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€T

f y~? dy f (y—z)e¥dy<C
x 0
which clearly holds for all £ > 0. So the weak-type boundedness holds.
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On group extensions of 2-fold simple ergodic actions
by

ARTUR SIEMASZKO (Olsztyn)

Abstract, Compact group extensions of 9-fold simple actions of locally compact sec-
ond countable amenable groups are considered, It is shown what the elements of the
centralizer of such a system look like, It is also proved that each factor of such a system
is determined by a compact subgroup in the centralizer of a normal factor.

1. Introduction. In this paper we describe the centralizer and the struc-
ture of factors for ergodic group extensions of a 2-fold simple action of a lo-
cally compact second countable amenable group on a standard Borel space.

Our method is an adaptation of the methods developed by Lemanczyk
and Mentzen in (5], [7], [4] for Z-actions and consists in a description of
the ergodic joinings of these actions. We show that ergodic joinings are
relatively independent extensions of certain isomorphisms between normal
natural factors, For that we will need the ergodic theorem for our general
case (for proofs we refer to [1] and Krengel’s book [3]). For ergodic Z-actions
the form of the elements of the centralizer for group extensions of a discrete
spectrum transformation was found by D. Newton [8] in the abelian case
and by M. K. Mentzen [7] in general case. Here we generalize Mentzen’s
result to arbitrary locally compact second countable group actions, We also
generalize the main result of [5], [7] describing factors in terms of compact
subgroups in the centralizers of normal natural factors (for related results
see [2], [4], [o]).

2. Definitions and theorems. Let ® be a focally compact second
countable group and (X, B, 4) be a standard Borel space. We will say that
R acts on (X, B, 1) if there exists a Borel map from X xR to X (we denote
it by (%,¢) — xt) such that

(1) z(tyty) = (zty)te for all ty,tp e R and a2, z € X,
(i) e =z for a.a. z € X.
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54 A. Siemaszko

Moreover, for allt € R, z — 2t is a measure-preserving, invertible map from
X onto itself (such maps will be called automorphisms). The action of R on
(X, B, ) will be denoted by T.

We say that T is ergodic if all T-invariant Borel sets have measure 0
or 1. We call T weakly mizing if T x T with the product measure is ergodic.
Let T3,2=1,...,n, be ergodic actions on X, respectively. Let A be a T x
... % Tp-invariant measure. I for each i = 1,...,n and for each A; € B;,

AMXy % o) Xy % A X K X000 x X)) = u(Ay)

then X is called an n-joining of T4,...,T,. The set of all n-joinings of
T1,..., T, will be denoted by J(T1,...,7%,) and the set of all ergodic n-
joinings by Je(T4,...,Tn). Ty = ... = T, = T we will write J,,(T') and
JE(T") and refer to the elements as n-self-joinings.

Take the ergodic decomposition

A= [ mdg(m)

E(Ty i Tw)

of A € J(T,...,T), where E(TY,...,T}) is the set of all ergodic mea-
sures on By ® ... ® B,. Then &£(J°(T1,...,T)) = 1 (see [2]). Therefore
Je(T1,...,T,) is nonempty since 1 X ... X iy, € J(17,...,T0). A measur-
able, measure-preserving map from (X, B, u) onto itself will be called an
endomorphism of (X, B, i). By the centralizer, C1(T), of T we mean the set
of all endomorphisms of (X, B, 1) commuting with the action 7. The set of
all automorphisms commuting with T' is denoted by C(T'). The set Cy(T') is
endowed with the weak topology (where 8, — § iff u(S;*AAS14) — 0},
for each Borel set A making C\(T) a complete separable metric space.

If Cy(T) = C(T) then we say that T is coalescent. Being coalescent is
equivalent to being a canonical factor of itself (see [8]).

If S € C(T') then the measure pg(AX B) = u{ANS~B) is a self-joining,
Such joinings will be called graph-joinings.

Following [2] we will say that the action T is 2-fold simple if every ergodic
2-self-joining is either product measure or a graph-joining. Tt is not difficult
to see that such an action is always coalescent (see [2]).

