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Isomorphism of some anisotropic Besov
and sequence spaces

by

A  KAMONT (Sopot)

Abstract. An iscmorphism between some anisotropic Besov and sequence spaces is
established, and the continuity of a Stieltjes-type integral operator, acting on some of
these spaces, is proved,

1. Introduction. This paper gives a description of some anisotropic
Besov spaces By y(1?), @ = (01,..., ). It is proved (Theorem A.1) that
these spaces are isomorphic to some sequence spaces b5, and the iso-
morphism is given by the coefficients of a function in the tensor product
Franklin system of sufficiently high order. The one-dimensional version of
Theorem A.2 was proved in [8]. In several dimensions the case of isotropic
Besov spaces Bj (I%), s € R, was treated in [4] and [5]. Tt was proved in
those papers that the isotropic Besov space By (I 4 is isomorphic to some
sequence space, and the isomorphism is given by the coefficients of a func-
tion in a specially constructed spline basis. The functions forming such a
basis have the property that they are concentrated on small cubes, while
the tensor products of Franklin functions, which are used in this paper, are
concentrated on parallelepipeds.

The second part of Theorem A says that for some o we can obtain
another isomorphism of By, (I?%) and a sequence space by taking the coef-
ficients of a function in the tensor product Schauder system (normalized in
L?). The one-dimensional vergion of Theorem A.2 was proved in [6].

Theorem B says that the Stieltjes-type integral operator I(F, @),

I BS,(1%) X Bioo(I%) — Booo(I%),
with 1/p < oy < 1—1/p, B; = 1 — o, is bounded as a bilinear operator. Its
one-dimensional version was also proved in [6].

The summary of this paper (the main results without proofs) will ap-
pear in Proceedings of the conference “Open Problems in Approximation
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Theory”, Voneshta Voda (Bulgaria), June 18-24, 1993 (-

The author thinks that the characterization of anisotropic Besov-type
spaces of the type considered in this paper can be useful in investigation of
fractional Wiener fields with multidimensional time parameter.

2. Preliminaries and notation. For I = [0,1] we will denote by
W2(I¢) the space LP(I*) of all functions integrable with pth power for
1< p < oo, and the space C(I?) of continuous functions on I 4 for p = co.

Let g = (61,4,.-,6d:) € Re for i = 1,...,d be the unit vectors, and
D={l,...,d}.For f:I*>RneN, tcRandieD we define

nti)={z el z+nte € I%y,
n B S o (—1)n (";)f(:r: + jte;) for z € I%(n,t,1),
Atifle) = {0 ! for x € I¢\ I*(n,t,19).

Tet A = {il,...,ik} cDt= (t]_,.“,td) ¢ R¢ and p = (nl,...,na:) e Nd;
then we set

Afuf =45, 0 0 AL T.

iyt ' tipin
The modulus of smoothness of order n in directions A in the LP-norm is
defined as follows: '

wopa(fit) = sup ... sup |43 4fllp fort eR% 0 <ty £ 1/ny.
B fhalsts  lhalSta T

For A = (§ we pus

wyp, AL ) = || Fllp:

For b = (hy,...,ha) € R? and A = {ig,..., 5} we will write h(A) =

(hi,....ha) € B, where h; = h; for i € A and hy = 0 for ¢ ¢ A. For

n=(ny,...,nqg) € N% and t = (t1,...,1q) € R? the following abbreviations
will be used:

om Hd

T Oy, Oay

I

We will also need some spaces of spline functions with dyadic knots. Let
us introduce the notation

Then for each m € NU {0} and n = —m we define

icm
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for —m <n<0: the space of polynomials of degree

n + m, restricted to I,

the space of spline functions on I of
degree m-+1 and maximal smoothness,
with knots sq,..., s,.

