sequence
{#,}3%.;; we can have ||z,] — 0.

Assume that G is line-free. Pick any nonzero v; € G. Write G =
span{v; } N @G. Consider the quotient group G/G; endowed with the “norm”

Nglll = inf{lg -yl :y € G1}.

We will find vy € @ so that |v2l] < 3, [lve — 1] 2 1 and ¥2/2 € G. To
this end, uge the fact that G/G; is not discrete and find an integer na € N,
ng > 1, and g € G with

L<2™ gl <2.
By definition of |[g]}, there exists g2 € [g] such that
1
loall < Nl + 5
Then we have
. 1
2ol < 2 gl +27 5 S 2+1=3;
and since 2" gy € [2"2gs], then
127 g2 - va]| 2 1.
We set vy = 2" gq,
Now, replace G4 by Gy = span{vy, vz} N G and argue in the same way
to get vy = 2"3gy, ga € G, na > ng, |lvs|| € 3 and |o; —vs| = 1 for i # 7,
1 €14,5 < 3. Inductively, we are able to find vy, vp,... so that v; = 2™ig;,
g; € G and
gl €3 and Jlvi—wf 21 forisj.
Since {v;}32, is bounded, it contains a subsequence that converges tov € F
in the weak topology. (We may assume that E is separable to insure that
closed halls in E are metric compacta in the weak topology.) It follows that
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the sequence {w; ~ v, }i; with the lexicographic order hag a subsequence
that weakly converges to 0 = v — v. By the Bessaga—Pelczyiiski Selection
Principle (see [Di, p. 42]) such a subsequence contains a basic sequence
{wr}ge,. (Formally, the Bessaga—Petczyrfiski Selection Principle in [Di] is
formulated for normalized sequences {x,}32; only; however, it is clear that
the principle holds for sequences {2, }3%, that are bounded away from 0.)
Clearly, each wy, is of the form

" 1
Wy =w kgﬂ-.ru -2 hg'r'ka

where lim my, = lim I, = co. We see that wy € G. Let s, = min{my, I}, We
have

wy = w (2m""_skgnk + QI"_skgm) .

Letting o) = 2Me~%ng, + 2h~%kg  we see that [|z| — 0 and so the
sequence {zj}52, is as required. m

Proof of 3.3. Let {2,152, be a basic sequence as in 3.4. Set

ng{imﬂmnek}’: mneZ}.

n=1

It is clear that Gy is a subgroup of G. Since ||z, || — 0, Go is nondiscrete.
Using the basic functionals @} (3o, ¢:%:) = t,, one can readily check that
Gy is weakly closed. The fact that Gy is line-free is shown in 5.1 below. =

We will be interested in subgroups G with dim(G) > 1. In searching for
such groups it is convenient to isolate the following property of a sequence
{Zx}52, in a metric linear space (E,| - |):

(*) If {t.}p2 is a sequence in NU {0} such that sup{]| Z:=1 tnin| 1 k€
N} < oo, then 372 #,x, converges in E.

n=]

3.5. PROPOSITION. If a closed subgroup G of o complete metric linear
space (E,| - |) contains a sequence {zn}52, that satisfies () and |zn| — 0,
then dim(G) = 1.

Proof. We shall show that if I/ is any | . i-bounded open neighborhood
of 0 € E, then there exists z € 83U N G (8U denotes the boundary of 7).

Adopting the notation of [DG, Theorem 3.1), for w € U and y € E
let n{u,y) = max{n :u+ky € U for k = 0,1,...,n}. We inductively
construct na,ng,..., ny = 0, and yy,yz,... with 3, € G, Set ny =
n(0,71) and y1 = nyey. Then having defined g, let gy = Yk, Thp1)
and Ye+1 = Yr + Ngr1Zhyr. Consider the formal series Y re M. Since
for every p, the sum Yh i mpzk € U, we infer that sup{| Y %y mrEk| :
p € N} < oo. By (), we conclude that Y ore; My converges in 5. Since
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disty.| (3 kms, Pk, OU) < |25, we see that > ohe1 KTk € OU. Finally, us-
ing the fact that >0 _ nyz, € @, we conclude that = — D orey My €
AUNG. w

Let £ be a Banach space and {x,}32, be a Schauder basis for E. The
basis Is said to be boundedly complete if the condition sup{|| }:ﬁ___l tay :
k € N} < oo implies }° 2, ,z,, converges in E. This is always the case
when E is reflexive (see [BP2, p. 241]).