- Let @ be a compact metric group (not necessarily abelian) equipped with

the normalized Haar measure v = v on the family D of Borel subsets of

G. Let B = B ® D. There exists a natural action of G on X x (3 given by
(z,9)h = (=, gh).

Define fi = p x v. Suppose that p : X x ® — @ is a Borel map. Moreover,
assume that 1o satisfies the coecycle property

o(@, t1ts) = (2t1, t2)p(z, 1)
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For this cocycle we define the action T, of the group Ron X x & by
(z,9)t = (at, p(x,t)g).
It is called a group extension, or, indicating the group, a GG-extension of T
Each G-extension of T commutes with the natural action of G.
Each cloged subgroup F ¢ @ determines the sub-g-algebra Bp of B of
all sets satisfying Af = A for all f € F. The action T r of R on (X x
G/F, Bp,}i) given by

(.’E,g.F)t = (mt,(,a(m,t)gF)

is called a natural factor of T\,. Each action isomorphic to Ly, r is called an
isometric extension of T If F is normal in G then we will call Ty, F a normal
netural factor of T'.

We use the following ergodic theorem in our general situation, referring
to {1] and [3] for proofs,

THEOREM. Assume that the group R is amenable (see [3] for the defi-
nition) and that its action T on X is ergodic. Then we can find a Falner
sequence Y = {Y,.} of subsets of R such that

. v o 1
v}lﬂ A f(z) = In]Lm

% §(Tn) Y{ fat) as(t) = Xf #(z) du(a)

Jorany f € LP(X,B,p) (p 2 1) and a.a. z € X, where 6 is Haar measure
on the Borel subsets of R,

8. Structure of joinings. In this section and in Section 4, we generalize
the main results of [5] and [7]. As a rule, we omit the proofs which are natural
extensions of the proofs from those papers.

We first consider the case where the cocycle ¢ is not necessazily ergodic
(this means that the action 1, is not necessarily ergodic). Assume that T
(as before) is an ergodic 2-fold simple action of a locally compact second
countable amenable group R on a standard Borel space (X, B, ).

THEOREM 1. Each ergodic isometric extension of T is a natural factor
of some ergodic group extension of T.

Assume that A is a T',-ergodic component of T,,. Before passing to the
proof we prove some lemmas. The ergodic theorem yields that for any f €
LP()) there exists a T,-luvariant ¥ € X x ¢ such that MY)=1and

li, AY 7(z,6) = Jim o [ f(@.00) 00 = [ £(2)d(e,0)
n v,

Te—r 0
Xxa

for (z,9) € Y. Let H be the stabilizer of A (consisting of all h € H with
Ah = A), : :
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LEMMA 1. The subgroup H is closed in G and if (z,g),(2,h) € Y then
hH = gH.
Proof. The first part is obvious so we only show the second one. We
know that lim,—,o0 Ay f(2,9) = [y, fdX and
lim AY f(z,9) = lim AY f(z,hh"}g) = lim (AY f)o ™ g(z, h)
lim (AY f o h™g)(z,h)

[ fortgdr=[ fd(rn'g)
Xxa XnG
since the action T, commutes with the natural action of &. This means that
Ah~lg = Aso hlg € H. The proof is complete. m

Let

i

A= f)\m du(z)
X

be a decomposition of A over the factor (T, X, B, u).
LemmaA 2 ([5}). For a.a. z € X there exists g = g(z) € G such that
Ae = 0p X gvm,
where &, 1s Dirac measure. w
Let the map 7: X — G/H be given by
7(z) = g(x) H,

where (z,g(z)) €Y. Lemma 1 yields that 7 is well defined. By Lemma 2, 7
is measurable. From T -invariance it follows that 7(zt) = ¢(=z, t)7(z) for all
t € R Let Uy : G/H — G be a measurable cross-section of the canonical
projection G — G/H.Defineg: X — Gand ¢ : X x ® — G by

q(z) = Un(r(z)) and (z,t) = g(et) Lo, t)qlz).
LeMMA 3. The action (Ty,, X X G, X) is isomorphic to (T, X x H, uxve).
Proof. It is clear that g(z) € 7(z) for a.a. z € X. We also have
¢(@)H = Ug(r(2)}H =1(2), qlot)H =Ug(r(zt)H = oz, t)7(z).
Therefore for a.a. £ € X and all £ € R,
Wiz, t) = g(wt) " p(z, t)q(z)
= q(zt) " (e, t)r(2) = g(et) 'q(zt)H = H.