Sty =4 forn>0:

Now the system of Franklin functions of order m + 2 is defined as follows:

F™ w1, and for n > —m, ™ e g™ (f) and is orthogonal (in L2(I)) to

SV, 1™l = 1. |
We will also need the Haar and Schauder systems on I

o the Hoar system: hy = 1,andforn > L, n =2 +v, u >0, 1 < v < 24,
2% for t € [%3E, &),
~2#/2 for t € (23, 2 ) if v < 24,
ort e [%’ﬁ%,l] if v =2,
0 elsewhere in I,

hp(t) =

o the Jchauder system:
;
$ot) =1, ()= [ Ba(u)dy, n>1,
0

s the normalized Schauder system: ¢}, = ¢n/| dnll2-

For n = (ny,...,nq} we introduce the tensor product Franklin, Haar and
Schauder systems on I%: '

f_"gm) — fr(u:n) ®...0 fTST) for m 2 ~m,

by = by @ ... @ Ay, for n; 2 1,
tp = bpy ® ... Q Py for n; > 0,
qﬁam(/)ﬁ].@...@qb;;d for g > 0.

It is well known that the tensor product Franklin system of order m + 2,
{fﬁm) : n; > —m}, properly ordered (in the so-called rectangular order,
described for ingtance in [3)) is a Schauder basis in W2(I?) (cf. [3]). Similarly,
{hy + m; 2 1} (in rectangular order) is a Schauder basis in LP(I%) for

1 <p < oc, and {¢y : ny > 0} (also in rectangular order) is a Schauder
basis in C(I¢).

Remark. Throughout this paper when we sum over a d-dimensional
set of parameters (N% or N2 ), we always mean that this set is arranged in
rectangular order.
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3. Function and sequence spaces. Let n = (n1,...,nq) € N% a =
(al,...,ad)ERd,O<m<mfori=l,...,d,1§p§_oo,1w(l,...,1)e
N4, For f € W2(I%) and 1 < ¢ < oo we define

1/m1 1/ng 4 q A 1/q
1712 = 3 ( .7 (wﬂ,p,A(f,gfa( >) i1 w;) ,
AcD 0 0

and for ¢ = oo we put for f € W}?(Id),

A1 =3 sup ... sup £ Mupga(fiL).
Acp0<t151/n1 O<ty€l/ng

For 1 < p, g < oo we consider the Besov-type function spaces
B (1) = {f e WS(I) : |1 < oo},

Remark Let n,m € N¢ be such that o; < n; and oy < my for
i =1,...,d, and let Bio(I%), and By¢(I%), denote the spaces defined
as above, corresponding to n and m respectively. Then it follows from the
Marchaud-type inequalities for LP-valued functions (cf. [4], Proposition 2.1)
that Biq(I%), = Bpq(I%)y (the sets are equal and the norms are equiva-
lent).

Now we define the sequence spaces. For a given integer m define Ny, =
{-m—-2,—-m—1,-m,...}, and for j € Np,

N-: {‘7+2} , fOI‘jZ-—m---Q,“_,—l,
7 (20 +k:k=1,...,27} forj=0.

FOI'j == (jl)' L :jd) € N#L deﬁne

Observe that N2 _, = UjeN;‘n Nj.
For a real number &« > 0 and 1 < p £ co set
‘ 1 for j <0,
C(j,a,p) b 2j(1/2~—]-/1’+n) for i>0.
For j € N3 and g = (a1,...,0q) put

C(ju Qip) = C(jlzalzp) e 'C(jd: ad,p)-
Now for a given sequence of real numbers @ = (ag)yene » let

i|g||§§q) = ( Z (c(g’,g,p)( }; la&P’)_‘l/p)cz)l/@

jeNg EEN;
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(with the sums of pth or gth powers replaced by suprema. over the same set
of indices if p = 00 or ¢ = 00), and

ba = (o= (an)yens _ : llaly < oo},

4. Results

THEOREM Al Letm e NU{0}, @ = (cgy...,00), 0 < s < m 4+ 1
for i = 1',...,d, 1 5 D, ¢ < oo. Then the spaces Bﬁq(Id) and by 4 are
isomorphic, and the isomorphism is given by the coefficients of o function

in the basis {f_,g_m) : k € N&_,} of tensor products of Frankiin functions of
order m. 4+ 2.

2. Ia"a case I/p < oy <1 fori=1,...,d another isomorphism of these
spaces is given by the coefficients of o funection in the basis {¢1 : ke N4,}
of tensor products of Schauder functions, normalized in 2.

