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Abstract. Let L be a positive Rockland operator of homogeneous degree d on a graded
homogeneous group G and let p; be the convolution kernels of the semigroup generated
by L. We prove that if 7(z) is a Riemannian distance of © from the unit element, then
there are constants ¢ > 0 and €' such that [py(z)| < Cexp{—cr(z)% (=1}, Moreover, if
G is not stratified, more precise estimates of p1 at infinity are given.

1. Introduction. Let L be a positive Rockland operator on a homo-
geneous group G (cf. [FS]) and let d be the homogeneous degree of L (cf.
Section 2).

The operator I satisfies the following subelliptic estimates proved by
B. Helffer and J. Nourrigat [HN]: for every multi-index [ there are constants
C and k such that

(1.1) 1X 22 ey < CUL*fllae + 1 fliL2e),  f € CR(G).

Theorem (4.25) of [FS] asserts that the closure —L of the essentially
selfadjoint operator — L is the infinitesimal generator of a semigroup of linear
operators on L?(G) which has the form

(1.2) Tif =fx*p, t>0

where the p; belong to the Schwartz space S(G).
The homogeneity of L implies

(1.3) pi(a) =t~y (8,-r ),

where @ is the homogeneous dimension of G and &; is the family of dilations
associated with G (cf. Section 2),
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It has been proved in [D] that the kernels p; (and their derivatives) decay
exponentially at infinity, that is, for every submultiplicative function w and
every left-invariant differential operator @ on G,

(1.4) [ 18p:(@)Pw(z) dz < Chup < o0,
&)

and, consequently,
(15) s1p 074 (a)uu(z)| < g < .
rE

On the other hand, the result in [He] shows that if a positive Rockland
aperator L is a sum of even powers of left-invariant vector flelds, that is,

(L.6) L=) (-)™Xx™,
then there are constants Cj and ¢ > 0 such that
(L.7) |pe()| £ Cot =9/ exp(—cfa|#/ (4= j21/1E-1),

where |- | is a homogeneous norm on G. _

Semigroups of linear operators generated by differential operators of the
form (1.6) in the setting of arbitrary Lie groups have been investigated
in [Hel].

The purpose of the present paper is to study the behaviour at infinity of
the kernels p; of the semigroup generated by an arbitrary positive Rockland
operator. We prove that the estimate (1.7) also holds in the general case.
Moreover, we obtain estimates of p; in various directions as z — co. These
seem to be optimal.

2. Preliminaries. Let G be a graded nilpotent Lie algebra of step g,
that is,

(2.1) G = @ Vi,
i=1

and [V, V;] C Viy; for every 1< 4,4 < 5. We assume that dim Vi >

A dilation structure on a graded Lie algebra G is a one-parameter group
{6:}¢>0 of antomorphisms of G determined by
(2.2) X =1t%X for X €V},
where 1 = oy < ap < ... < o, are rational numbers called the exponents of
homogeneity.

If we consider & as a nilpotent Lie group with nultiplication given by
the Campbell-Hausdorff formula

1
w=ztytgleyl+...,
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then {&;} forms a group of automorphisms on the group G, and the nilpo-
tent Lie group G equipped with the dilations {6} is said to be a graded
homogenecous group.

A Lie algebra G is called stratified if G is graded and V; generates G as
an algebra.

The homogeneous dimension of @ is the number € determined by
[ #(8:z)de = t~9 [ f(z)de,
G a
where dz is a right-invariant Haar measure on G. It is evident that
3
Q=) a;-dimV;.
=1

A left-invariant differential operator L on G is called a Rockland operator
if L is homogeneous of some degree d > 0, that is,

(2.3) L(fo b)) =t*(Lf) o6 for f € C®(Q),

and for every non-trivial irreducible unitary representation m of G the op-
erator w(L) is injective on O™ vectors.

We choose and fix a homogeneous norm on @, that is, a continuous,
positive, symmetric function # ++ |z| which is smooth away from 0, vanishes
only for z = 0, and satisfies {§,2| = ¢|z|. Henceforth we will assume that our
homogeneous norm is subadditive, that is, |zy| < |z| + [y| (cf. e.g. [HS]).

