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On the maximal function for rotation invariant measures in R™
by

ANA M. VARGAS (Madrid)

Abstraci. Given a positive measure p in BR™, there is a natural variant of the non-
centered Hardy~Littlewood maximal operator

R
Muf(m)—igg B Bfifld.u,

where the supremum is taken over all balls containing the point . In this paper we
restrict our attention to rotation invariant, strictly positive measures u in R™. We give
some necessary and sufficient conditions for M, to be bounded from L1 (du) to L322 (du).

Let 4 be a non-negative measure in B™, finite on compact sets. Given a
function f € Li .(du), we can define the analogue of the Hardy-Littlewood
maximal function

Myfie) = sup s [ If1dn,
= B

where
By, = {B open hall: x € B and u(B) > 0}.

In fact, there are two possible definitions of the Hardy-Littlewood max-
imal operator. 'The second one corresponds to a smaller basis; namely,

B¢ = {open balls B centered at z with u(B) > 0}.

The operator associated with the latter basis maps L!(du) into L1:2°(dp).
This can be proved using the Besicovitch covering lemma. An operator that
satisfies this boundedness property is said to be of weak type 1-1 with respect
to the measure .

But things are not so easy when dealing with the former basis, the non-
centered case:
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10 A M. Vargas

It is known ([M-S], [3]) that, for n = 1, M, always maps L'(dy) into
IM*(du), no matter what  is.

In R*, and if x is a doubling measure {which means that there is a
C > 0 such that u(Ba,(z0)) < Cu(Br(zo)) for all zy € R™, r > 0), then
M, is of weak type 1-1. This can be proved by using a Vitali type covering
lemma.

For n = 2, P. Sjigren [S] showed that the operator associated with the
measure du(z) = e~121*/2 gz does not have the same boundedness property.

So, there are two questions that arise from these observations:

(1) Is there any non-doubling measure x4 in R™, n > 1, such that M, is
of weak type 1-17

(2) How can we know whether or not a measure 4 provides an operator
of weak type 1-17

From now onwards, throughout this paper, p (or du) will be a rotation
invariant and strictly positive measure on R™ which is finite on compact
sets. “Rotation invariant” means that, for every measurable set U and every
rotation g around the origin, u(U) = p(e(l)), and “strictly positive” that,
for every open ball B, u(B) > 0. In the case of y absclutely continuous with
respect to Lebesgue measure dz, i.e., du(z) = f(z) dz with f € L (R"), the
rotation invariance property of u is equivalent to f being a radial function.
For that reason, and with a slight abuse of language, we will often refer to
u as a radial measure.

We are going to show some conditions that characterize the measures
p of this type for which M, is bounded from L'(du) to L1°°(dp). This
answers the second question (for this particular kind of measures),

THEOREM. Let u be o rotation invariant and strictly positive measure
on R™ which is finite on compact sets. The following assertions are equiva-
lent:

(1) My« LM dp) ~» L3 (dy) is bounded.
(ii) There s a constant Cy such that, for all r < 10a,

#{{a <zl <a+2r}) < Cru({a+r/2 < |z| < a+3r/2}).
(i) p s @ doubling measure away from the origin, that is,
W(Baula0)) < Cop(Bulzo))  for all s < Jaol/4,
with Cy independent of s and xg.

Remark. If du(z) = g(|z|)dz, we can write (ii) in the equivalent form

a2 a+3r/2
(i) f g{s)ds < C} f g(syds for all r < 10a.
a o atr/2
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EXAAMPLES. 1) du(x) = (1 + |z|*)~! dz is doubling away from the origin,
so M, is of weak type 1-1. But, if o > n, dy is not a doubling measure, as
one can easily check.

This example provides an affirmative answer to the first question.

2) It is not hard to see that condition (i), together with the regularity
of p, implies that

s{lal = a}) = 0

and, in particular, if do denotes the usual measure over the unit sphere, the
measure du = do 4 dr does not give us a bounded operator.