Remark. As fém) € Bpg(I*) for 0 < oy <m+1, ke NE_,, it follows
from Theorem A.1 that these functions form a Schauder basis in By, (1%)

for 1 £ ¢ < oo, and in some separable subspace of Bﬁm(I 4y, Analogously, it
follows from Theorem A.2 that if 1/p < a; < 1, then {¢} : k € N%,} form

a Schauder basis in Byo (19} for 1 € ¢ < co, and in their linear span in case
g=oo.

THEOREM B. Let 1 <p <oo, I/p+1/p =1, a= (a1,...,0q), 1/p <
o <1/p, B = 1—aq, B = (By,....84). For F & BE,(I%) and G

Bpioo (1%,

Q.EN? EEKI"'E _E_GNf Eeﬁg

ond g == (81,...,84) € I define

d 8
IE@E) =Y. 3 3 3 FGr[] [ hai(ui)hn(w:) du,.

JENE MY kel neRy i) 0

There exists o constant C' = C(q,p) such that for ol F & Bgl(Id) and
G € BE{IY),

(8
|1(F, &) | < C|1F|I5 116115

Remark. As Dl¢, = hy forn € N4, we can write

1 Sq

IFG)g)= [ ... [FdG.
4] 0



icm

174 A, Kamont

This operator can be useful in investigation of multidimensional Stratono-
vitch integrals.

5. Properties of the moduli of smoothness. The following proper-
ties of wy, p,4(f,1) will be needed:

5.1. Foreach BC A, f € W—(B)(Id) and £ = (t1,..,ta) ERY, 0 < t; <
1/”%
wﬂ.P,A(f= )5- n(B )wn,p,A\B(D”‘ )f)ﬁ)-
5.2. For each f € WS(I":) L= (l1,...,0g) € N¥, t = (t;,...,ta), 0 <
Lit; < 1fng, t9 = (lity, ..., lats) and A = {i1,...,in} C D,
wn,p,AS 1@y < By 4(f,1).
The following extension lemma will be useful.

LEMMA 5.3. Let Q = [a1,a1+4]%... X [ad, ag+1g) and S be two compact
parallelepipeds in R? with Q C S. Then there exists an extension operator
T:W2(Q)~ W2(8) such that

ITFI(S) < ClIF1(Q)  wnpmalTHES) < Cunpalf,)(Q)
forall f e W2(Q), A= {tr,...., 5} CD andt & R¢ with 0 < t; € li/ni.
Proof. It is enough to prove the lemma for @, § of the form
Q= [-a,00x Qo, S=[-e,a]xQ

(where Qg is a compact parallelepiped in R4~1), Then for Whitney’s exten-
gion

n [ floy,z") . for ~a < 21 <0,
T‘f(wl’m ) - {E';;O a_.,-f(—~2“3x1, CC’) for b < =y < 4,

where 3710 a;( (—1/2)#% = 1 for k = 0,...,ny, there is a constant C' such
that for all f e W2(Q), t as above and Ay = {1},

(2) 17£1(8) < Cliflla(@)s
(3) wﬁ,p,A*x (Tf,f_)(S) S Owﬁ:,‘p,ﬂl(.f: .t,) (Q)
(cf. Proposition 2.9 of [4]), Observe that for A’ C D with 1 ¢ A’ we have
Ai-"" a T(f) =To AI?:A" (f),
50 from (2) we get
wn g4t (TF,£)(5) < Cuwppar (f,E)(Q).
If A= {1} U A’ then
A, 0T(f) = Al eToe Ay ar(£),

Anisotropic Besov and sequence spaces 175
and it follows from (3) that
sup ”A?‘ oT o A, (f) y<C m o
- 1,1 1,4 (Ni=(5) Ihilllgh ||Ah1, © At a(Dllp(@),
so the lemma follows from the definition of wy, , 4 (F,2). »

In the sequel we will need the equivalence between the modulus of
smoothness wyp 4(f,t) and the K-functional defined by the formula

Kpapft) =it {1~ 3 g + T ey, 0n@2 5,1

B£BCA 7 BEBcA
gp e W2BN (1), g £ B ¢ A}
for f &€ WP(I%) and t= (t1,...,tq) € R% with £; > 0.
LEMM'A 54, Let 1 g'pg o0, = (ny,...,ng) € N? and 4 = {ir, - ik}
C D be given. There exist constants Cyx = Cy(n,p, A), k = 1,2, such that
Crwnp,a(fit) € Knap(fit) € Cawypa(f,1)
for every f € Wg(Id) and = (t1,...,ts) € RY with 0 < t; < 1/n;.