Note that if {er'c,(j)}j=1,.“,s; k=1,...,dim V; 16 & homogeneous basis of G (i.e.
er,;) € V), then there is a constant ¢ > 0 such that

s dimV; s dim Vy
CHel <D Y lae/* <Clal, where 2= 3" g syen -
F=1 k=1 i=1 k=1

If ey, (5 is a fixed homogeneous basis of G, then define left-invariant vector
fields Xk!(j) by

d
Ky f(m) = 7 t_Df(ﬂmﬁ@k,(;;))-

H D= (4,01) 08,0205+ - » 1,4}, - --) I8 & multi-index, then put

I %, iy, 41, (s
XT= X0 XN X

The number |1 = 377_, Zii:mlv’ oy - ix,(j) 18 called the homogeneous length
of I and determines the homogeneous degree of the operator X7'.

3. Riemannian distance on graded homogeneous groups. This
section is devoted to describing the behaviour at infinity of a right-invariant
Riemannian distance on a graded homogeneous group G in some special
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coordinates. The facts presented here are known. We shall use the approach
of A. Hulanicki and J. W. Jenkins [HJ] which was developed by many authors
afterwards (cf. [NRS]).

Let Yy,..., Y, be a homogeneous basis of G and dy, ..., d, be their ex-
ponents of homogeneity. We assume that 1 =d; < ... £d,. Let G be the
free nilpotent Lie algebra of step ¢ with free generators Y1,...,Y,. We can
consider G as a graded Lie algebra:

!
(3.1) G=Pv,
j=1

where ¥, = lin{¥1,.... ¥}, i, = in{[¥;,¥}): 1< j<n, 1< i < ),
Obviously, G is stratified. _
Let §; denote the natural dilations on G defined by

?5}55:&5{' forjfef/}.

There is the canonical homomorphism « : G — G such that x(¥;) = ¥;
Let H be the kernel of x. Following Hulanicki and Jenkins [HJ] define

(3.2) TA/}D:{)?EVJ-:)?—i—?eﬁforaome?&@ﬁ-}, i=1,...,L
i>j

Let W) be linear complements of ¥;° in ¥; such that each W? has a basis

consisting of vectors e(j ) of the form

(3.3) of) = [V, [¥,...[V,_,. %) ]l
Let k = @_, W). Then

and the algebra &' can be identified with H\G ~ k.

In the remaining part of the paper we fix the basis {e by } of k of the form
(3.3). This basis will be treated as a basis of . Note that the homogeneity
of the vector «a(J ) as an element of @ is d,f ) = dyy + diy + ... 4 di, while its
homogeneity as a vector of G is j. Clearly, d,(cj ) 2 7. One should not confuse
the basis ey, ;) from Section 2 with the basis egcj ),

Note that there exists a constant €' such that if

L L

0
dim Wy

E’ME
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then
¢ dim WP _
(3.5) Ot} X7 eIV <l
=1 k=1
and
¢ dim W)
(3.6) CHe™ < D7 a1 < Claf,
=1l k==l
where | - [~ is a fixed homogeneous norm on G.

Comnsider G as a » graded homogeneous group and H as its normal sub-
group. Note that H need not_be preserved under the dilations & of G.
Obviously G is isomorphic to H\G.

Let 7 be aright-invariant Riemannian distance on G. Since G is stratified,
it follows e.g. from {J, Theorem 4] and [H, Section 1] that for every compact
neighbourhood K of 0 there is a constant C' such that

(3.7) C'¥(m,y) < |ley !~ < OF(z,y) foroy ' g K.
Now, define a right-invariant distance function ¢ on G = H \é by
(3.8) o(#,9) = iwf{F(he,y) : h € H).

Let 7 denote a fixed right-invariant Riemannian distance on G. Obviously,
for every compact neighbourhood K of 0 in G there is a constant C > 0
such that

(3.9) C'r(z,y) < olz,y) < Cr(z,y) forey ' ¢ K.

Forr > 0 let B(r) = {z € G : \z|~ < r} be the homogeneous ball
of radius r. Proposition 2.1 of [HJ] asserts that for every @ > 0 there are
constants @ and b such that

(3.10) B(r) < (Blar) nk) & (B(ar) N H) c B(br) for r > ..

