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Outer factorization of operator valued
weight functions on the torus

by

RAY CHENG (Louisville, KY)

Abstract. An exact criterion is derived for an operator valued weight function
W(e™,e™) on the torus to have a factorization

W(e'is,e'i't) = gp(eis’ eit)*é(eis, eit),

where the operator valued Fourier coefficients of & vanish outside of the Helsor—
Lowdenslager halfplane

A={(m,n)eZ® :m>1}U{(0,n):n >0},

and ¢ is “outer” in a related sense. The criterion is expressed in terms of a regularity
condition on the weighted space LQ(W) of vector valued functions on the torus. A loga-
rithmic integrability test is also provided. The factor & is explicitly constructed in terms
of Taeplitz operators and other structures associated with W. The corresponding version
of Szegd’s infimum is given.

1. Introduction. Recall that a scalar valued weight function W(e*) on
the unit circle has a factorization W(e%) = |(e*)|?, where & is an outer
function, exactly when log @ is integrable. This, in turn, is equivalent to the
“regularity” condition

-~ .
(1) () 5™ = (0),

n=0
where F is the span of {e"* : k > 0} in the weighted space L2(W), and S
is multiplication by the independent variable e,
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The present work deals with the analogous problem of factoring an op-
erator valued weight function W (e*, e*) on the torus. Specifically, we seek
a factorization W(e®,eft) = &(e', ei)*® (e, &™), where the operator coef-
ficients of & vanish outsu:le of the halfplane

(2) A={(mn)€Z? :m>1}U{(0,n) :n >0},

and & is outer in an appropriate, related sense. It is shown that the existence
of this factorization is equivalent to a regularity condition similar to (1).
Under this regularity assumption, the outer factor & is constructed in the
following way. First, the weight function W is factored into A* 4 as a function
of its first argument, using a one-variable method from the theory of Toeplitz
operators. The resulting A turns out to be a function of ¢ with values
which are multiplication operators in the variable e*. This 4 might not be
the outer function that we are locking for, however, because its coefficients
need not vanish outside of A. But now the regularity condition and a second
application of the Toeplitz theory provide a partial isometry valued function
(e such that & = 6A has the desired outer property, and W = $*&.

Spaces of vector valued functions on the torus are introduced in Sec-
tions 2 and 3. The technical device from Toeplitz theory is adapted for the
present purpose, along with the concept of “regularity.” Section 4 introduces
the notion of “4-outer” functions and narrows the main issue to bounded
weight functions. Such weight functions determine Toeplitz operators, and
in Section 5 a preliminary factorization is executed via the technical device
prepared earlier. A second application of this device, in Section 8, effects
the final adjustments in the factorization. The pieces are brought together
in the main theorem, on the equivalence of factorization and regularity. Some
uniqueness properties, an application to prediction theory, and a logarithmic
integrability test for regularity are given. Historical matters are included in
the final remarks.

In this paper, all Hilbert spaces are complex, all “operators™ are bounded
and linear; all “subspaces” are closed, and all “projections” are orthogonal.
We omit the words “almost every” and “equivalence classes of” when this
is not likely to cause confusion.

2. Lebesgue spaces and shift analysis. Let T be the unit circle in
the complex plane C, and write ¢ for normalized Lebesgue measure on T.
For a separable Hllbert space C, take Lh(o), HE (), L” oylo) and H"g(c) (o)
to be the Lebesgue and Hardy spaces of C- and B (C)—valued functions on T.

A principal tool of this investigation is the method of [5, 7] for factoring a
nonnegative Toeplitz operator, This one-variable result will be utilized in the
particular form stated in the lemama below, which relates the factorization
to a regularity condition.
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Let 5 be the shift operator 5: f(e%) — €™ f(¢'*) on H2(). We say that
an operator A on HZ(o) is

» S-analytic if A is of the form Af = W f for some W in HE c)(a),

* S-outerif A is S-analytic and AHZ (o)~ = H% (o) for some subspace M
of C;

» S-Toeplitz if A is of the form Af = P(Wf) for some W in LEey(o),
where P is the projection of LZ(c) onto H(z).

When C is one-dimensional, these definitions reduce to the familiar no-
tions.

