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Measures of noncompactness. and
- normal structure in Banach spaces

by

'J. GAROGIA-FALSET (Valencia),
A, JIMENEZ-MELADO (Milaga) and
E. LLORENS-FUSTER (Valencia)

Abstract. Sufficiens conditions for normal structure of a Banach space are given.
One of them implies reflexivity for Banach spaces with an unconditional basis, and also
for Banach lattices.

1. Introduction. Let (X, || - ||) be a Banach space and let B(z, r) and
S[z,r] denote the open ball and the sphere centered at z and of radius r.
For brevity we will write Sx instead of S[0,1], and Bx will be the closed
unit ball of X. A convex set ' C X is said to have normal structure (n.s.)
if for each closed convex bounded subset K C C which is not a singleton,
there exists at least one point z € ¢ such that

r{z,C) :=sup{llz - y|| : ¥y € K} < diam(K).

(Such a point is called nondiametrel in K.) Similarly, the convex set ¢ has
weakly normal structure (w.n.s.) provided that each weakly compact convex
nontrivial subset K of ' has a nondiametral point p in K.

Normal structure was introduced in 1948 by M., S. Brodskil and
D. P. Milman. Since then this concept, together with many natural vari-
ations, has been widely studied. In particular, n.s. has been significant in
the development of fixed point theory. In 1965 W. A. Kirk [K] proved that
weakly normal structure is a suflicient condition for the fixed point property
of nonexpansive mappings.

To test whether a given convex bounded subset of a Banach space has
normal structure is not an easy task. Considerable research has been di-
rected towards finding geometrical conditions which imply normal structure.
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Uniform convexity and related propertles are, among mauy others, such suf-
ficient conditions. ;

In infinite-dimensional Banach spaces normal structure is a consequence
of the fact that some subsets of its unit sphere are “nearly compact” (see
[G-K]). For example, (X, | - ||) has the weak uniform Kadec-Klee property
(WUKK) if there exist € € (0,1) and 6 € (0,1) such that dist(0,C) <1 -6
for every weakly compact convex subset C' of By with a(C) > g > 0. Here
a(C) is the Kuratowski measure of noncompactness of the set C' C X, i.e.

a(C) = inf{r > 0: C has a finite r-cover}.

If the above condition holds for every & € (0, 1), then X is said to have the
(UKK) property (see [H]). In [D-S] the authors prove (WUKK)=-(WNS).
For more information about normal structure, see [N-S-W], [G-K] ox [L].

In this paper we give sufficient conditions for normal structure in terms

of some “measures” of the slices of the unit ball Byx. Given § € (0,1) and
f € Sx- we denote by S(f, &) the slice {x € Bx : f(z) > 1 - §}.

2. Sufficient conditions for weakly normal structure

DerNITIONS. Let X be a Banach space, and let B he the collection of
all nonempty bounded subsets of X. A real function y defined on B is called
admissible provided that p satisfies the following conditions:

(a) For A, B € Bwith 4 C B, u(A) < u(B).
(b) For every 2 € X and A € B, u(z + 4) = u(4).
(c) For all sequences (z,) weakly convergent to 0, and diametral, i.e.

d(Tny1, convizy, ..., zn}) — diam({an 1 n > 1}) =: d({z,}),
we have

p{zn:n=1,2,...}) = d({z,.}).

Many nonnegative functions satisfying (a)~(c} may be defined on B. The
Kuratowski measure of noncompactness o, as well as the diameter d : B —
[0,00), d(A) := diam(A), are immediate examples.

Additional examples of admissible functions are the measure of noncom-
pactness 7 of a set § C X, defined by (see [3])

v(8) = sup{inf{||zm — zp| : m # n} : (z,) a sequence in 5},
and also every convex combination of admissible functions.
The above functions are admissible in every Banach space. Nevertheless,
there are functions which are admissible in some specific Banach spaces. It is

easy to see that if a Banach space X satisfies the nonstrict Opial condition,
then also for the Hausdorff measure of noncompactness

x(8) = inf{r > 0: S has a finite cover by balls of radii smaller than r}
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conditions (a)-(c) hold. (Recall that a Banach space X satisfies the nonstrict
Opial condition provided that if a sequence (z,,) is weakly convergent to
z € X, then lim inf ||z, — z|| < liminf ||z, — y|| for every y € X.)