This combined with {3.7), (3.6), and (3.8) implies that for any compact
neighbourhood K of 0 in G there is a constant € > 0 such that if G =k

Z - sziw (J esc ), then

1 d:mW

(3.11) Lo(z,0) < Z Z loP)[V/7 < Co(x,0) whenever & ¢K.
j=1 k=l .

Finally, from-(3.11) and (3.9), we see that for any compact neighbourhood K
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gim WP (5) (4
of 0 in G there is a constant Cy such that for z = Ez-:l Z,GE g a,(c])e%’) ¢K,
; dim ~39
(3.12) Citre,0) <Y Y [af)1M < Cr(a,0).
j=1 k=1

We say that a Borel symmetric function v on G is subadditive if

(a) v = 0 and v is bounded on compact subsets of G,
(b) v(zy) < v(z) +v{y).
A Borel symmetric function w on G is said to be submultiplicative if

(a') w > 1 and w is bounded on compact subsets of G,

(b") w(zy) € w(z)w(y) for z,y € G.

Clearly, if w’ satisfies (a’) and (b’) with a constant C > 1, that is,
w'(zy) < Cuw'(z)w'(y), then the function w = Cw’ is submultiplicative.

Moreover, if w is submultiplicative then so is w(z) = w(éx) for ¢ > 0.

If | - | is a subadditive homogeneous norm on G, then the function z
exp(Clz|) is submultiplicative for any positive constant C.

The second example of a submultiplicative function is = — exp(Cr(z)),
where 7(z) = 7(x,0), C > 0.

The following proposition hag been proved in [H].

PROPOSITION 1, For any subadditive function v on G there 15 a constant
C > 0 such that y(z) < C7(2)+C. m

4. Sémigroups on weighted spaces. For real m > 0 and a function
f on G define

(D f)(@) =m 2f (b-12).
Obviously, D (f * g) = (D f) * (Ding).

For a submultiplicative function w we shall denote by L2(w) the Hilbert
space of functions on G with the norm

LI = 1 £y = [ 1f(2) w(e) de.
. G
Clearly,

Dy, : LA(wi™) — L*(w) and 1D Fl| 22wy = m™ %72 £]| pautmy.-

The following theorem has been actually proved in [D] (Proposition
(5.11), Theorem (1.3)):

THEOREM 2. For every submultiplicative w the closure of —L considered
on CZ°(G) in the norm ||- ||y, is the infinitesimal generator of a holomorphic
semigroup {T; }res0 of operators on L?(w). w
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As a consequence of Theorem 2, we get

LEMMA 3. For every submultiplicative w there are A > 0, # > 0 and
Cy > 0 such that the closure of —(L + AI) considered on C°(G) in the
norm ||| is the infinitesimal generator of o uniformly bounded holomorphic
semigroup {5, } of operators on L?(w) in the sector Ay = {z : [Arg z| < 8}
and

”Szf”w < CZHf”'w fOT’ zZ e Ag. ™

From Lemma. 3 one can deduce

LEMMA 4. For every m > 0 the operator —(L + Am?I) is the infinites-

imal generator of a uniformly bounded holomorphic semigroup { ng} of
operators on L2{wl™) in the sector Ay and

155 £ it < Ca| f gt

with the same Cy and 8 as in Lemma 3.

for z € Ay,

Proof. Set S;m) = D184, Dy and note that the ng) form a uni-

formly bounded holomorphic semigroup whose infinitesimal generator is
~(L + AmdI), m

Obviously,
(4.1) §im) = g=mmiy

The Cauchy integral formula, Lemma 4, and (4.1) imply that there is a
constant Cy such that for every natural number & > 0 and every real m > 0

(4.2) IZF T2 | 3oty L3ty < CERIEC™ for1/8 <t < 2,

The next lemma is a weighted version of subelliptic estimates for L (cf.
[D, Section 4]).