3.6. COROLLARY. Let E be o Banach space with o boundedly complete
basis {2n }imy such that [le.]| — 0. Then G = gF{z,}*,, the closed group
spanmed on {2}5%1, 18 weakly closed and dim(G) = 1. u

3.7.Remark. By 3.4 and 3.6, every nondiscrete, closed subgroup which
is either line-free or contains an infinite-dimensional linear subspace in a
reflexive Banach space has dimension > 1. This yields an alternative proof
of [DG, Theorem 3.1]. m

4. Nondiscrete, zero-dimensional subgroups in Banach spaces.
By cp we denote the Banach space of sequences that converge to 0 equipped
with the norm ||| = sup,, |z,!. The ultimate goal of this section is to prove
the following characterization result.

4.1. TueoRrREM. A Banach space E contains a closed, nondiscrete, zero-
dimensional subgroup if and only if E contains a copy of cg.

Let {zn}5% be a normalized Schauder basis in a Banach space E (i.e.,
za| = 1 for n = 1,2,..)) and let a = (a,) € cg, @n # 0. We define
I'=Ty({z,}) as

Ir= {itnmn:tn/an ez}

n=1
It is clear that I" is a weakly closed, nondiscrete subgroup of E.

4.2. LEMMA. Let {e,}52,, be the basis in ¢y consisting of the unit vectors
en. Then for every o = (an) € ¢, an # 0, the group I' = I, {{e,}) is
zero-dimensional (as well as nondiscrete and weakly closed). -

Proof Let 4 = (0,00)\Urw; anZZ. We claim that for every £ € A,
OB(e) NG = @, where B(e) = {z € ¢ : ||z] < €}. To check this let
x = (2;) € 8B(e) N G. Then |z|| = |z:,| for some 45 € N. Since z;, /0y, € Z,
we infer that ¢ € a;,%; a contradiction. m

The sufficiency part of 4.1 requires the following fact concerning the

“extraction” of ¢y from a Banach space F (cf. [BP1, Theorem 5}; see also
'Di, p. 45]). '



286 F. D. Ancel ¢t al

4.3. PROPOSITION. Let {yn}® =1 C E be a sequence with 3 .. 1 |2*(yy,)]|
< oo for every z* € E*. Agsume that for every n there is a choice of signs
{eF}i1 C {-1,0,1} such that, if we set

Zn =M+ ey + ... FERUn,

forn=1,2,..., then the sequence {zy }oo is discrete in E (i.e., no subse-
quence of {zn,}32, converges}. Then B contains a copy of co.

Proof. Consider the first “column” of signs {¢7}32.; and select a sub-

sequence {ni} so that e'f}“ = const. Set zn, = #,1. Then consider the sec-
ond “column” {egi};‘;z and select a subsequence {ni} of {n}}22, so that
e;’% = const. Set z,, = Zp2. Using the diagonal procedure we can extract
a subsequence {z,} of {z,} such that, if k > [, then z,, — z,, is a finite
sum of {ym }30_, ; With coefficients in {2, %1, 0}. For each k we define p(k)
to be the “length” of zy,, i.e., if p > p(k) then y, does not appear in the
description of z,, (or, more precisely, it appears with the coefficient 0). We
can assume that p(1) < p(2) < ... We consider the subsequence {z,(x)}52,
of {zn}. Since {2,} is discrete, {2y}, fails to satisfy the Cauchy prop-
erty. Hence, there are pairs of integers (K, lm) with kn < [ < kpoa,
m=1,2, ..., such that

[ Zpthm) = Zp0m)ll 2 &

for some & > 0. By our construction, zp(k,,) — Zp(i,), M = 2, is a sum of
p{kmti)
{m sty

with coefficients in {£:2, :1,0}. Let @m = 2p(k,.) —Zp(i..) The above property
vields

[0 o0

Yo le(em) <2 |2 ()| < oo

m=2 ==l
for every x* € E*. This shows that the sequence {z,,} weakly converges
to 0; moreover, we also have [|z,,|| 2 é > 0 for m = 1,2,... Consequently,
by the Bessaga~Pelczyfiski Selection Principle [Di, p. 42)], we can extract a
subsequence of {2} that is basic. Now, the result of [BP1, Lemma 3] (see
also [Di, Corollary 7, p. 45]) implies that E contains a copy of co. w

4.4. LEMMA. If a Banach space E admits a closed, nondiscrele, zero-
dimenstonal subgroup G, then one can select a sequence {yn }22., C G that
satisfies the assumpiion of 4.3.