This forces that ¢ is a cocycle with values in H. The isomorphism between
(To, X x G, Ay and (Ty, X x Hypx vg)isgivenby J: X x H — X x G,
J(z, h) = (z,¢(z)h).
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Now we verify that J commutes with the group actions. If ¢ & R, then
J((m, h)t) = J(xt, (2, 1}h) = (xt, g(at)rp(z, t)h)
= (at, q(xt)q(wt) (2, t)g(e)h) = (xt, o(z, t)q(z)h)
= (@, q(z)h)t = (J(z, h)}t.
Hence by Lemma 2, for 4 € B and B € Dy we have

NIA X B) = [ 6 x glzyun (| {2} x a(z)B) duz)
X

zEA
= u(A)va(g(®) " a@)B) = u x vi{A x B).

The last equality follows from the fact that g{z)~1¢(z) € H.
Therefore J is an isomorphism between (T, A) and (T, 4 x vg) so the
proof of Lemma 3 is complete. w

Proof of Theorem 1. Assume that (Ty,r, £) is an ergodic natural
factor of (T, /) and A is as above. Lemma 3 yields that there exists a
closed subgroup H C @ and a cocycle ¢ : X — H such that (T, A) and
(T, 1t X vy) are isomorphic. To prove our theorem we will show that the
action (T #, X X G, i} is isomorphic to (Tya/mem X X H/HNF, ux vy).
The construction of an isomorphism is carried out in several steps.

e First, notice that the map W : X x G/F — G given by
Wz, gF) = (z, Wpnu (oF N 7(z))),

where Wpny is a measurable cross-section of p : G — G/F N H, is well
defined. Indeed, this becomes clear when we notice that

iz, g) e XX G:gFNr(z) #0) =1,

o Let v : H — H/F N H be the natural homomorphism. Define our

isomorphism by
R={dxm)oJ oW

Let {z} x A(FNH) € X x H/F N H. The element {z} x h(F N H) is the
inverse image of the set {z} x g(z)hF by J. However, (z, ¢(z)hF) € X xG/F
is just the inverse image of {z} % ¢(z)hF by W. Therefore R is one-to-one.

¢ The same calculations as in the proof of (B) on page 24 of [7] show
that

L=puxuvygoR.

* Now we show that R commutes with the actions T, » and Ty pny of

Ron X x G/F and X x H/FnN H, respectively. Indeed, fix ¢ € ®. Then
B((z, gF)t) = R(xt, p(=,t)gF)
= (wt, q(wt) " (e, ) Wenn (gF N r(2))(F N H)).
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On the other hand,
(R(z, gF)t = (z, q(&) " ' Wran(9F N 7(z))(F N H))t
~ (t, (2, )a(e)” W (9F 1 (2)) (F 1 H)
= (wt, g(xt) " o(z, O)a()a(e) " Wrnar(gF N (@)} (F N H))
= (wt, g(zt) " oz, YWpenm (gF N7(z))(F N H)).

Notice that ¢(z,t)Wrng(gF Nr(z))(F N H) € H. Now the proof of Theo-
rem 1 is complete. w

Let &5, i = 1,2, be compact metric groups equipped with normalized
Haar measures v;. Assume that ;1 X — G; are cocycles. We will describe
all ergodic joinings of the ergodic extensions T, T,,, whose projection on
X x X is a graph-joining of T with itself. More precisely, we will show
that any such A € J(T,,,T,,) is a relatively independent extension of some
isomorphism between the normal factors of T, , i = 1, 2, respectively.