LeMMA 5, For every multi-indexr I and every submultiplicative w there
exist a constant Cy and a naturel number & such that

(4.3) X7l 2y < CalllZ*Fll2agy + 11 22wy)  for f € CF(G). m
Since L* is also a Rockland operator, Theorem 2 implies

COROLLARY 6. The estimates (4.3) hold for f in the domain D(LE) of
LY | where Ly, is the infinitesimal generator of the semigroup (1.2) considered
on L*(w). =

Using the operators D,, and Corollary 6, we cbtain
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LEMMA 7. For every multi-indez I and for every submultiplicative w there
exist o positive integer k and o constant Cp such that for every m > 0,

“XIinZ(w[ml)
< Csm2m(m_2dk||kaf|iz(w[ml) + “inz(w[mJ)) for f € D(Lm). m
We are now in a position to prove the following

ProroSITION 8. For every submultiplicotive function n there exists o
constant Ca such that for every multi-index I there is a constant Cv such
that

(4.4) :tetg{lX’pl(w)ﬁn[ml(m)} < Cr exp(Cem?),

Proof. Let w be the submultiplicative function defined by w(z) = n(x)*
Since pr € [y m P(LE,) (cf. (1.4) and Theorem 2), by Lemma 7 and (4.2),
we get

1X 1207 ity = 11X T p2 el 2 ytomiy

< C’smgm(m*zdkl|LkT1/z_aPsH2Lz(wsm1)
+ 1T amePell 2 prptery)
< C'exp(303md)||pe\|ig{w[m}) fore <1/4, m> 1.
In virtue of (1.3), we obtain

Pl ayimy = £7%% [ 1p1(2) Pw(8ynesre) dov
a

Putting & = m—% (m > 2), we have
45) X p1s2]l 12 ooy

< CmB72 exp(2C3m®) |1 || p2w) < C' exp(3CsmY).
Since

X o1 (@) 0™ (@) < [ |pajalay™) X pyjo ()™ 2y~ )ni™l (y) dy,
' e
- the Schwarz inequality and (4.5) imply (4.4) with m > 2.
Since the function 2 — sup, <m52{"7{m] (x)} is submultiplicative, the es-
timate (1.5) ends our proof. m

COROLLARY 9. For any subadditive v there is a constant Cg such that
for every mul‘ti—z’ndem J there is a constant Cy such that

(48) | X7pi(z)| < Cre™¥® where w(z) = supo{'y(Gmw) ~ Cgm4}.
m>

Proof. Setting n(z) = ¢"® and applying Proposition 8, we get (4.6). w
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5. Pointwise estimates. Now we can make several choices of v in
Corollary 9 and obtain estimates on the corresponding functions 4, and,

consequently, on the kernels X /p,. However, because y(z) < C(r(z) + 1)
(cf. Proposition 1), the function

(5.1) Yr(z) = sup{7(fnz) - Com}

is essentially the largest (that is, ¢, (z) < C,(2) + C for some constant
C > 0). :

Obtaining precise estimates on 1, requires some effort, so we begin with
simpler estimates which involve the homogeneous norm.

Let v, (2) = |z|. Then

(52) wh, (w) = sup {m|:c| - Cﬁmd’} = Clmld/(d_l):
m>0

with ¢ = 251(Ced)*/ (1= > 0,

Corollary 9 combined with (5.2) leads to

THEOREM 10. Let py be the kernels associated with the semigroup gen-
erated by a positive Rockland operator L. Let d be the homogeneous degree
of L. Then there is o constont ¢ > 0 such that for every multi-index J there
emists a constant Cy such that
(5.3) X pi ()] < Cy exp(—clz|?¥(41)), u

Remark 11. Using dilations (cf. (1.3)) and the fact that 8p; = —Lpy,
we get the following estimates which generalize (1.7) to semigroups associ-
ated with arbitrary Rockland operators:

108 X7 py ()| < O gt/ gyp(—g|p|4/1d-1 jgl/ (@1,

The same argument, can be used to extend the estimates for X yp; in Theo-
rems 12 and 13 below to 3} X p:. m

Now we turn to studying the function +.. First we give an easy estimate
from below, then a more complex one which is essentially optimal.

Since the 6, are linear automorphisms of G (cf. (2.2)), there exists a
constant ¢ > 0 such that 7(6,z) > emr(z) for m > 1, which implies

(54) ¥-(z} 2 sup{emr(z) - Cem?}.