Proof. The left inequality is a consequence of 5.1,

JN; ow let fbe the extension of f to the parallelepiped S = [0, n}+1]x
[0, 73 + 1], given by Lemma 5.3; then for ¢ = {t1,...,tq) with 0 < ¢; < 1/n,,

wnpa(FE)(S) < Cunpalf ).

For B C A, B = {i;,,...,4;,.}, define a function gp € WE(B)(I“) by the
Steklov means

iy P,
95(z) = - Z e Z (“1)’“‘5’:"‘"'*’“‘1”, (n‘ih) (nis'm)
Fb'i-: =1 kiﬂ'v =1 kiﬁ: kiﬁm

]

1
xf.. ff(Mka% .+s(i?"l))§i,-l)dsgli“)...dsgf;.’“.
: m

iy

Then

“./" Z 913“ < Clwy p,4 (f,Q(S)

BEBCA
and it follows from 5.2 that for some constant Cy > 0,

iﬂcs)wﬂ,p,fl\B(Dﬂ(E}gE:ﬁ) < GSE‘*’Q,]J,A (ﬁﬁ)(s):

which together with Lemma 5.3 completes the proof. =
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6. Proof of Theorem A. Let us start with the following definitions.
For g € W2(I), m € NU{0} and p &€ Ny, let

b
Py = 3 3 (5,

j=—m keﬁj
The following one-dimensional results will be needed (ef. 2], 3]).

LEMMA 6.1. Let m € NU {0}. There ezists a constant C' = C(m) such
that for all 1 < p< oo and p € N,
1Pl < C.

LEMMA 6.2. Let m € NU {0} and 1 € p £ oo. Then there exists o
constant C > 0 such that for all > 0 and f € W;”“(I),

1 m
15 = Pl € Comags 1Dl
For f € WO(I?) and i € D let
(m)f(mla )

= E z ff(xli"':mi—lyurxi-Fl""1$d)f15‘M)(u)dquEMJ(xi)
j=-mkEﬁj I
and for A = {d1,...,ix} and p= (1, ..., ita),
P =1 ~(1d-P{; Yo o ([ ~P,).

ok F'lk 7"#
Define
NE(p A) = {k = (ky, ..., ka) € Nj_3: Ji,ea Je<p, ki, € Nehy
Sét’ip = spant(Ia){fém) ke N (p A}
For f € W2(I4) let us introduce
(m) — 3 r
B = g, 7=l

A

Observe that ng_) is a projection of W2 (I%) onto Sg_” A o As a consequence
of Lemma 6.1 we obtain
LuMMA 6.3. Let m € NU{0}. There exists a constant C = C(m, d) such
that for all L < p < oo, p= (t1,-.., pa) € N§ end @ £ A C D,
(Bl < C.

For € (NU{0})® let g, = (1/2%1,...,1/2¢4).
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Lemma 6.4. Let m € NU{0}, 1 <p< oo, n=(m+1,...,m+1) € N,
AeN, 2271 <m+1 < 2%, There exists a constant € = C(m,d,p) > 0 such
that for each jo = (pa, ..., pg) with u; > A\, A C D and fewp(rdy,

IF -~ W:&-pr'(CWmPA(fa—#)

Proof. The proof is by induction on #A (i.e. the cardinality of A).

For #A = 1 this lemma is a consequence of Proposition 7.15 of (5] and
Lemma, 6.3.

Now let #A > 1, 4 = {iy,... i3}, 9 € C=(I%) and § # B C A. As
Dlm *‘1)"*]“"'(7" P(m)D m+liecg for § # 4, from Lemma 6.2 we obtain

lg = B gllp = [d =BT Yo ..o (1d —P(™ Y|,

[
(B ™m
< O#B.t.." )”DE(B g "P( )\ Dl )g”p-
As #(A\ B) < #A, it follows from the induction hypothesis that for any
g€ C>=(I7),
ltg = Pl glly < Citi P wn p a6 (D% Blg,1,.).