Let (X,|l-||) be a Banach space. For a given admissible function p on
X, we say that X has the property (u') if there exists § with 0 < § < 1 such
that u(S(f,6)) < 1 for every f € Sx-.

For example, the finite-dimensional space 7 has the property (a'), but
does not have (d'). Obviously, (d')=>(a").

THEOREM 1. Every Banach space with a property (y') has weakly normal
structure.

Prcof Suppose, for a contradiction, that X does not have w.n.s. Then
there exists a diametral sequence (z,) in X. Moreover, it can be supposed

that (see [G-LD]):
(i) zn — 0,
(i) |lznll €1 (n=1,2,...), and ||lz.fl — 1,
(iil) d({zn}) = 1.
Since X has the property (u') there exists § > 0 such that (S(f,8)) < 1
for every f € Sx«.
From (ii) we can obtain z, such that ||zn,]| > 1 — é. Let fo be a
functional with ||fol = 1 and fo(@n,) = [iZn,[|- Then
—Zpy + Tn — —Tny
and
—fo{~2ng + En) = —fo(—Zno) = [[Bnell > 1 — 6.
On the other hand, forn=1,2,...,
| = @y + Tn|| < diam({zn}) =1,
and we obtain n; € N such that, for every n > n1, —Tn, + zn € 8(—fo, 8),
and therefore .
{£n :n 2 1} C Tny + S(—Fo0,6).
Now we obtain the following contradiction which completes the proof:

= p({@n : 0 = na}) < wEn, + 8(—=f0,8)) = u(S(—fo,8)) < L.

COROLLARY 1. Every Banach space satisfying one of the properties (o)
(= a), (&) (u=d), or (') (=) has weakly normal structure. Every
Banach space with the nonstrict Opial condition satisfying the property (x')
has weakly normal structure.

DEFINITIONS. If (X, |- |) is a Banach space, and there exists an admis-
sible function 4 on X such that u(Bx) <1, then X has normal structure.
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Hence, if u(Bx) = 1, we define the modulus of convexity of X with respect
to p as the function A, : [0, u{Bx)] — [0, 1] given by

Au(e) == inf{l1 - dist(0, A) : A C By, A convex, and u(A4) > ¢}
The coefficient of convewity of X with respect to u is defined by
g1(p) = sup{e > 0: A,(e) = 0}.

In [G-5] K. Goebel and T. Sgkowski introduce the coefficient £4(e), and
they show that the Banach space (X, |{-[|) has normal structure if £, (a) < 1.
On the other hand, the coefficient £1(x) was introduced by J. Banas B,
who proved that a Banach space X has normal structure if £1(x) < 1/2.
'The following theorems improve slightly the above results.

THEOREM 2. Let (X, || -||) be @ Banach space, and p an admissible
function on X. Then X has the property (') if and only if Ay(l) #0.

Proof. Suppose that X does not have the property ({u/ ). Then for n =
1,2,... we obtain a functional f,, € Sy« such that w#(S5(frn,1/n)) > 1. For
every 2 € S(fn,1/n) we have 1 — 1/n < fo(z) < {2/, and thus

1-1/n <inf{fa(z) : v € S(fn, 1/n)} < inf{||z| : 2 € S(Fry1/n)}.
We get _
A1) <1-inf{l|al 1 2 € S(fn, 1/n)} 1~ (1~ 1/n) = 1/n,
and hence A, (1) = 0.

Next, suppose that X has the property (). Then there exists § > 0 such
that u(S(f,8)) < 1 for every f & Sx.. Thus, if we have a convex subset
C of Bx such that x(C) > 1, then this set is not contained in any slice
8(1,6) (f € Sx-).

Let us see that there exist # € C such that j|z| < 1 - 6: If flz] =16
for all z € C' then the open set B(0,1— &) does not intersect the convex set

- C, and we can find a functional f; € Sx- such that fily) £ filx) for all
¥ € B(0,1-6) and ¢ € C. Then

suplfi(y) v € (1 - 6B, 1)} < inf{f1(z) : 2 € C},
and therefore, 1—8 < f1(z) for all # € C. But this means that ¢ is contained
in 8(f1,6), a contradiction,

Thus dist(0,C) < 1 -6, and consequently A w{1) % 0, and Theorem 2 is
proved. C

In [G-J-L] one can find the above results for 4 = a.