THEOREM 2. There exist closed normal subgroups Hy C Gy, Hy C Gy,
a continuous group isomorphism ¢ : G1/Hy, — Go/Hy, an § € C(T) and
a measurable function f : X — Gy/Hy such that for oll A € B® Dy and
BeB@D,,

A{A x B)

= [ BA!H)(w,gH)-E(B | H1)(5(x), F(2)¢(0Hn)) d(uxm)(z, gH3),
XXGyfH,

where E(A | Hi) denotes the conditional expectation of the characteristic
function of A with respect to By, .

To prove Theorem 2 we first show a few lemmas.

LEMMA 4. Assume that A € J§(T). Then X € {ps : § € C(T)} ff
for each A € B, there exist By, By € B such that A(X x A A By x X) =
MAXXAX xBy)=0. m

Since the proof is almost the same as the one in [4] we omit it.

Take A € J¢(T,,,T,,). Now we construct two subgroups H; C Gy, i =
1,2, and some isomorphjsm between the factors Ly i Loy ir,- Then we
show that A is a relatively independent extension of this isomorphism.

Let #: X xG1 x X x Gy — X x X be given by ¥(21, g1, 2, g2) = (@1, T2).
Then Ao 7™ € J5(T). Therefore Ao 7~ = 5 for some § & C(T). Thus

A U {=} % 61 x {85} x Gs) = o o 7 U e} % Gy x {s2} x Ga)

zeX zEeX

= ps( L) {=} x {Sm}) =1.
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Therefore, via the map (x, g1, Sz, g2) — (z, g1, 92), we can identify the fol-
lowing actions of the group R:
(Tipy X Tpyy X X G1 %X X X G, A) ~ (T, wpnos, X x Gy % Gy, N),
where X is given by

AAXxBxC)=XMAxBxS54xQ),

and (20 5)(x,t) = pa(S2,t). Let H C Gy x G2 be the stabilizer of ). From
Lemma 2 it follows that

A= [ 6, x (g1, 02)(®)vy du(a).
X

Let
H={g€Gs:(g1,e2) € H}, Hy={g2€Ga:(e1,92) € H},

where e; is the unit element of Gy, i = 1,2. Let II; : Gy x G3 — G| be given
by i(g1,92) = gi, 1 = 1,2,

Lemma 5. ILH)=G;,i=1,2. u

As a consequence of the above lemma we have
Lemma 6. The subgroup H; is normal in G;. m
It is easy to show the following lemma.
LEMMA 7.

(i) (91.92) € H, (91, 05) € H = gb™'g3 € Hy;
(i) (91.92) € H, (91, 92) € H = g{" g1 € Ho;
(iii) (gl,gz) EH & gy xgoHy CH. n

Define ¢ : Gy /Hy — Ga/Hy by
{(grHh) = (i Hy x G2) N H).
LeMMA 8. The maop € is a continuous group tsomorphism. m.
The last two lemmas yield
Lemma 9. We have

H = U ng X (:(Q‘H1)
9EG

and if (hy, hg) € H then hol(hT H1) = Hy. =
Proof of Theorem 2. Let v : (G x Ga)/H — G5/H; be given by
(g1, 92) H) = g2{ (97 H1).
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From Lemma 9 we know that + is well defined. Now we define f : X —
Ga/Hy by

fz) = v(r(=))-
The required isomorphism between the normal natural factors Ty, g, and
Ty 5, is defined by

S(z, gH1) = Spelz, gHy) = (Sz, f(z)C(gH1)),

where S is an element of C(T") for which Ao F~% = pug.
Let t € ®. Then

Stc(z, gHa)t)

= Spc(wt, o1 (z,t)gH1)

= (S(at), f(at)((pa(z, t)gH1))

= (S(xt), f(zt)C(p1(z, ) H1)C(gHL))

= (S(xt), ¥(r(=t)){ (e (z, ) H1)( (g H1))
= (8(zt), ¥((e1(z, 1), w2(Sz, 1)) 7(2)){ (s (z, ) Hn )C (g Ha))
= (S(2t), 7((pr(e, 1)g1(2), wa( Sz, t) g2 (2)) H ) (01 (z, 1) H1 ) (9 H1))
= (S(@t), pa( S, ga ()¢ (g1 () ioa (2, ) Hi)C (o (2, 1) HL )G (gH))
= (8(at), pa(Se, 1)ga(2) (9 () " H1){ (g H1))
= (8(xt), pa(Sz, thy(7(2))(gH1))