Suppose that T is a nonnegative S-Toeplitz operator on H 2(c). We define
the Hilbert space 7 to be the completion of (ker 7 under the inner product
{y)r = (T, )2. Note that for f in (ker T)*,

(3) 1S = (TSS,8f)
= ($'T5f, fls = (T1.f)2
) = I£1-

Thus § extends to an isometry Sr on 7~

LEMMA 2.1. A nonnegative S-Toeplitz operator T has o factorization
T = A"A, where A is S-analytic, if and only if the space T satisfies the
condition

(5) M) $37=(0)

n=0

In this case, A may be chosen to be S-outer.

The assertion can be deduced in a straightforward way from [8, Theo-
rem 3.4].

The Lebesgue spaces Lg(0?) and Ly (o) of functions on the torus T
are defined in the obvious way. Note that a function f(e**,e) € L2(0?)
can be viewed as a member of L%g(a(e“))(a(e“)), that is, as a function of

, with values in L3(o(e™)). This view will be taken as needed in order
to explcnt the One—varlable theory. Likewise, we can identify L%‘EC)(JQ) with
L¥.

B(ca(”)(a)' :

For any subset 2 of Z? we define Me(£2) to be that subspace of L} (0?)
which is spanned by {ce™ "¢ ;¢ € C, (m,n) € 2}. Of particular interest
are the subspaces Mg (4), where A is the halfplane given in (2), and Mg (IT),
where

(6) I = {{m,n) E.Zz :mé-O}.
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Note that M¢(II) is isomorphic to Hig(a(eﬂ))(a(eis))‘ We omit the sub-
script, as in M((2), when the coefficient space is the complex field C.
For any function f(e**, €") on T?, we define the operations 51 and Sp by

(1) (Suf)(e? ) =" f(e, ), (Saf)e® ") = e f(e",e").

3. Weighted spaces and A-regularity. Suppose that C is a separable
Hilbert space, and W{e™, %) is a B(C)-valued weight function on T2, Thus
W belongs to L}g(c)(o2), and its values are nonnegative operators on C.
Such a W determines a Hilbert space L?(W) of C-valued functions: Take
the completion of the vector space generated by the trigonometric functions
{ecgmstint . ¢ € C, (m,n) € Z*}, under the inner product

8 {fow=[[ (W(e", ") (e, e"), g(e”, e"))c do(e™) do(e™)

(as usual identifying f with O if {f, f)w = 0). Observe that Sy and 5z (from
(7)) are isometries on L2(W). Again, the subsets of Z* generate natural
subspaces of L2(W), For any 2 C Z*, we take M (f2) to be the subspace
spanned by {ce™ ¥ . ¢ € C, (m,n) € 2}. (The notation is efficient, if
somewhat inconsistent with the previously defined Me(12).) The frequency

sets A (from (2)) and IT (from (6)) are also of particular importance here.
Check that for any weight function W,

oo
(9) My (IT) = \/ 85" Mw(4).
n=0
The space L*(W) is important in prediction theory, where it represents
the spectral domain of some C-valued stationary process, and the concept
of regularity is analogous to “complete nondeterminism” of the process.
Motivated by these considerations, we present the following idea.

DEFINITION 3.1, Let W be a B(C)-valued weight function on T?. We
say that the Hilbert space L*(W) is A-regular if

(10) M S7Muw(IT) = (0),
m==0)

and

(11) [ S5 Mw(4) = SiMw (IT).
=0

Indeed, when € is finite-dimensional, Definition 3.1 reduces to its classical
counterparts in [2, 4].

Remark. Here and elsewhere we speak of “functions” belonging to
L#(W) (or some other Hilbert space), when of course we mean equivalence
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classes of Cauchy sequences. If the underlying coefficient space C is finite-
dimensional, then the distinction is minor, for then the elements of L*2(W)
admit (possibly non-unique) functional representatives [9, Lemma 7.1]. But
when C is infinite-dimensional this circumstance may fail, even in other-
wise simple examples. For instance, let {v.}52, be an orthenormal ba-
sis for C, and suppose that W is the constant weight function such that
(Wom,Un)e = 27 ™6y, where § is the Kronecker symbol. Then the se-
quence of constant functions {f,}2%,, where f, = vy + v1 + ... + vp, is
Cauchy in L?(W), but evidently fails to converge to a C-valued function. In
what follows, it is therefore necessary to interpret these spaces with caution.

4. The scalar mollifier and A-outer functions. We now seek the def-
inition of “outer function” which is appropriate for the present factorization
problem. The first step is to introduce the scalar mollifier. Let v(e, ) be
a measurable, nonnegative real valued function such that log v is integrable.
Define, for z in the unit disc,

ig

(12) afz, ﬁit) = eXp f :w i_z log v(ew, e”) dcr(e‘“’),
e’ + 2 8 i
g{z) = exp f PR log a(0, &™) do{e™).
Now extract radial limits in z, and put
(13) d’(e”, eit) — g(e“)a(eia, eit)/a(o’ eit).