" Ifey () <1 then the space X has the property (), and hence (WUKK )=
{a'} for reflexive Banach spaces, by the equivalence (WUKK)&(zy (a) < 1),
We.do:not know whether the function Ag(e) is continuous at 1, in gpite of
the fact that it is continuous in [0,1) (see B
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C‘OROLLARY 2. Let (X, || - ||) be a Banach space with the nonstrict Opial
condition. Then X has the property (x') if and only if A, (1) 0.

It is a seemingly open question whether the nonstrict Opial condition im-
plies the fixed point property for nonexpansive mappings (F.P.P. for short)
(see [G-K] for the definitions). On the other hand, it is also unknown whether
1/2 < e1(x) < 1 is & sufficient condition for F.P.P. Corollary 2 yields that

both conditions together are sufficient for normal structure, and hence for
F.P.P.

COROLLARY 3. Banach spaces with nonstrict Opial condition and ey ()
< 1 have weakly normal structure.

It is easy to see that, for every € € [0,2), §x{e) < Au(e), where §x is the
modulus of uniform convexity §x of the Banach space (X, || - ). However,
we obtain the following result.

THEOREM 3. A Banach space (X.]-1]) has the property (d') if and only
if 6x(1) 0.

Proof. Suppose that X has the property (d'), and fix £ ¢ (1,2]. For
every &,y € Bx with ||z —y|| > ¢, let f € Sx. be a functional for which
Fz +y) = |iz + y||. There exists § € (0, 1) such that diam(5(f,6)) < 1,
and thus {z,y} is not contained in S(f,8). Then either f(z) < 1—§ or
fyy<1-6

Now we have

iz +yll = £(2) + f(v) = min{f(2), f(y)} + max{f (=), F(g)} < (1-6) + 1,

and hence 1 — ||(z + y}/2 > 6/2. From the definition of the modulus of
convexity §x we conclude that §x (€) > 6/2 > 0, and thus §x (1) #0.
Conversely, if §x (1) # 0 then Ag{1) # 0 and thus X has the property
(d').
The proof of the following result is straightforward.

TueoreM 4. A Banach space (X, || - |1} has the property (v') i X 4s
reflezive and if it has the property (WUKK).

3. The property (o) in ¢y and I

THEOREM 5. Let (X, |- |I) be the Banach space (co, || |le} or (11, - 1le)-
Let |+] be o norm on X equivalent to || ||. Then (X,|-|) does not have the
property (o).

Proof. Case (X, |) = (Is,|| - li1). Fix § € {0,1) and choose & such
that 1 — 6 < 1/(1 +¢). From James’ distortion theorem (see [L-Tz], p. 97)
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there exists a block basis (y,) of the standard basis (eg) of I, with [yn| =
1(n=1,2,...) such that, for every sequence (a,) in Iy,

} Z Gnlin
=l

We define a continuous linear functional f¢ : 1y — R by the standard exten-
sion of

< @)l < (L+8)| 3 antn
n=1

s ( i anyn) = i .
n=1 n=1

Then |fs| < 1 +¢, and hs := (1/(1 +¢))fs € B(x,}.|)». Moreover, for all
=120, hslyn) = 1/(1 +€) > 1 - &, and thus y, € S(hs, 8).

On the other hand, for positive integers m,n (m < n}, we also have

|vn — yml| 2 llen — emll > 1.

Hence, o:(S(hs,8}) 2 1 in (X, |- |). Consequently, for each § € (0, 1) we can
find ks € Bx+ such that a(S(hs,8)) > 1, and this means that (X, |-} does
not have the property (af).

Case (X, ||-]) = (co, | - loo). Fix § € (0,1) and choose & such that

) (1~e)(l+e)t>1-54,

(i) 2(1 — £)(1 +¢)~t > 1.