Proof. Since (7 is zero-dimensional, there exists an open, bounded
neighborhood of 0 in E such that 8U NG = §. Pick a sequence {g,}3, C

icm

Closed subgroups in Banach spaces 287

GNU with ||gni| — 0. For u € U and z € E define
m(u,®) = max{n:u+ke e U for k=0,%1,...,£n}.

Set y1 = m(0,g1)g1 and observe the 44 € G V. Moreover, there exists
g€ {-1,1} so that

diSt“.“ (ayl,BU) < ”g]” ,

To construct Y2 let mn = min{m(yl, 92): m(—yls gZ): m(or 92)} Set Y2 = Mmygq
and note that _

dy ki e GNU.
Moreover, thore are g(,e5 € {0, %1} so that
dist”.H (e1y1 + €912, OU) < llg21] -

Inductively, we can obtain vectors {y,}52, ¢ GNU so that for every finite
set A C N we have

() Y dyeGnU

€A
and there is {¢7}7.; C {0, &1} so that, writing 2, = 2 j=1E7Y, we obtain
(i1) dist”.H (zn,aU) < lgnl -

By (i) and [Di, Theorem 6, p. 44], we have Y >0 | [z*(y,)| < oo for every
z* € E". Since |[gn|| — 0 and 8U N G = @, it follows from (ii) that no
subsequence of {z,}5%., converges in E. w

Proof of 4.1. Combine 4.2, 4.3 and 4.4. =

4.5. QUESTION. Let G be a (nondiscrete) zero-dimensional, closed sub-
group of a separable Banach space E. Assume G'N Ep is nondiscrete for
every infinite-dimensional linear subspace Ey C E. Is then 5pan(Q), the
closed linear span of @, isomorphic to ¢5?

5. Remarks and questions on isomorphism and topological clas-
sifications. When we say that two topological groups are isomorphic,
we mean that they are topological-group isomorphic. We will show that
there are continuurn many nonisomorphic 0-dimensional and 1-dimensional
subgroupy living in Banach spaces. Let us recall that Iy = Iu({z,}) =
(o  tn@n t bofan € Z}, where {1, )32, is a normalized basis in a Banach
space B and @ = (ay) € cp, an # 0.

5.1. Lemma. Let B be o Banach space with a normalized basis {z,}32,,
and let a = (ay) € co, an # 0. Then the group I, is weakly closed and
line-free,

Proof. Clearly I, is weakly closed (see the argument from the end of
the proof of 3.1}, To see that I, is line-free, we consider the sequence of
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coordinate functionals {z*} associated with the basis {z,}. For every n,
x; (T,) is obviously discrete. Hence, the image of any line in I';, under z} is
{0}. Since the sequence {z}} is total, it follows that I'; is line-free. =

Repeating the argument of [DG, Theorem 2.11] and using the fact that
the sequence of coordinate functions ak (Soreq tizi) = &, is equicontinuous
we get the following.

5.2. ProprosITION. Let E be a Bonach space with a normalized basis
{2,322, If o = (an), b = (bn) € co are positive monotone sequences with
(n/bn) € co, then there is no continuous homomorphism. of Iu({z,}) onto

Iy({zn}). =

We say that a basis {z,}5%, is stable if, for any two sequences of reals
{sn} and {t,} such that 0 < inf{sn/t,} < sup{s,/tn} < oo, the series
Y% | sni, converges if and only if 3770, tn@n converges. The standard

bases in {P-spaces, 1 < p < oo, and ¢ are stable.

53. Remark. If a basis {z,}3%, is stable, then the formula

o3 o0

by
Ztiﬂ:i"* E by —y
ie=1 v

establishes an isomorphism of I, onto [ provided limay, /by = g and 0 <
g < 00. B

54. CorOLLARY. The space co contains continuuwm many nondiscrete,
weakly closed, zero-dimensional subgroups I'y that are pairwise nonisomor-
phic. Bvery such I', is homeomorphic to Z>° (which is homeomorphic o the
space of irrationals).

Proof. Let a(t) = (t") € ¢g for 0 < ¢ < 1. Set Iy = Tuwy({en}). I
t < s, then (t"/s") € cp; and by 5.2, Iy is not isomorphic to [y(s). By
4.2, each I,y Is nondiscrete, weakly closed and zero-dimensional.