Now let f € WS (I%) and gg € C®(I?) for each § # B ¢ A. Using the last
inequality and Lemma 6.3 we obtain

1f = B fllo
<[£= 3 s8]+ X tos - BRanllo+ [P X 05— 1)|
0£BCA 7 PBCA T |
<02(Hf_ S’BH + t# Py o6 (D2 g, 8 ))
9~BCA BLBCA

As this inequality holds for every choice of gp € C°°(I4), we obtain
If = BT fllp < CoKon,ap(fs1)-
This, together with Lcmma 4, completes the proof. w

Now we are ready to prove one of the inequalities needed in Theorem A.1.
For f € WD(I*) and j € Ng we introduce the notation

F(m) _ H (f, fkm) _m) p ,,.;:r;)(f) = ( Z \(f, f_,gm))\r)lfp.

keN keN;

It follows from the properties of one-dimensional Franklin functions (cf. [2])
that
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(4) F-( N Hz_h (172~ 1/;0) (f) B C A, we obtain, for f € W2(I?),
P
) i==1
A afle < 3 (484 X (h A
For p = (pt1,- - ., ha) define DH ={i € D: p; > —m — 2}. Observe that JENE ( keF, )
Ja M n( n{B)

L Gimpe) p(m) (g <C AR ’A (m)y £(m) H
| S| 3 S omemrg ) T2 s ()
kEN pr=gr—1 wa=gq—1 E L kEN;

< Ol‘tdmA) o{m-+1) mm{;.c‘,g‘)F(m)
Let A € N be chosen as in Lemma 6.4 and A = {1 : j; 2 2} = iy .0k, # je%#,i:[el& in ()

#A; = k. Then from the definition of Pﬁfgﬁ Lemmas 6.3, 6.4 and (5.2) we

which gives
obtain, for o= (m-+1,...,m+1) € N4,

w“rP'A(f) _}J < Cfltp. Z H 2 (m+1) min(us, 55 F(m (f)

F(m) (f) = ” Z Z D G- M)P_g?gﬂ(f)”p JENG 1EA
pr=jr=1  pa=ji—1 Using this inequality and (4) we obtain
J1 Ja
< Y > M-BE W
pi=ii—1  pag=jq—~1 = Wn,p,A (f’ (A) E J=P (-f ]._IQ_JIQAl HQ(m+1)min(m,j,-)_
iy Fu, : JENT red
<Ch Z Z If - ;,(»mA)j( Ne < C2wﬂ»P'Ag'(f’ii)‘ : Observe that
pig =iy ~1 sy =gy 1 p

It Ai = () then Fj(,?)(f) < 03“10”?‘ Note that for a given A C D and Tu,A = Z HZ"‘M.‘R H om+1) min(pi.di) ., H gii{mtl-a)
t=(1/2%,. 1/23“) there is only a finite (independent of ¢) number of j's JENG, i=1 ied fed

such that Aj = A and t;(A;) = t(A), so it follows that for @ = (a1, ..., aq)

i Using Jensen’s inequality we get
with 0 < a; < m + 1 there exists a constant € > 0 such that for all 8 4 Y e &

f € Bia(I%), (TT 2 wnpafit))’
. YN : icA
( Z (C(LQQP)( Z |(f, 'E(_m))|P> ) ) S OHerJ.q : < Cy I'I 9 (o —in—1) .4
JENE keN; : T iEA it
Now the reverse inequality will be proved. Let g == (p1,..., fd), fi 2 A, : « z r (m)(f H?:—.l 2=t T, 2(mF1)min{uifo €
ACDand b= (hi,...,ha) € R? with |k < 1/2%. Tt follows from the o) farp Tiw ) r :
properties of spline functions of one variable (cf. [2], Lemma 9.2) and Fubini's 1€ )
theorem that there exists C' > 0 such that for all j € N% and (ap) ke <@, H b (v ~m=1)
€A
n 2lm) A) {4 (m)
HA-]}-’A( Z a'ﬁflﬂ. )“p < C’|_}_’L_ﬂ( )‘ﬁz Z “ Z a_k_,f&n p' « Z H 2(m+1 min (g, di)— oeidi H 9 —xifi
o~ et .71.79 .
keN; ken; JENY icA igA

Defining W (g, B) = {j € N& : j; < p; for i € B, j; > p; for i € B} for Then
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5o 2 (i)
i i, =A €A
<G Z Z S elgapry ()
i =AJENS,
% 9 (m+-1) min( Mi,g,)—alglnm('rn+l -y} 2——01”1
I 1
<Cs Y. (elj.ap)ryy (D)
JENE