On the other hand, do gives a bounded operator, as can be easily seen
with the same argument used for the Hardy-Littlewood maximal operator
in R™=1. Observe that do is not strictly positive, and our theorem does not
apply.

for all a > 0,

Remark. Condition (iii) tells us that, for radial and strictly positive
measures on R™, x being a doubling measure is an almost necessary con-
dition for M, to be bounded. This is a remarkable difference with the
one-dimensional case in which, as we mentioned before, any positive mea-
sure gives rise to an associated bounded operator.

For the case of a measure du(z) = g{|z|) dz with g monotonic, (ii) has
an even simpler statement:

CoroLLaARY. Let du(z) = g(|z|) dz be a measure in R™ with g monotonic
and strictly positive on (0,00). Then M, is of weak type 1-1 if and only if
there are some constants ¢y > 0, k € Z and C > 0 such that

ch S glr) € Ce, for 2571 <p < OFHL

Proof of the Theorem. Before writing down the proof, we need
to introduce a new geometric object which appears in a natural way when
considering this problem.

DEFINITION. Given a ball B = B,(zg), we define its associated sector
S = Sp as

(1) S={zeR":|zg|—r < |z| < |zo|+ 7
and ang(z,zp) < arcsin(r/{zo|}} if [2o] =7,
where ang(z, zq) denotes the angle determined by the vectors 5%, D_:cg, and
(2) §={zelR":|z|<|zo|+r} if |z <r
We set

[ aresin(r/|zo]) if |zo| £ 7,
arg(S) = {27:“ if jzp| > 7.
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Also, it will be useful to state another equivalent condition to (i), involv-
ing sectors and balls:

(iv) u(85) < Cyp(B) for all open balls B in R™, with {4 independent
of B.

We will prove the following implications: (1)=-(iv)=-(ii)=r(iii)=>(iv), and
(iii) + (iv) = (i).
(i)=(iv). Let B = B,(zo) and £ > 0 be given. Consider the set
X = {zp € R" : lmo| = |@y| and |mg ~ x| < r/2}.
Then, for each x5 € X, we have B, 3(20) C Br(zf) and u(B) = u(B,(z4)).

Hence
, _ XB..2(20) 1
U B,(xp) C {‘T ' M“(H(Br;g(xo))) g u(B) +E}'

2LEX

Now, we realize that if |zp| > r, then
Spi={z:|zg|—r< |z| < |zo| + 7
and ang(z, z0) < r/(2za))} € | J Br(sp),
zheX
and if 0 < |zn| < r, then
S = Sp N {ang(z, zo) < 1/2 or z = (0,0)} lJ Br(zp).
xLEX

Ir both cases, we can conclude from our hypothesis (i) and the fact that
/.L(SB) ~ ,U,(SB) that

W8p) < Ou( U Br(wé))

L EX

< COu(B) +¢) | XB*“‘”“”)) du = OCy(u(B) +é).

#(Brya(zo
Letting ¢ ~» 0, we obtain (iv).
(iv)=>(ii). Given the annulus {a < || < a + 27}, with r < 10a, we con-

sider the inscribed ball B = B.(a +7,0,...,0) = B, (z0) and its associated
sector, S.

We claim that we can select 0 < £ < 1/2, independent. of @ and r
under the sole condition r < 10a, such that if z € B, and ol < a-+re or
|| > a+ 2r — re, then

' -~ ang(x,mo) < arg(S)/(2C,).
Actually, the following can be proved:

Magimal function for rotation snveriant megsures 13

LEMMA. Let B = B,{z%), with 0 < r < i—cl)|x0| and 0 < e < 1/2. Assume
that y € 8B N {aBJ$D|__r+m(0) U 6B|IO|+,"_,.E(0)}. Then

ang(y, 2°) ~ VEarg(S).