We say that a scalar valued function ¢(e®,e™) is A-outer if it can be con-
structed in the above manner. (Once again, the terminology sacrifices typo-
graphical consistency for efficiency.)

This notion of outer function has.its roots in [2], in which a square
integrable ¢ is constructed using a geometric argument. The scherne leading
to (13) is due to [3, Theorem 1.2.3]. The factorization of operator weight
functions will be patterned after this scheme.

Observe that for e* fixed, each ¢(:, %) is outer (in the standard sense);
g(-) is outer; and |¢| = v. Replacing » with 1/v, we see that 1/¢ is also A4-
outer. If ¢ is both A-outer and square integrable, then ¢ belongs to M(A).
Furthermore, [3] then provides that

(14) \/16(e, e +int . (m,m) € A} = M(4).
This, together with (9) (with constant weight 1), gives
(15) \/{8(e¥,eM)e ™t (m,n) € T} = M(IT).

That is, ¢ can be interpreted as an Sy-outer operator on the space H ig( o3 (o)
(which is isomorphic to M(IT)). ' :
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All of this suggests the following definition of A-outer for hounded oper-
ator valued functions. Let C be a separable Hilbert space. Put M = M (1)
(isomorphic to HZ, M(a)), so that S; is a shift operator on M. Define

c

K = ker S, a copy of L(c(e™)), and let P; be the projection of H onto K.
Write @y for Po@Py.

DEFINITION 4.1. Let @ € L‘)’;(C)(o'?). ‘We say that @ is A-outer if
(i) ¢ determines an Sj-outer operator on Hfg(g(ﬂf.ﬁ))(o(eis)); and
(ii) $o determines an Sp-outer operator on H3 (o ().

Indeed, in the simple case C = L, the conditions of Definition 4.1 guar-
antee that log |$| is integrable, and hence ¢ can then be recovered from (12)
and (13) by taking v = |®|.

This definition is structurally consigtent with that from the standard
one-variable theory.

PROPOSITION 4.2. Let § € Lff(c)(az). Then & is A-outer if and only if
(16} (PMe(A)™ = My (A)
for some subspace N of C.

Proof. Assume first that & is A-outer. Then & is §y-outer, so that $H =
H3,(0), for some subspace M of L (o). Consider &y, viewed as a function
of e*. By hypothesis & is Se-outer, hence ($oHZ(0))~ = H% (o) for some
subspace N of C. It follows that ($gL%(c))~ = L% (o). But from the S-outer
property of @, [8, Theorem B, p. 98] provides that (#pLZ(c))™ == M. Thus
M = L% (o), and consequently H = Hiir (a)(a). This can be expressed

as (PMc(I))™ = Mp(IT). Finally, let £ be the left side of (16). Pick a
trigonometric polynomial f € Mc(A), and write f{e®,e%) =T f;(e)eiss.
Note that $qfy lies in Hﬁr(a(e“)), that &f —&q fj lies in S]_MN(H), and that
P fo is orthogonal to Sy M (IT). Since Sy My (II) is already a subspace of
£, and such functions @ f are dense in £, it must be that £ is the orthogonal
sum of S1. My (II) and the span of all the $ofy (that is, a copy of HE(a),
viewed as a subspace of K). But this is to say that £ = My(A), which
is (16).

Conversely, suppose that (16) holds. Then by (9), we have (BM o (IT))~ =
My (IT), showing that & is Sy-outer. Define K, Py, ®y and M as before. From
(16) we see that M = oK = ($¢LE(0))™ = L%(c). Again, represent an ar-
bitrary trigonometric polynomial f € Mc(4) as f(e'®, &™) = T° f;(et)e'de,
and consider @f = o fo + (Pf — Py fy). The second term lies in Sy My (IT),
which is already a subspace of My (A). In order for (16) to hold, it must
be that the collection of all $ fy generates HZ (o (e™)); in other words, &,
is S4-onter. Thus & is A-outer. m
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The next observation allows us to extend the definition of A-outer to
operator valued functions which are not necessarily bounded. Its proof is a
simple modification of [8, Theorem A, p. 97).