X i i HQ(m'l"l)min(#irji)"“ﬂﬂ-ij-é"}#i(m+l—a1)-

Mi1=)\ ’,L,;km)\iEA

There exists a constant Cg > 0 such that for all j € N2,

Z Z H 2(m-+—1 Ymin(pg i) -0 fi—p

f-":l'")\ I-"th"‘AZGA

i(mtl—oy) < OG;

S0
oo [=a]
S o Y (T2 enpalfit) €O Y (elhapiry ()
iy = ;.bih=)\ ?:EA IEN;’:‘

which (together with 5.2) implies

1/(m+1)  1{(md1) 1/
( T (M)“;—zwdt) '
0

1e(A) =
h L

<Cs( Y (i an)r

JENY,

)

and the proof of Theorem A.l is complete.

Now Theorem A.2 will be proved. Its proof is based on the main 1dca
of the proof of Theorem IIL.6 of [6]. For convenience we set fj = f,“ .
Observe first that if 1/p < o < Lfor alld = 1,...,d, f € Biq(I") and
f= Egewg E&Eﬁj ap [, then

H Z kak” < CHEJ‘/z sup |ay|

kJENJ =] kEN

icm
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< C'HZJ‘ Lip~as), ( Z lag I:a) Me
=1 kel

< CH 93¢(1/p—ar;) E'LIP C(j,(.\f p)( Z la&lp)l/p,

i==1 Je D k;eﬁ
=

and this implies f € C(I4).
Now let f € Bpq(1%),

JENE pelN, JENE pe

iLx_z

(recall that ¢} denotes a tensor product Schauder function, normalized in

L?(I4)). To prove the second part of Theorem A it is enough to show the
existence of congtants My, My > 0 such that for each f € B, (1),

< |B$% < Malally,

where g = (ag)pent,: b= (bk)pene,- Bet

/
@= (X lar) ",

(5) My el

EENQ _[G,ENQ
First we will show the existence of M.
Observe that (cf. (4))
9—d4i(1/2-1/p) | _
2w~ | wnl,
b=l kel
It follows from Lemma 6.3 that || ~ P Il ~ (%), o(1), 50 we have
Ja=kl Jat+1 (0)
| S ot =[5 E oo,
EER}‘} v f = P“d—j
Jitl datl

SO 2 Z EM)D P EJ(?D 'P(f)

g1 pd=Jd

<alf- X wéi|,

RENF (,A)
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< G i i ” Z bt
§1=j1 a=J

&N,
oo fe5) d
< Cq E Z H £:(L/2~1/p) Ej’:)@)
&1=41 £q=jg i=1

(because for each pair m # 72, 11,72 € N,g the supports of the functions
i and qu are disjoint), so

d

=7 4= t=1

i=1

As 3o s Diamga ] [, 27 ||f_1 2 from Jensen’s inequality
=41 - = =
we gef

<o [ (5 - 3 cpmmrg@]]orw)

i=] G1=j1  Ga=fa
callre 3 3 [T ctlganr o @)
i=1 E1=01 fa=jai=1
This implies
3 (el p)ry (@)

JENg

d
<0 ¥ (ele )T qnsm I

§eNg f1%61 JuSEai=l

<G Y (elg anirdy @),

¢eNy

which gives the left inequality in (5).
To prove the right inequality in (5) we will need the formula for the
coefficients of a function f & O(1%) in the basis {¢}}:

(6) ' be(f) = Agy10...0 Byyaf,

where
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Ek,if(mh,..,md)
flon o miey,0,mi0a,. ., 24) for k = 0,
H(f (@ Lo md) — f(oy,. .00, 20))  fork =1,
7%2-1.-(_1’(9:1,..., et 3g) — (e el
—I—f(wl,,..,-'%l,...,md))) for 27 <k < 29+ k=24 4.
(This formula follows from the formulae for functions of one variable and

the fact that linear combinations of tensor products of continuous functions
of one variable are dense in C'(I%).)