The proof is straightforward and left to the reader.
Then, by (iv) and our selection of ¢,

p{a <|z[<aterora+2r—er <zl <a+2r}
N{ang(z, zo) < arg($)})
< u(S) < Cyn(B)
< Capl{a < |z| < a+er, anglz, 20) < arg(5)/(2C)})
+ Cau({a+2r —er < [2| < a+ 27, ang(z,z0) < arg(9)/(2C4)})
+ Cap({a+er <lz| < a+2r —er, ang(x, zp) < arg(8)})
< %p({a <lz| < a+er, ang(z, 7g) < arg(SHH
+ 3u({e+2r —er < || < a-+2r, ang(z, 2o) < arg(S)})
+ Cap{{a+er <|z| < a+2r —er, ang(z, 7o) < arg(S)}),
where we have used in the last inequality the radiality of u.
Reorganizing the inequality, we get
p{e<|z|<a+erora+2r—er<|z| <a+2r}
N {ang(z, z0) < arg(S)}
L204u({fa+er < |z| <a+2r —er, ang(z, zo) < arg(S)})
and, 'therefore, by the radiality of 1 again, we conclude

p({z:a<|z| <aterora+2r—cer <z <a+t+2r}
<2C4p({a +er < lz| < a+ 2r —er}).
Now, we repeat this argument with the annulus {a-+er < |z} < a+2r—er}.
In a few steps (~ 1/g) we obtain (ii).
(il)=>(iii). Let ua set B = B,(xg) and 2B = Bay(xg). Then
W(2B) < u(Sz28)
= p({z : |zo| — 25 < |2| < |20| + 28, ang(z,xy) < arcsin(2s/|zo|)})
< e(2s/|zo))* tu{{z : jmol ~ 25 < Ja| < |mo| + 28}),

because of the radiality.
We can apply (ii) twice, so that the last expression can be seen to be
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bounded above by
cC3(2s/|zol)" " u({z * |wo| — 8/2 < |z| < |zo| + 5/2})
< CCu({a : lmo| — 8/2 < |z| < |wo] + 8/2, ang(z, zo) < es/|zol}).
Now, notice that the hypothesis s < |zo]/4 and the Lemma imply that
{z:|zg| — 8/2 < |z| <|zo| + 8/2, ang(zm, z0) < cs/|zg|} C B,
for a suitable ¢, which is enough to conclude the proof of (ii)=-(iii).
(iii)=>(iv). Let B = B,.(zo). Assume that zo = (2{,0,...,0). We will
distinguish three different cases:

First case: r < |zg|/4. As in the proof above, the point here is that
there i a constant ¢ > 0 such that

Sp o= {z:|zo| — r < |z| < |zo| + 7, ang(z, 20) < cr/|zol} € 2B
and, therefore,
p(Sa) ~ u(Sp) < p(2B) < Cau(B).
Second case: |zg|/4 < r < |zg|. First, define two auxiliary balls:
Bl Bz -3 (% (Jzo] = 7),0,...,0),
= Bljagl+2)/s (E (|20l +7),0,...,0).
Both are as in the ﬁrst case considered. Hence,

2
u(BY 2 > u(B:) = CCTV Y u(Ss,)

i=1
> O’O:;” [ ({|a:g} —r<in <2 |w0| ——7")})
+ u({&(Izol + 1) < |a] < tmol +r})];
the last inequality being true since arg(8p,) = arcsin §, 7 = 1,2, and 4 is
radial.

Secondly, there is a constant ¢ > 0 such that

{5zl =) < |a| < &(|wo] +7), ang(z,z) < c} C B.
Therefore,
w(B) 2 Cu({§(lzo| — ) < |z| < E(lzo| +1)}).

Third case: r > |zo|. Consider B’ = Byjy,|4.r/2((|z0] +7)/2,0,...,0).
B'CB,(0,...,0) € Band Sp = [SB \ {(0,...,0)}] N {ang(z, 29) < 7r/2}
By the radlallty of u, u(Se\{(0,...,00}) < 2/.5(53:). Hence

#{8B) < 2u(Sp) + p(B).

Furthermore, B’ is as in the second case. We conclude, from our previous
caleulations, that

#(88) < CCsu(B') + u(B) < C"Cau(B).

icm
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(iii) -+ (iv) = (i). Classify balls in R2 into two families:
.7:1 == {B = Br(ﬁn) T S |.’L‘Di/4}, fz = {B = B.,.(:L‘g) Ir > |ﬂ?0l/4:}
We define

Mif@)= swp o J 116 anty)

Observe that there is a constant ¢ > 0 such that, if B € 3, then arg(Sg) =
e, 50
w(B) 2 C7 u(Sp) 2 Cr Cp{lao| — r < | < |zo| + 7))

‘That is why we define the following maximal operator:
1
MZF(z) = sup —— auly),
) = oy o [ 1@ u6)

where

Az = { A open annulus centered at the origin : z € A}.