= (S(at), p2( Sz, 1) f (z)C(gHL))-
On the other hand,
(8p.¢(z,gHi))t = (Sz, fz)((gH1))t
= ((Sx)t, p2(Sz,t) f(2)((gHy))
= (8(zt), pa( Sz, t)f(2)C(gH1)).
We have shown that 5y ¢ is an isomorphism.
From the definition of \ we have

)\"fﬁm

where (g1(2), ga(z)) € H = r(z) and Syc¢(z, i (z)H1) =
This follows from the fact that

(91.92)H = | 9B x g2l (g7 Hr )¢ (g H),
gEC

and if (g1, g2) H = r(z) then f(z)((gLH1) = goHa.

(91(x), ga(@)) vy du(e),

(SIL’, gZ(Q:)Hz)
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So we have

mefsm
X

><( f v ogHyxvg,o(ga(z)¢ (g1 (x) " H1 )¢ (g Hy)) dw(yffl)) du(z)
Gi/H,

= [ 6 x ([ vioaHy v, o (f(@)C(gHn)) don(oH) ) dua).
X G/ H
Now we can calculate the decomposition of A:

A= [ 6 x6s
X

x ([ vaogHxvm,olox()C(02(a) ™ Ha)olgHi)) avi (Hy) ) i)
G1/H,

- '[ (,U. x yHl)(w,gHﬂ x (N X U-f‘fz)Sf,q(m,QHl) d(/-"f X 1/1)(5!2,_9H1)
XKGl/H]_

= [ B(|H)(z,9H) B
X xG/Hy

(- | H2)(S1,¢(w, gH1)) d(p x v1)(z, gH).

Theorem 2 is proved. m

THEOREM 3. dssume that T,, and T,, are ergodic. If Toe t8 @ factor of
Ty via the map § then there emst S5 € C(T), a measurable map f: X — Gg
and a continuous group epimorphism ¢ : Gy —+ Gy such that

S(z,9) = 81,¢(z, 9) = (S=, F(=)¢(g)).

Proof. Assume that A = (uxuq)g,50 A € J*(T,,, Tfpg) From Theorem 2
it follows that we can find normal subgroups H; ¢ G;, ¢ = 1,2, a measurable

f i1 X — Gy/Hy and a continuous group isomorphism g : G‘l/Hl — G/ Hy

such that

A= [ BCIH)(zgHy) - B( | Ha)(Spole, 1)) d(p x m) (e, oHy).
X xGy/Hy

But Iy = {ey} because A = (u x vi)g Let p: Gy = G1/Hy be the natural

homomorphism. Put ¢ = g o p. Then

MAx B)= [ E(A|H)(z,g) x50 Spclz,0)dlp x ) (&, 9)
Xxa,

= [ BlA|H)(d x p)(z,g) d(ps x 11)(z, )
e
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= xa(z,g) d(p x v1)(z,9)
S7e(3)
= (px m)(ANSFLB)),
where 4 € B® D, and B € B ® D, are arbitrary. We have thus shown that
S§=2580 nu
When we take G; = Gy = G and ¢1 = w2 = ¢ in Theorem 3 then we
get the following theorem. :

TrHEOREM 4, If § € C(T,) then there emist S € C(T), a measurable
f: X — G and a continuous group epimorphism { : G — G such that

S = Sf:C' |

4. Structure of factors. Let (T}, X x G, B, 7} be a weakly mixing
group extension of an ergodic 2-fold simple action (T, X,B,u). Let C C B
be a nontrivial factor of Ti,. Define

A=fixchi= [ B(]C) E(|C)dfi.
Xe

Then A is a self-joining of T,.
‘We will need some lemmas.

LeMMA 10. If A € B then
AcC O MAXx AT UA X A)=0.