By (5.4), there is a constant ¢; > 0 such that for 7(z) sufficiently large
{5.5) Pe(z) = crr(z)¥ @D,
The estimate (5.5) and Corollary 9 give

THEOREM 12. There exists a constant ¢; > 0 such that for every multi-
index J there is a constant C; such that

(5.6) X 7p1 ()| < Crexp(—err(z)¥ (). w
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In order to show precise estimates on ¢, we will proceed more carefully.
Fix for a moment a coordinate e ”. By the definition of ¢, and (3.12), for
a compact neighbourhood K of 0 there is a constant ¢ > 0 such that

I dlmﬁ}o
¥y (2) > Sl;{i{cmdil)/’;lag)il/i —Com®} forz=>" 3 alel
e i=l k=l

A simple calculation shows that there exists a constant ¢ > 0 such that

{ dim W°

m—~z Z a ej)eG

Taking the arithmetical mean we can assert that

(5.7) 1+ 9, (z) 2 clal) |3 (d-di)

1 dim ﬁ}o

>CZ Z ‘a(J 4/ (e~ a“))

Jj=1 k=1

(5.8) 14+ ¢ (2

with a constant ¢ > 0.

Now we show estimates from above for ¢, which are of the same type
as (5.8). By (3.12), we have

Yr(x) = sup{T(6mz) ~ Csmd}

m>0
1 dlmW0
<Cg+sup{2 Z C'g|m Echll/j_.Cgmd}
j=1 k=1
1 dlmVV0
<SG+, Y sup{C’gm’« "a@|Mi - Cemd)
i=1 k=1
1 dlmﬁ’o
<SCs+Cp Y. S |alh|Hia-df),
=1l k=l

As an immediate consequence of (5.8) and Corollary 9 we get

THEOREM 13, There is o constant ¢ > 0 such that Jor every rulti-index
J there exists a constant Cy such that

7 dim W“

(5.9) IXJpl(m)|<CJexp(__cZ Z (J'JId/(jd—dff’)),

J=1 k=1

mhe’r‘eszJ lzdlmw U) (j)EG .
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We already know that 9 () < C0,(w)+C (cf. (5.1)}. Hence Theorem 13
is at least as strong as Theorem 10. Moreover, by Proposition 1, the estimates
in Theorem 12 are at least as strong as the estimates in Theorem 10. The
question is: When do we get an improvement? To this end we write the
estimates (5.3) and (5.6) in the coordinates e%’ ). Let us state them in the
following two remarks.

Remark 14. Applying (3.5) we can rewrite the estimate (5.3) as

| dim WP _ _
(5.10) |X7p1(2)) < Cyexp ( - CE Z |g,£j)ld/(d(,¢-")dwd5¢3))):
j=1 k=1

for = as before, with a constant ¢ > 0 independent of J. w

Remark 15. By (3.12), in our coordinates the estimate (5.6) can be
expressed ag

dim W
(5.11) 1X7py(2)] < Crexp (— sz: Y (j)id/(jdﬂj))’
i=1 k=l
where ¢ is a strictly positive constant. w
Note that
(5.12) d/(@d~ ) < d/(id - 5)
and
(5.13) d/(jd - §) < d/(jd — d).

One can prove that G is not stratified if and only if there exists a coordinate

) such that d.'( s Jj, and, consequently, the inequalities (5.12) and (5.13)
a,re strict. So, we conclude that if G is not stratified, then the estimate (5.11)
strictly improves (5.10). Analogously, in this case, the estimate (5.9) strictly
improves (5.10) and (5.11).

We expect that the estimates (5.9) are in some sense optimal. Our ex-
pectations are based on the fact that if el? ¢ [G,d], then for M large
enough

(5.14) f Ip1 (=

)| exp(M|af?|#/(4=4)) dg = oo,

where z = Z afﬂj)eg),

whereas for small M > 0 the integral (5.14) is obviously convergent (cf.
(5.9)). This follows by a Fourier transform computation.

It seems likely that (5.14) holds for each direction egf ).



126 J. Dziubadski et al

Acknowledgements. We wish to thank Michael Christ, Ewa Damelk,
Pawel Glowacki, Andrzej Hulanicki and Fulvio Ricci for helpful conversa-
tions on the subject of the paper. We are also grateful to the referee for his
comments.