PROPOSITION 4.3. Let ¢ be o weakly mensurable B(C)-valued function
on T2, and let ¢ and v be bounded, scalar valued, A-outer functions such
that ¢ and Y& belong to Lg‘;c)(aj). Then

(17) (62 Mc(4))™ = (YBMe(4))".

DEFINITION 4.4. Let & be a weakly measurable B(C)-valued function on
T?. We say that & is A-outer if, for some bounded, scalar vatued, A-outer
function ¢, the B{C)-valued function ¢@ is bounded and A-outer in the
sense of Definition 4.1. In this situation, we refer to ¢ as a scalar mollifier
for @, and we write N{@) = N for the subspace N associated with ¢@ in
Proposition 4.2.

The definition is sound. For if & is A-outer under two scalar mollifiers ¢
and 4, then Propositions 4.2 and 4.3 give (¢S M (A))™ = (PMe(A))™ =
My (4), for some subspace N of C. Evidently, N does not depend on the
choice of scalar mollifier.

DeFINITION 4.5. Let W be a B(C)-valued weight function on T2. We
say that W has a A-outer factorization if

(18) W(ei‘s,e“) — @(eis,eit)*ﬂs(eis,eit)

for some A-outer function @. In this case @ is said to be a A-outer factor
of W.

Finally, we use the scalar mollifier to reduce the main factorization prob-
lem to the case of bounded weight functions.

LEMMA 4.6. Suppose that W is a B(C)-valued weight function on T2,
and let u(e®, e’) = (max{1, |[W(e*, e")| gy )™, Then

(i) W has o A-outer factorization if and only if uW has a A-outer
factorization;
(i) L2(W) is A-regular if and only if L*(uW) is A-regular.

Proof. In any case, the scalar valued function « is nonnegative and
hounded, and logu is integrable. Let ¢ be the bounded, scalar valued, A-
outer function defined through (13) with v = «*/? in (12).

If W has a A-outer factor @, then ¢& is a A-outer factor for uW. Con-
versely, if uW has a A-outer factor ¥, then ¥/¢ is a A-outer factor for W.
Indeed, W/4 is A-outer with scalar mollifier ¢. This proves (i). '
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For (ii), let ¢ € C be a unit vector, let f and g be polynomials in M{4),
and consider the following estimates.

1) [f (We(of +9),c(6f + 9ledo® < [[ IIWse)llel2lof + g/ do?
< [ w1 igf + g do?
(20) = [[ |f+¢71gf* do*.

Let f = 1. Since 1/¢ is square integrable and A-outer, (14) implies that
the last quantity can be made arbitrarily close to zero by choosing g ap-
propriately. It follows that c¢ belongs to My (A) for all ¢ € C, and con-
sequently ¢ determines an isometry from L?(uW) into L*(W) such that
(pMuw(A))™ C Mw(A). On the other hand, fix g = 1. Choosing f close
to 1/¢ in M(A), we see that c lies in the closure of ¢pMyw (4). Thus
(pMuw(4))™ = M (4). From (9) we also get (¢ Muw (IT))™ = My ().
The assertion (ii) follows from these cbservations. =

5. A preliminary factorization. We now establish a factorization of
an operator weight function W into A*A, where the factor A is analogous
to the function a(e®, e*) in (12) in the scalar valued case. With that done,
the desired A-outer factor will be constructed in the next section by making
an adjustment to A corresponding to {13).

LEMMA 5.1. Let W(e™, e") be a bounded B(C)-valued weight function
on T2, If L2(W) satisfies the reqularity condition (10), then there ezists o
B(C)-valued function A(e*®, &™) on T? such that A determines an Sy-outer
operator on Hié(g(&“))(o(eis)), and W(e', e') = A(e'®, e)* A(e™, ™).

Proof, Let H = H%g(g)(cr) (2 Mg(IT)) and let P be the projection of
L, (c)(a) (22 L2(02)) onto H. The restriction of §1 to H is & shift operator
c

on H; let K = ker S} (=2 LZ(0)), and let Py be the projection of H onto K.

The mapping T : f — P(Wf) is an S1-Toeplitz operator on H. By the
assumption (10), the condition (5) of Lemma 2.1 is met, where My (IT)
plays the role of T, The conclusion is that T' = A*A, for some S -outer
operator A. As yet, A is a function of ¢*, with values in B(LZ(o(e*))).
It remains to show that A can be interpreted as a B(C)-valued function of
the two variables (e, i), To do this, it suffices to show that .4 commutes
with Sz. .