Proof. This follows from the definition of A. =

The measure A is not necessarily ergodic so take its ergodic decomposi-
tion

A= [ mdi(m).
J3(Te)

Define E == {m € J§(T,) : Vaec m{A x A°UA® x A) = 0}. It is easy to show
the following,

LEMMA 11. £(E)=1. =

Assume that m € J5(T,) and mo 7! = p x . Take (g1,92) € Gx G.
Then m o {g1,92) is ergodic and its projection on X x X is the product
measure. Set

K= f mo (g1, 92) dv{g1) dv(ga).
GxG
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We have & o (g1,92) = & and the projection of x on X x X is a product
measure. We have thus obtained the equality

K=f{X uxXpyxy=gax .

So x is ergodic and m o (g1, g2) = Ji x [i, in particular m = i % i1. Thus m
cannot be in E, since C is nontrivial. If m ¢ E then Theorem 2 vields that

m= [ B(|H)(egH) E(|H) Sy, gH)) dfi(z, gHy),
XxGu/H

where 5, f, ( are as above.
LemMa 122 me EwlC gm i, and for each A € C, Sfé(A) = A.

Let F' be the largest closed normal subgroup of G such that C is a factor
of T, . Comsider the following subset of the centralizer of T,

F(C) ={U e C1(T}) : Yage U(4) = A}.
We know, from the definition of F, that F(C) C C(T, r). Assume that Ji

is a quotient measure on the quotient space Byp. Let A = Ji x [i. Then as a
consequence of the last two lemmas we have

Lemma 13. For each m € E N J§(Ty,p) there ezists § € C(T,, p) satis-
fyingm =jiz. m

Now, we are in a position to pass to the main theorem of this part of the
paper.

THEOREM 5. C = {A € By : Vyerc) U™HA) = A}. Moreover, F(C) is
a compact subgroup of C(T, r).

Proof From Lemmas 11-13 we know that the measure I xc I on
(X X G/F)x (X x G/F) has a decomposition which consists solely of graph
measures of the form fiz where SecC (Ty,7). Now we can apply Theo-
rem 1.8.2 of [2]. The proof of Theorem 5 is finished. w
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Continuous linear right inverses for convolution operators
in spaces of real analytic functions

by

MICHAEL LANGENBRUCH (Wuppertal)

Abstract. We determine the convolution operators Tj; := ux on the real analytic
functions in one variable which admit a continuous linear right inverse. The characteriza-
tion is given by meany of a slowly decreasing condition of Fhrenpreis type and a restriction
of hyperbolic type on the location of zeros of the Fourier transform Z(z).

The existence of continuous linear right inverses for convolution opera-
tors Ty, := p* has been studied in many classes of (generalized) functions
on R: The first result for C*°(R) was obtained by Ehrenpreis 5] and the
problem was solved for nonquasianalytic nltradiferentiable functions and ul-
tradistributions by Meise and Vogt [15] and Braun, Meise and Vogt [3]. The
characterization was given through estimates on the location of zeros of the
Fourier transform i of the (ultra)distribution g, similar to that for hyper-
bolic convolution operators (Ehrenpreis [5]}. For convolution operators on
holomorphic functions defined on convex open sets £2 < C the correspond-
ing question was solved in Taylor [25], Schwerdtfeger [24] and Meise [12]
for 2 = C, and in Momm [19, 21, 22| for general convex 2 # C (see also
Korobelnik and Melikhov [8]), again leading to a restriction on the location
of zeros of 7, connected with the angular derivative on the boundary 842 of
the Riemann mapping function for 2.

In the pregsent paper, continuous linear right inverses for convolution
operators on real analytic functions on open or compact intervals will be
studied. Neither necessary conditions nor nontrivial positive examples seem
t0 be known in this case.

Let I C R be an open interval and let A(I) be the space of real ana-
lytic functions on I with its canonical topology. Fix u € A(R)’ and assume
suppu = {0} if I ¢ R. Then p defines a continuous linear convelution
operator

Ty A(I) = A(L),  Tu(f)(z) = {yp, fle —y)).
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