‘We have just seen that
My f(z) < M f(z) + CMEf(z).

We must prove the boundedness of Ml and M2

M1 is easy to handle: the doubhng cond1t10n (iv) allows us to write
down a proof copying the standard one for the Hardy-Littlewood maximal
operator.

To obtain the boundedness of Mi, observe that this is essentially a
one-dimensional object.

Remark. There are two more equivalent conditions that we would like
to point out here: :
(v} There exists a constant Cy > 0 such that

ul{z - sup x5(o)/u(B) > A}) < Cs/A  forall A> 0, zo € R™
ze R

(vi) For every ball B we define _
Bp = {B' open ball : u(B') < p(B) and BN B’ # P}.
Then
(U B) < ContB).
B'eBp

It is easy to see that (i)=>(v)=(iv). For (i)=>(v) consider a family of
balls converging to o: B = Bin{2o), and apply (i) to M, (xa, /k(Br))-
In order to prove (v)=(iv) one just has to modify the proof of (i)=>(iv)
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noting that
U Belag) € {o: sup xs(20)/w(B') > 1/(u(B) +€)}.
m{,EPd z& B
The proof of {vi)=(i) is also trivial. The only difficulty is then to prove that
any of the conditions (i) to (iv) implies (vi). We will prove (iv) + (ii) =
(vi):

(iv) + (ii) = (vi}. First of all, we prove that there is a constant x such
that, if we have balls By, By, By N By # @, with sectors Sy, Sy such that
arg(S;) = 0; and 61 > kfy then u(By) = 2u(Ba):

If B; = By, (x;), then 61 > rfy implies 2 > ko, s0 ra < |ag|/1000
(taking x large enough), and ry > 107y, Therefore,

{z:|za| = 10rp < Jo] < |ma| — rg, ang(z,z1) < O} C S if || < |z,

{z:]ze| + 7 < |2 < |22| + 109, ang(w,z1) < 61} C Sy if |z1] > |zl
In the first case

4
p(Bs) < pu(S2) = f#({lmzl —ry <[z < |za] + 12} )

Apply (ii) with r = 4ry and a = |zy| ~ Trs to get
g
< ;T'%C'z#({lmal = 5ry < |z| <|az| ~ r2})

g
= 9—202,11,(5'1)
1
and, applying (iv},
< KTICCH(BY) < $0(By),

for a suitable x.
In the second case the proof is similar.

Let B = By(zg). In order to prove (vi), and by the reasoning above, we
only have to take care of balls B’ € Bp with 5710 < #' < k.
From them, we select two balls:

* B nearest to the origin;
v . . .
s B, with center z,, and radius r, such that lay,| + 7,y is maximal,

If B' € Bp with x7'0 < 8’ < k0, then there is a constant c(x) ~ 3x* such
that

B' C e(x)8p Uc(x)Sp, Ue(k)Sa
where c_(:m) Sp denotes the sector
‘ {a:e RQ tmgl -1 < || < |zo| + r and ang(z, zg) < e(x)arg({Sp)}
and c-(m)S:B; and c(k)Sp: are defined analogously.

icm

Mazimal function for rotation inveriant mensures 17

Using the radiality of g and (iv) again, we get

s U B') < w(c(s)S; U c(x)S, Uelk)S5)
B'éBpy
< (k) Calu(Br) + u(B,,) + u(B)) < 3¢(r)Cap(B).

A final comment. Notice that (i) or (iii) trivially imply that the
measure y s either strictly positive or a constant times the Dirac delta at
the origin. Hence, the Theorem cannot be generalized.

We know the behaviour of M,, for some measures v not strictly positive.
For instance, if v is supported on the annulus 4 = {1 < {z| < 2} and is
strictly positive on A (that is, if B is an open ball satisfying ANB # B, then
v(B) > 0), then M, is never of weak type 1-1. Notice the difference between
this behaviour and that of M, in spite of do being a limit of measures of
this kind.

Many particular cases can be done with easy arguments, but we think
much more strong ones will be needed in order to get a global result.
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