Thus we turn to the construction of A in [8, Section 3.4]. With H, 54,
K and T given as above, define Hy = TY2H, viewed as a Hilbert space
with the inner product of . Let St be Lowdenslager’s isometry, the unique
isometry on Hyp such that

(21) - Sp(THRf) = TY3(8:. )

icm

Outer factorizetion 27

for all f € H. By the hypotheses, Sy is a shift operator. Write K = ker S,
and define J = T1?|Ky € B(Kz,K). Now J* has a polar decomposition
V'R, where R = (JJ*)'/? € B(K), and V € B(Kr,K) is a partial isom-
etry. In fact, [8, Section 3.4] shows that V is an isometry. With that, the

Si-outer operator A has the operator-strongly convergent series representa-
tion

[}
(22) A= "S{V(I - 8838 T2,

g=0
Evidently, it is now enough to show that Sz (or rather, suitable restrictions
of that operator) commutes with V, §r, $% and T1/2,

Obviously, S3 commutes with the nonnegative operator T, and hence
with T2, Next, observe that Hr is reducing for Sp, and consider Sq re-
stricted to Hy. For any f € K, and for k = £1, we have

(23) SpSETY2f = SpTH2gkf = 7128, 5k ¢
= SRTV28 f = S G712,

Therefore S commutes with S¥, and consequently so does §3. We now turn
to J, which can be written

(24) J = (I~ 88)TY*I — §p8%).

Since K and KX are reducing for S, and S; doubly commutes with S;, Sp
and T2, it follows that JSy = SoJ. A similar argument yields J*S; =
SzJ*. These in turn show that Sy commutes with R. Lastly, the defining
condition J* = V*R allows

(25) (S2[K)RV = (8:|K)J = J(S2|Kr) = RV (S:|Kr);
at the same time,
(26) ($2lK)RV = R(S:|K)V.

Consequently, R[(S2|K}V — V(892|Kr)] = 0. But the final space of V is RK,
which is reducing for Sp. We conclude that (S»|K)V = V(5:|Kr). This
verifies all the needed commutations. m

With the notation of Lemma 5.1 and its proof, let Ag = PpAF,;. The
proof in [8, Section 3.4] shows that Ao coincides with the nonnegative oper-
ator R; by the above we see that it can be represented as a function of e,
Henceforth, let us write Ag(e®) for the B(C)-valued function that arises in
this way. _

There is a characterization of Sy-outer functions in terms of only one-
variable functions.
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PROPOSITION 5.2. Suppose that @GLB(C (0?) determines an Sy-onalytic
operator on H = HLg (a’(c“))( o(e®)). Then & is Sy-outer on M if and only

if &(-,e') is Slﬂouter on H2(o(e'*)) for o-almost every fized e't.

Proof. With & given, let W = &#*® and adopt the notation from
Lemma 5.1 and its proof. The §;-Toeplitz operator T commutes with Sg,
and can be seen as a B{(HZ(o(c*)))-valued function of e®. In fact, for '
fixed, the mapping T(e®) : f(e*) — P(W(e et f (a”)) is a nonnegative
S;—Toephtz operator on HZ(o(e*)). Let S’T(e”) be the Lowdenslager isom-
etry corresponding to T(e') for ¥ fixed, Then Sp(e™), as an operator on
‘H, is an isometry satisfying

ST(eit)(T(Bii)lﬂf(eis’ e“)) = T(ei'b)”z(Slf(e“, e:‘.t))_
Thus Sr{e*) agrees with 7 as an operator on H. In an analogous way, for
each e we can define J(e™*), R(e®) and V{e™) as operators on ; these
are likewise seen to coincide with the operators J, R and V, respectively.
Now let A be constructed as in Lemma, 5.1. Then by the above reasoning,
A(-, ) is Si-outer on H3{c(e®)) for every e*. In any case, $ = BA, where
B is Sy-inner. Tt is straightforward to check that B also commutes with Sy,
and hence we may write B = B{e'®, ¢'). So & is §y-outer exactly when B is
S;-constant, which is to say that $(e®®, e") = B(e')A(e**, "), This, in turn,
occurs if and only if &(-, e") is §y- outer on HE(o) for c-almost every e*. w

In light of Proposition 5.2, there is also another description of A-outer
functions.

COROLLARY 5.3. fet & € L""’(C)( 0?) determine an S1-enalytic operator.
Then & is A-outer if and only if

(1) (-, e®) 45 S1-outer on HZ(c) for o-almost every e*; and
(ii) Pq(-) is Sa-outer on HE(o).