The exponential estimates for f will also be needed: there exist O > 0
and 0 < ¢ < 1 such that for all j € N§, k € N; and t € I¥,

d
(7) |fg(£)| < CH 2j1/2q9|2“t.;—-ki+zn|.
=], .
(This is a straightforward consequence of exponential estimates for Franklin
functions of one variable, cf. [2], [1].)

It follows from (6), (7) and the definition of f’s that for k € N, W1 E
bﬁ(fﬁ) =0 if 4; > & for some 1 <4< d,
d
by(fy) < C T 200-70/2gl b=t 351 ip 5 < g forall 1< i <
FEENE

so for f = EEGNd Zneﬁ anfy and k € f;fi we get

ka f)‘ < C Z Z Hz(fw'-,?-; /2 Z la' 19]251—3‘1 Fy—27) -, +25¢|

El*".?.l 5»1-—3;: =1 T‘ENE
Defining
Z(&i.&) = Z |aﬂlﬁ|2£{m“ (.’in—2-7'i).....m+25{|
we have
R oa i ' N
IO ES2I PN Hg—(fw:n)/z( Z +(6,B) I”)
) gy famjad=l o

T

But for @(j) = [T¢., 91! for j € 27,

4 Iﬁzﬂi ifﬂ@ﬁé,
G =1, ifn g N,



icm

184 A. Kamont

and n(&, k) = (2879 (ky — 27) + 281 ., 28 (kg — 204) + 284) we have
i H(6,k) = (A€, ) O)ale, 1),

(T lenr)” < (3l o)

~ 4
&GNQ- neZ

< @I IAE s = Oy (@)

S50

This implies

[eernse s - 5 ee

=1 £17=41 fg=ga i=1

and

(g, p)T f,,,)@
<02H2” P Z Z H?ﬁi Wp=aido(g, 0, p)riy (@):

i=1 &1=51 Ea=jai=l

As 1/p < a; for all 1 <4 < d, it follows that

2 Z ]:[2&(1/17 o) NHZJ' (I/p=a)

£1=71 Egmmgq i=1

and from Jensen’s inequality we obtain

(el p)7y 7 (D))
d 00 o d (m)
<[t Yo S0 T2 el anp)ry (@)

i=l &imfr  Eg=iai=l

and
S (eli e, p)7y ()

jeNg

<Ci Y (g ep)r )qﬂzfi(l/v’ WY HQJt ai=1/p)

EENE J156 Jagga il
<Cs ¥ (el 2 p)y (@)
€eNg

which gives the right inequality in (5) and completes the proof of Theo-
rem A.2. m
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7. Proof of Theorem B. Recall that for o = (i, ..., qq4) with 1/p <

o < 1/p1, B =1~ oy, ﬁ: (ﬁla--*;ﬂd}, Fe Bg,l(fd)ﬂ Ge B&w(fd)‘

F=3. ZFkh@: G= "3 Goiy,

jeng k)ENj QENfEEvaE
and g = (81,...,84) € I¥ we have defined
d s
IFEGE=> Y Z ZF;CG 11 fh ()R (103 dgs.
JENT §aN] ke, nely =10

We are to prove that there exists a constant C' = C(a, p) such that for all
F e BE (17) and @ € Bfwo(I4),
; 8
[(E G5 < 171615

Recall that by g4, & € NU{0}, we denote the dyadic points in I, described
by (1).

There are the following formulae for inner products of one-dimensional
Haar functions:

oforkeﬁjandneﬁgwith§<j:

f P () () s = o (1) (),
e for k,n € K]:j, j>-1L
8 J=1
[ sl du = un (35 3 helsibels) ),
0 ¢==1geN;
o for k=n=1: [ hu(u)hy(u)du= ¢1(s).
Define
J(F, G 2 2 2 2 1BlGal IT Ih(ondlén(s:)
JEN] EeNT kN, neNg i<y
g
g H 6khm( Z Z |Prg: (38:)| Py (3%'))
a2 Gi=d g e e,
b H |hm (3k¢)|¢.k1(3i)'
i by ‘

As for each g € I? this is a serles with non-negative components, it can be



186 A. Kamont

rearranged as

J(F,Q)(s

=3 Z VAHE

JENT ki,

Observe that for ' = (F}) we have

(8)
(8) 1,7 < o P,

where Cy > 0 does not depend on F € B;;,i(f 4y (the proof of this statement
is a simple calculation and is omitted here). Also, set G* = (G}), G} =
I¢nll2Gy and J* = (Jg). It will be shown that