According to the characterization of the irrationals (due to Alexandrov
and Urysohn) (see [E, p. 29]), every complete-metrizable, zero-dimensional
space without a compact open set is homeomorphic to Z®. By 1.1(b), the
groups Iy are not locally compact. m

5.5. COROLLARY. Euvery infinite-dimensional Banach space E contoing
continuum many nonisomorphic, line-free, weakly closed (hence, totally dis-
connected, see 3.1) subgroups of dimengion 1.

Proof. We consider two cases: F is a copy of ¢p, or E does not contain
a copy of ¢g. In both cases we define the groups using I, with respect to
some normalized basis and the sequence a(t) being that of the proof of 5.4.
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If E is ¢p, then we let

n thmes

Note that {2, }3%; is a normalized basis that satisfies condition (*) of Sec-
tion 3. Indeed, if || 377 tn2n|| < M and ¢, > 0(!), then by examining the
first coordinate in cp, we conclude that the positive series 377, t, con-
verges. This yields the convergence of Y | £,2, in ¢o. Since the sequence
a(t) = {a,(t)} consists of positive numbers, it is clear that condition (¥) also
holds for {2} = {an(t)2.}. It follows from 3.5 that dim(I ) ({z})) = 1.

If F does not contain cg, we pick an arbitrary normalized basic sequence
{en}ps in B (see [BP2, p. 215]). Then, by 4.1, dim(Iyy({za})) > 1. By
3.1 and 5.1, we infer that in either case dim(I,;y)) < 1. Now, apply 5.2 to
conclude that the I,y are pairwise nonisomorphic. m

5.6. Remark. Fix the standard basis {,}22, in I* and a monotone
positive sequence a = (a,) € ¢y with lima,/az, < oo. The group I' =
T'u({en}) has the following properties:

(a) I" is & complete-metrizable group,

(b) I' is totally disconnected,

(¢) dim(I'} =1,

(d) I' is isomorphic to its finite product,

(e) dim(I"™®) = 1.

To show (d) it is enough to check that I' is isomorphic to its square.
Consider the standard isomorphism ¢ : 1* — 1% x I? given by o((t.)) =
((b2n—1), (fan)). If we represent I x I' by ' x I'? where Il = {(z;) €
?:xi/agi-) € ZY and ' = {(y) € 1% : yi/a2; € Z}, then we see that
w i3 ‘an isomorphism of I onto I' x I'. By 5.3 and the property of (@),
both I'* and I'? are isomorphic to I'. To verify (e), represent I'™ as the
limit of the inverse sequence of finite products of I'. Since the limit of an
inverse sequence of separable metric spaces with dimension < n is itself of
dimension < n, 1" is of dimension 1. w

Finally, let us ask some questions related to the topological classification
of closed subgroups ¢ in Banach spaces.

5.7. QuUESTION. Does there exist a line-free G with 1 < dim(G) < oo?

5.8. QUBESTION. Let G be the connected component of 0 in G. Is G
homeomorphic to Gy x (G/Go)?

5.9. QUESTION. Assume G is locally connected. Is then G a Hilbert space
manifold?
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The separable case of 5.9 reduces via a result of [DT] to the verification
that (@ is an absolute neighborhood retract; it is, however, unclear whether
such a ¢ must be even locally connected in dimension 1.
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Almost everywhere convergence of Laguerre series
by

CHANGPAO CHEN (Hsinchn) and CHIN-CHENG LIN (Chang-i)

Abstract. Let o €Z1 and f e LP(R™Y,1 € p € 0o, Denote by ¢; the inner product
of f and the Laguerre function Lf. We prove that if {c;} satisfies

lim Tim
Alln—oo

Z \Akcj'ljk/z_l/‘lro mnd JCjEjk/2_1/4=o(1) as j — oo
n< i< hn .

for some & € N, then the Laguerre series 3 ¢; L3 converges to f almost everywhere.

1. Introduction. Let L} (¢) denote the nth Laguerre polynomial of order
aon R,

1 dn

Lo(t) = —t7%e! o ("),

- e a>-1,n=0,12,...,

or, equivalently,
7
~1* /n+a
=3 G0
k=0 '

The Laguerre polynomials form a complete orthogonal system in L2(R*,
t*e"*dt) and satisfy the summation formula [13, p. 102)

a>-1,n=012...

(1) S Lg0) = L),
fo==()

It is well known (cf. [9, p. 348]) that
|La ()| = O(eﬁ/2t_m/2w1/4na,/2»1/4) ]
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