Furthermore, we can use Proposition 5.2 to describe the space M as-
sociated with a bounded Sj-outer function A(e*,e*), Specifically, M is
defined to be the subspace of Li(cr) such that (AH%Q( W o= Hil(o).

It also has the property that (AgL2(0))” = M. But Proposition 5.2 as-
serts that for each e® fixed, there is a subspace M (e} of C such that
(A(, e HE (o))" = H}, ew)(cr) and (Ag(e®)C)” = M(e™). These spaces
must be related in the fo owing way.

COROLLARY. 5.4. Let M and M(e*} be the spaces associated with the
Sy-outer function A(e”, ™). Then

L M= [ @ M(e") do(e®).
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Note that in Proposition 5.2 and Corollary 5.3 it was assumed at the
start that the 5y-outer operator ¢ commutes with Sy, that is, & admits the
functional form &(e*,e*). Of course, not all ;- -analytic operators admit
this form, and these results do not apply in such generality.

6. The A-outer fat_:tox:ization. Assume the notation and conditions of
Lemma 5.1. Thus W(e*,e*) is a bounded weight function on T?, and W
factors into A* A, where A € L%‘%C (¢?) is S1-outer, and Ag is a nonnegative
B(C)-valued function. The factor A generally fails to be A-outer, since Ag
is not guaranteed to be Sz-outer: This is not surprising, as we have yet to
impose the regularity condition (11). When this is done we will produce
the adjusting factor corresponding to g(e®)/a(0, &%) in the scalar case (13).
Then the construction of the A-outer factor is completed in an analogous
way.

We first check that A determines an isometry from My, (IT) onto a dense
set in H3 (o) (with M defined as for Corollary 5.4), For if f and g belong
to Mw (IT), then (writing H = HLQ (@3(o) = Mc(II))

(28) < ) (Tfa )H = (A*Afr )'H = <Af: AQ)H
If f lies in My (A) © S1 M (IT), then for all g € My (IT),
'w

(29) 0= <f1 Slg (Tfa SlQ}H
= {A*Af,S19)n = (Af, AS1g)n = (Af, S149) n.

That is, Af belongs to HZ, © $1HZ, (a copy of M). But more can be
said. For any polynomial f(e,e®*) = ¥ fi(e®)e¥* € My (A), consider
Af = Aofo+ (Af = Aofo)- The first term is in the span F of {Ajce™t :
c€C,n > 0}in L3(c), which is a subspace of HZ, © S{Hz,, while the rest
sits in S1HZ%,(o). Therefore the image of My {A) © Sy My (IT) under A is
dense in F. Assume that the regula’rlty condition (11) holds, so that by the
above correspondence

D}

(30) S3F = (0),

n=0

Accordingly, the one-variable weighted space 7 = L%(A2) satisfies condition
(5) of Lemma 2.1, The conclusion is that Ag(ei)’ = G(eit)*G(e™) for some
Sy-outer B(C}-valued function G. We may choose Gy to be a nonnegative
operator. There is a subspace N of C such that (GHZ(s))™ = Hi(o) and

GoC = N. Finally, for ' fixed, let ©(e™) be the partial isometry with initial

space (Ap(e™))™ = M(et), and final space N, such that
(31) G(e") = O(e") Ag(e")



30 R. Cheng

(thus @(e™) corresponds to g(e)/a(0, ') in (13)). At last we define

(32) B(e', e) = O(e) Ale, ).

Check that & is §;-outer and &y = @Ay = G is Se-outer: In other words, ¢
is A-outer. Furthermore, $*® = A*@*GPA = A*A = W, which means that

@ is a A-outer factor of W,
If ®(e'*, e't) is a B(C)-valued function, we define

Bog = [[ ®d(oxo)

when the integral exists in the weak sense. If ¢ is constructed as above,
then @qp coincides with the nonnegative operator Gy, More geuerally, if &
is A-outer, $*P is integrable, and ¢ is a scalar mollifier for &, then (¢P)y o =
#0,0%0,0.

We have established part of the main result.

THROREM 6.1. Let C be o separable Hilbert space, and suppose that
W (e, ei) is a B(C)-valued weight function on T?. Then W has o A-outer
factorization W = &*® if and only if the weighted Hilbert space L*(W) is
A-regular. In this case

(1) if W = &*W 4s another A-outer factorization of W, then ¥ = B,
where B € B(C) 4s a partial isomelry with initol space N(®) and final space
N(#);

(ii) there emists a unique A-outer factor & of W such that S is a
nonnegative operator.