(9) 121 < Gl BN )1,

where Cy > 0 does not depend on F' € B— (I% and G € Bjieo(1%). Then it
will follow from Theorem A.2 that J(F, G) € B (I%) C C(I%), Moreover,
we will show that the series defining I(F, G)(s) is absolutely convergent for
each s € I%, and therefore it can be rearranged as

Z kafﬁ.k 8),

EENI &ENJ

I(F,G){s

with |I}] < Ji, so for I* = (I}) we will have I* € bf o, and

1158, < | 48,

and Theorem B will follow from (8) and Theorem A.2.
It remains to prove inequality (9).

For A,B,CCDwithANB=ANC=BNC=0and AUBUC =D,
let

N(A,B,C)={(3,6) e N{ x N{': ji <& fori€ A4,
=& foric Bandjfy> €& forie C{},
and
Jamcls) = Z Z D 1FlIGy | T Vs (50 6 ()
GOENABE) kR, nel, icA
>’<]:[ 5"‘31,771’( Z Z héw (Sk' |¢£‘a(g'£ ) H \hTh ‘919 Mﬁk )
6B §IR— Q EN(;, e
Setting S(j) = {£ = (&1,...,6a) : &i<giforic AUC, & > j; for i € B},

iom
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and for k € Ivg- and 7 € ]vi,

_[m forige AUB, _ | ki forig A,
g’"(ﬁ’ﬂ)h{ki forie C, b"('&’ﬂ)ﬁ{m forie BUQ,

and denoting by X the characteristic function of {t € I : h,(t) 5 0} we get

3> Wadw(s),

! keN;

Ja,po(s) =

where for k € Nj,
W, = T 2872 [] 2
£e8(j) ieAuC ieB

X | Fagk,

n 1Ge TT xmCowe) T e (890)-

=Y, e AUC i€l

=3

iﬂt

As for given k € ﬁj and £ € 5(j) we have

{77 &€ NE H X (3%, H Xk, sm ) # 0} = H Qﬂ—ji,

e AL 1€B ieB
we obtain

3 Fate 1Cueml TT xoeCsr) TT xe (o0:)

ne i€ AUC ieB

< [ ate-snase'~1/p) ( Z Faoml® T xnelond [T xxe (sm))l/p
ieR igAUC i€l

X ( Z ‘Gi{(&,ﬂ)‘p H Xn. (8kq) HXke (Sm))l/P

Weﬁa PEALC B
o Tl T ten)

=H2(e:~—m(w'-1/m( 3 E | Fati,r

eS8 ieduB MENE iEA iEB

x( S 5 Gyl T xmilon) H (ks ))

1EBUC meﬁe., igH ed

< H 2(‘5‘”5"")(1/?’"1/”)( Z Z | Fae,m [” H Xkc(ﬂn.-)) 7

iel i€AUB . e, teB

/
(Y X 1G] x:«.:(Sm))l ’

iEBUOWEﬁEi 1eB
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Using this inequality we obtain

( Z |Wk|p)1/39 < Z H 5i/2 H2;!'4:(1/2'|'1/P"1/]")-%5(1/1"-’1/?)

ke ges(g')ieAUG el
/i 1%
(T m)" (T e
kN0 nEN.0)
Writing
1
7=cgan( X EP)" g =cGan( Y e,
i E_E]A\;g ﬁeﬁg
1/
Wy =can)( 3 5F)
) el

where Wy = ||¢g[2W) and W*(4, B,C) = (W), we obtain from the last
inequality

Wy < M [ aflesi/e) TT gistei)

i€l ieC
X Z ‘?:‘CI(J ﬁ)g;( i £) H 251’(0-&‘“1/1’”) H 25;‘(1"}'1/;}““1)‘
sy aca it

Asa; < 1/p' forall i =1,...,d, this implies
Wi < MG 58 [T 2247 3 Fyyg [ 2650041 /0mo0
) i€C . £E8()) 160
and )
{8) -
IW* (4, B,O) |1 < Mi|E|S ).
As J(F,G) =34 .o Ja.B.0, We get

()] g
127 5% < MallElls - 16715
This completes the proof of Theorem 1. u
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