References

[D] J. Dziubadski, On semigroups generated by subelliptic operators on homoge-
neous groups, Collog. Math. 84 (1993), 215-231.

[DH] J. Dziubaiski and A. Hulanicki, On semigroups generated by left-invariant
positive differential operators on nilpotent Lie groups, Studia Math. 94 (1989),
81-95.

[FS] . B.Folland and E. M. Stein, Hardy Spaces on Homogencous Groups, Prince-
ton Univ. Press, Princeton, 1982,

[He] W. Hebisch, Sharp pointwise estimates for the kernels of the semigroup gen-
erated by suma of even powers of vector fields on homogeneous groups, Studia
Math. 85 (1989), 93-106.

[Hel] -, Estimates on the semigroups generated by left invariant apem.tom on Lie
gmups, J. Reine Angew. Math. 423 (1992), 1-45.

[HS] W. Hebisch and A, Sikora, A smooth subadditive homogeneous norm on a
homogeneous group, Studia Math. 96 (1990), 231-236.

[HN] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques ho-
mogénes & gouche sur un groupe nilpotent gradué, Comm. Partial Differential
Equations 4 (1979), 859-958.

[H] A. Hulanicki, Subalgebra of Ll(G) associated with laplacian on a Lie group,
Collog. Math. 31 (1974}, 259-287.

[HI] A. Hulanicki and J W. Jenkins, Nilpotent Lie groups and summability of
eigenfunciion ezpansions of Schridinger operators, Studia Math. 80 (1984), 235-
244.

[J] 1. W. Jenkins, Dilationa and gauges on nilpotent Lie groups, Colloq. Math. 41
(1979), 91-101.

[NRS] A. Nagel, F. Ricci and E. M. Stein, Harmonic anolysis and fundamental so-
lutions on nilpotert Lie groups, in: Analysis and Partial Differential Equations,
Marecel Dekker, 1990, 249275,

[P] A.Paszy, Semigroups of Lineer Operators and Applications to Partial Differential
Eguations, Springer, New York, 1083.

MATHEMATICAL INSTITUTE
UNIVERSITY OF WROCLAW
PL. GRUNWALDZXI 2/4
50-384 WROCLAW, POLAND

Received March 29, 1998 (3090)
Revised wversion October 25, 1998

icm

STUDIA MATHEMATICA 110 (2) (19984)

On the characterization of Hardy-Besov spaces
on the dyadic group and its applications

by

JUN TATEOKA (Akita)

Dedicated to Professor ¢, Watari
on the occasion of his siztieth birthday

Abstract. C. Watari [12] obtained a simple characterization of Lipschitz classes

Lip® o(W) (1 <p < o0, &> 0) on the dyadic group using the L[”-modulus of continuity
and the best approximation by Walsh polynomials. Onnewser and Weiyi [4] characterized
homogeneous Besov spaces Ber ¢ on locally compact Vilenkin groups, but there are still

some gaps to be filled up. Cur purpose is to give the characterization of Besov spaces Bg 4

by oscillations, atoms and others on the dyadic groups. As applications, we show a strong
capacity inequality of the type of the Maz'ya inequality, a weak type estimate for maximal
Cesaro means and a sufficient condition of absolute convergence of Walsh-Fourier series.

0. Introduction and notation. The dyadic group, 2¥, is viewed clas-
sically as the set of all sequences of 0’s and 1’s with addition (mod 2) defined
pointwise, and is supplied with the usual product topology. Qur results are
stated in the situation that 2 is the additive subgroup of the ring of in-
tegers in the 2-series field K of formal Laurent series in one variable over
GF(2) (see [9]). Such a field K is a particular instance of a local field; that
is, a locally compact, totally disconnected, non-discrete, complete field. The
results of this paper have extensions to any local field.

We need to set some basic notation. It is taken from [9] where the
fundamentals are detailed. For the additive subgroup K+ of the 2-series
field K, we may choose a Haar measure dz. Let d{az) = |a|dz and call
loj the waluation of a. Let |0] = 0. The mapping z—z| has the follow-
ing properties: |z| = 0 & = = 0, |zy| = |2 - |yl, |¢ + y| £ max(|z],|y]).
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