Proof. To begin, we may assume that W is bounded, by virtue of
Lemma 4.6. If L?*(W) is A-regular, then the above argument provides a
A-outer factorization of W, with the constructed ¢ in (32) being a A-outer
factor.

Conversely, let W have a A-outer factor . Then & is S;-outer, 80 now
Lemma 2.1 shows that the space L2(W) satisfies the regularity condition
(10). Under the isometry f — @, which maps My (IT) into M (IT), the
image of the subspace My (4) & S1Mw (IT) is dense in the span F of
{®o(e)ee’™ : ¢ € C, n > 0}. Since By is Ss-outer, we have

(33) ﬁ SpF = (0).
e=()

It follows that L*(W) satisfies (11) as well, and is therefore A-regular. This
proves the principal claim.

Let ¢ be the scalar valued A-outer function defined as in the proof of
Lemma 4.6. This ¢ serves as a scalar mollifier for both ¢ and ¥ as needed.
For the uniqueness conditions (i) and (i), it suffices to proceed with W
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bounded; the general case is established by considering & and ¥ replaced
with ¢® and ¢¥, respectively.

Assume that W = $*® = W*¥, where & and ¥ are A-outer. Both 7
and ¥ are then S)-outer, so [8, Section 3.5, Corollary| asserts that ¥ =
B®P, where B determ_iIEs an Sy-constant partial isometry with initial space
$H and final space ¥H (as usual, H = Hig(a) (o). It is easy to see that
B comunutes with Sp. From Wo(e™) = B(e)Py(e'), we see that B(e')
is an Sp-constant partial isometry with initial space N () = (SoHE(o))™
and final space N(¥) = (¥ HZ(0))~. Hence the claim (i) holds with this
operator B.

Lastly, observe that from the construction of & as in (32), we can choose
®o,0 to be a nonnegative operator. Let & and & be A-outer factors of W such
that both $¢ 4 and Wy ¢ are nonnegative. Then with B as in the statement

(), we have ¥o,p = By g, which forces B to be the projection on N(®).
Thus & = V¥. u

We summarize the structural features of a A-outer function as con-
structed for Theorem 6.1.

COROLLARY 6.2. Let & be a weakly measurable B(C)-valued function
on T2, Then & is A-outer if and only if it has a representation

(34) @(ez‘s, e-it) :_@(eit)A(eis,eﬁ)/qﬁ(eis, eit)’

where ¢(e*,e™) is a bounded, scalar valued, A-outer function such that ¢d
is bounded; A(e*®,e") is a bounded, B(C)-valued, Si-outer function; and
O(e®) is a partially isometric, B(C)-valued function such that 6 (e't) Ag(e™)
s Sp-outer.

The notion of A-outer is associated with a version of Szegd’s infimum.
The problem is to estimate a constant function by polynomials in the sub-
space S3Mw (A) of the weighted space L2(W).

COROLLARY 6.3. Suppose that the B(C)-valued weight function W on T?
has a A-outer factor . Then for all c € C,

(38) inf [le + pllw = {|[$o,0cl|c,
where the infimum is taken over polynomials p € SoMyy(A).
Proof. The assertion is established by the calculation

(368)  inf{lle+pllw : p € SaMw (4)}
inf{|®(c+p)|ls : p € SaMw (4}}

inf{||Bc+ qlly : g € SaMpy ey (4)}
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= inf{||®c -+ gljn : g € SaMc(A)}
= inf{|Boc+ rlls : 7 € SuHE(o)} = | Pooc]

The value of this approach as a practical formula is limited, however, in
view of the situation described in the concluding remarks of Section 3: The
extremal p need not be a function.

A logarithmic integrability condition, familiar from the classical setting
[2], is here sufficient for the factorization.

THEOREM 6.4. Let W(e'® &) be o B(C)-valued weight function on T?
with pointwise invertible values such that

(37) [ log® [W(e*, ) 5c) do(e™) do{e™) < co.

Then W has a A-outer factorization.

s |

Proof. If W is replaced by uW, where u(e” , e”) is the scalar valued
function (max{1,||W{e*,e")||sce;}) 7", then the above hypotheses are pre-
served. So by Lemma 4.6 we may assume that W is bounded.