By using James’ theorem again we also obtain a block basis (yn) of the

standard basis (e,) of ¢p such that |y,| = 1 (n = 1,2,...) and, for every
sequence (a,) in e,

1= 3 tuse
n=1

Let fs be a continuous linear functional defined in Co via
f5(91)=1: f&(yn)mo (n=213a"-)'
It is straightforward to check that |f5| < (1 + ¢), and thus the functional
hs = (1+ E)"'lfg belongs to B(X,J-D""

On the other hand, for every n € N, there exists a unique k € N such
that 28~ < n < 2% 1. We write

< fl@n)lloe < (142)| 3 anpn

n=1

Bui={ytem+t. +erypiei==1(i= 2,...,k)}
Ifv € By, then : .
lu] < (1“6)“1”(1,82,...,ek,O,...)Hm =(l-g)"%

Hence, from. (i), (1 —¢)B,, C (hs, 8), and for every ,y € (1—)Bp, z # y,
from (ii) .we have _
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(l!l) Im - 'Hf = (1 + E)ml(l - E)”(O:E2 - 8!2) ARERE E;moﬁ . )”oﬂ
=2(1-g)(1+e) " 1>1.

Suppose that a($(hs,6)) < 1. Then §(is,8) admits a finite rcover
{A1,...,An} with r < 1. Take % with card(By) > m. Then for some A;
there exist z,y (z # y) with z,y € By and z,y € A;. From (iii) we deduce
that diam(4;) > 1, a contradiction.

Hence a(8(hs,6)) > 1. Thus (X, |- ) lacks (o).

COROLLARY 4. If a Banach space X with an unconditional basis has the
property (o), then X is reflexive. If a Banach lattice X has the property
(o), then X is reflexive.

It is easy to see that (o) is not invariant under topological isomorphisims
although it is inherited by closed subspaces.

COROLLARY 5. If a Banach space X has the property (o ) then X has
o subspace without the Dunford-Pettis property.

Remarks. 1. The property (o'} seems to be close to the well known
property (o) of Rolewicz [R1]: A Banach space X has the property (@)
provided that for every f € Sx-,

lim a(S(f, 5)) = 0.

In fact, 5. Rolewicz defines a uniform version, (ua), of the property (a)
(see [R2]). It is easy to see that the property (') is weaker than (ua).

On the other hand, although (a) and (o) are closely related, neither one
implies the other.

The reflexive Banach space lo(la @13 @ ... @1, & ...) has the property
(@), but does not have (o) (see [M]).

On the other hand, Iy with norm |z|g := max{||z|z2, (1 + 8)||z]lco} has
(o) for suitably small 3, but not () (see [D-S)).

In [R1] it is proved that every Banach space (X, | - ) with the prop-
erty (o) is reflexive. We do not know if the analogue for (o') holds, al-
though Corollary 4 provides a partial affirmative answer. On the other
hand, from Theorem 3 we know that (d') < (g(X) < 1) = (X is su-
perreflexive), but there are nonsuperrefiexive (NUC) Banach spaces (see
KU1,

2. Every renorming of ¢y with normal structure fails (o) and provides
a counterexample to the converse implication of Theorem 1,

3. We do not know whether, for the Hausdorff measure of noncompact-
ness x, condition (¢) holds in an arbitrary Banach space.
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On the maximal function for rotation invariant measures in R™
by

ANA M. VARGAS (Madrid)

Abstraci. Given a positive measure p in BR™, there is a natural variant of the non-
centered Hardy~Littlewood maximal operator

R
Muf(m)—igg B Bfifld.u,

where the supremum is taken over all balls containing the point . In this paper we
restrict our attention to rotation invariant, strictly positive measures u in R™. We give
some necessary and sufficient conditions for M, to be bounded from L1 (du) to L322 (du).

Let 4 be a non-negative measure in B™, finite on compact sets. Given a
function f € Li .(du), we can define the analogue of the Hardy-Littlewood
maximal function

Myfie) = sup s [ If1dn,
= B

where
By, = {B open hall: x € B and u(B) > 0}.

In fact, there are two possible definitions of the Hardy-Littlewood max-
imal operator. 'The second one corresponds to a smaller basis; namely,

B¢ = {open balls B centered at z with u(B) > 0}.

The operator associated with the latter basis maps L!(du) into L1:2°(dp).
This can be proved using the Besicovitch covering lemma. An operator that
satisfies this boundedness property is said to be of weak type 1-1 with respect
to the measure .

But things are not so easy when dealing with the former basis, the non-
centered case:
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