From (37) and [8, Theorem 6.14] we deduce that for ™ fixed, W{.,e*)
has a factorization A(:,e®)* A(-,e"), where A(-, €") is S\ -outer on H2(o). We
may implement these factorizations through (22), so that in fact A(e®, e't) is
S -outer on. H = Hig (»)(0). Note that A has invertible vajues, and AH = H,

Put (e, e*) = (max{1, [|A(e", )" |lgc)}) ™", and define the scalar
mollifier ¢(e**, e*) using (12), (13) and this ». Then the bounded function
¢A~! is Sy-outer. To see this, observe that (¢A™VH)™ = (pA™ [AH]™)"
= ¢H = H, using |¢| < ||A”"1||g(lc) < |[Alisey to get ¢ bounded. Thus
A=l is §j-outer, and each A(,e")"! for e fixed is Sy-outer. Observe
also that (A"1)g == (4¢)~1. It follows from (37) and the subharmonicity
of log™ || A(-, ) "'l 5c) that

(38) [ logT 45 Is(c) der(e™)
< [ tog* I1A(e, €)™ ey do(e™®) dofe™) < oo,

Another application of [8, Theorem 6.14] gives Ap(e™)® = G(c#)*Q(e") for
some Sp-outer function G. Now a A-outer factor of W can be constructed
from these ¢, A and G as before. w

7. Final comments. The classical result connected to (1) is due to
Szegd [10]. It was extended to the case of matrix valued weight functions
by Wiener and Masani [12], Helson and Lowdenslager [2], and Wiener and
Akutowicz {11]. Devinatz (1] showed that a logarithmic integrability con-
dition is sufficient for the outer factorization of an operator valued weight
function. An exact. criterion for outer factorization in the operator valued
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case was found by Rosenblum [7] and Lowdenslager [5]. Their approach was
to apply the analysis of Toeplitz operators to objects derived from the given
weight function, yielding a series formula for the outer factor. An entirely
different method, based on the Cholesky decomposition, was developed by
Power [6].

Further generalizations are concerned with factorizations of weight func-
tions in two (or more) variables. Helson and Lowdenslager [2] treated scalar
and full-rank matrix valued weight functions on the torus; analyticity was
defined by replacing the nonnegative frequencies in the one-variable picture
with frequencies lying in a “halfplane” of the integer lattice. The correspond-
ing non-full-rank problem was addressed by Loubaton [4], who explored the
related invariant subspace theory, and used the notion of analytic range
function from [2] to overcome the rank deficiency. The present work ex-
tends many of Loubaton’s results, but it does not displace them. Indeed,
Loubaton obtained a general logarithmic integrability criterion for regular-
ity, which cannot fully extend to the infinite-rank case. The approach taken
here has the advantage of providing an explicit construction of the outer
factor, in terms of operators associated with the weight function.

The results of the previous sections extend in a direct way to the situation
with the halfplane A replaced by a halfplane at rational slope; this amounts
to a change of variables. Halfplanes at irrational slope appear to pose some
fundamentally different issues.
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Weighted Ly integral inequalities for operators of Hardy type
by

STEVEN BLOOM (Loudonville, N.Y.) and
RON KERMAN (St. Catharines, Ont.)

Abstract. Necessary and sufficient conditions are given on the weights ¢, w, v, and
w, in order for
-7 _
3 (JP2(w(@)|TF(z))t(w) dz) < &7 ([ &1{Cu(z)]F{z)|)v(z) dz)

to hold when & and &2 are N-functions with & 0@1'1 convex, and I'is the Hardy operator
or a generalized Hardy operator.

Weal-type characterizations are given for monctone operators and the connection
between weak-type and strong-type inequalities is explored.

1. Introduction. In this paper, we will extend some weighted norm
inequalities from the Lebesgue setting to the Orlicz space setting. Given
a o-finite measure space (X,du) and an N-function @, the Orlicz space
Lg{X,du) is the Banach space normed by

1120 = 1$seceen = jat { [ #(L2L) auo <1}
X

In this paper, with the exception of Section 2, X will be either R+ = {0, oo)
or R", and p will be defined on the Lebesgue measurable sets.

A weight is a measurable function on X that is positive almost every-
where. For the Lebesgue space, L"(X), 1 < r < oo, which corresponds to
the N-function @(z) = z"/r, a weighted norm inequality for an operator T
has the form

1TF | pagx aw(zyan) < ClFlleex wie) doy-
This has a number of useful equivalent formulations, such as

(] mr@ioways)" <o [ 1)) )
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