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Some constructions of strictly ergodic non-regular Toeplitz flows
by

A TWANIK (Wroclaw) and Y. LACROIX (Brest)

Abstract. We give a necessary and sufficient condition for a Toeplitz flow to be
strictly ergodic. Next we show that the regularity of & Toeplitz flow is not a topological
invariant and define the “eventual regularity” as a sequence; its behavior at infinity is
topologically invariant. A relation between regularity and topological entropy is given.
Finally, we comstruct strictly ergodic Toeplitz flows with “good” cyclic approximation
and non-discrete spectram.

Introduction. Let A be a finite set of at least two elements. Denote by
A* the set of finite sequences, or words, over A. It has a semigroup structure
for the concatenation of words; if w &€ A*, let |w| denote its length.

Endow A with the discrete topology; then the set 2 = A% is a compact
metrizable space with the product topology. f v € 2, n € Z and p > 1,
then let

wn,n+p)=u@un+1)...un+p—1)
denote the word of length p appearing in « at position n.
According to [Ja-Ke], an element n € (2 is called a Toeplitz sequence if
it is not & periodic sequence and satisfies the following condition:

("neZ) (Jp22) (VEeZ) nln+kp)=n(n)
Define the shift transformation 8 : 2 — 2 by Su(n) = u(n + 1). With
u € {2 we agsociate ity orbit O(u) = {§"u : n € Z} and the orbit closure
O(u) for the product topology.
Now a Toeplitz flow is a pair (O(n),S) where # ¢ £ is a Toeplitz se-
quence. Every Toeplitz flow is minimal; if it admits only one shift-invariant
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probability measure, we say it is sirictly ergodic. We refer to [Wi] for further
notation on Toeplitz flows.

The aim of the present paper is to continue the investigation of Toeplitz
flows from three points of view: strict ergodicity, degree of non-regularity,
and cyclic approximation with spectral implications. The paper is organized
ag follows.

In Section 1 we state in Theorem 1.1 a necessary and sufficient condition
for a Toeplitz flow to be strictly ergodic.

In Section 2 we study the regularity d(n) of a Toeplitz flow (O(n), 8).
We show in Example 2.2 that, perhaps surprisingly, d(n) is not a topological
invariant, A strong version of this is Example 2.3. We propose a notion
of eventual regularity (Definition 2.1} which, using [Do-Kw-La], turns out
to be “eventually invariant” for topological isomorphisms of Toeplitz Aows
(Proposition 2.1). It is shown that a Toeplitz flow with positive topological
entropy has its eventual regularity &(n) tending to zero (Corollary 2.1).

In Section 3 we construct Toeplitz flows as group extensions over their
maximal equicontinuous factor, inspired by constructions from [Wi], and
obtain such flows having good cyclic approximations. In our construction
the only eigenvalues are those located on the maximal equicontinuous factor
and the spectrum is partly continuous (Theorem 3.1).

1. Strict ergodicity. Let co ¢ A be an additional symbol, referred to
as a hole. Let A = AU{oc}, and 7 = A%, Given B € A* define the periodic
sequence B™ by letting B*(n) = B(m) whenever n = m mod |B|.

Then a Toeplitz sequence 7 € 2 can always be expressed as lim, By
in 2 where B, ¢ A*, |Br| = pn, the sequence p, is increasing, and the
following conditions are satisfied:

(1) 2o = 2, po| Prat,

(2) Bn+1(j) = By (1) whenever j = i mod p,, and By, () # oo,

(3) pr is the least period of B2®.

The sequence py,ps, ... is a period structure of the Toeplitz sequence 7 (in
the sense of [Wi]). As in {Lal] and [Do-Kw-La], we define ¢-symbols of . For
any t > 1,

Wi(n) = {nlkps, (k + L)ps) : k € Z}
will denote the set of ¢-symbols.

Now let &y = limZ,, be the compact monothetic group of (p,)-adic
integers (see [He-Ro]). The elements of &, are represented as sequences
9=1(g) € Hff_l{() -1Pn ~ 1} such that gn4; = g, mod p,. The element
1=(1,1,. ...) is a topological generator. We let 73 (g) = g +1, g € Gy

From [Wl], we know that for any w € O(n), there exists a unique
9(w) = (gn(w)) € Gy, such that for any n > 1, k € Z, we have w[—gn{w) +
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kpn, —gn(w) + (b + L)pn) € Wi,(n). Thus w is a bi-infinite concatenation of
n-symbols at special places. We also know that the map = : O(n) — G
defined by 7(w) = g(w) is onto, continuous, and 7o § = rj o 7. This defines
the maximal equicontinuous factor of the flow (O(n), 5).

Now we take the set of t-symbols of 17 as an alphabet 4, = W,(n). Let
7 be the bi-infinite sequence over 4; defined by

7(n) = nlnps, (n + 1)py).
Then since 7 is Toeplitz, so is n*), In fact, if, given w € O(x), we define
wit € 2 = A% by

W (n) = wl-ge(w) + npr, —gi(w) + (n+ 1)py)
then the map $4(w) = (ge(w), w™) is a homeomorphism of O(n) onto Z,, ¥
5(17(‘)). Moreover, on {2y, we may once again define the shift, still denoted
by §. We let &5 : Zp, — {0,1}, where et(gt) =1if gt =p; — 1 and g:(gy) =
0 otherwise. The action S, : Z,, x O} — Zp, x O(n®) defined by
S’;(gt, u) = (g + 1, 550 (1)) is a homeomorphism and

<l5to,5':§10d5,g.

Let B,C € A" be such that |B] = § € v = |C|. Then we denote by
ap(B, C) the frequency of appearances of B at positions j8 in C, in other
words,

ap(B,0) = [/ﬁ](#{ﬂ Cli8, (1 +1)8) = B, 0 <5 < [v/8]}).

Now we fix a period structure (p,) for the Toeplitz sequence # and write W;
for Wi(n).

THEOREM 1.1. The Toeplitz flow (O(n), S) is strictly ergodic if and only
if for any 8 > 1 and B € W, there exists a number v(B) such that
ap(B,C) — v(B)
uniformly in C € Wy as t — oo,
Proof, First we prove the “if” part. For w € A* define
[w] = {u & 2:u[0, |w]) =w}
It suffices to show that for every w € A™ the limit
=
1m Zl[ 1 Sﬂﬂn)
J==U
exists uniformly in n (see [Ox]). Given w and € > 0 we choose s such
that |w|/ps < &/8. For any s-symbol B denote by N(w, B) the number of
occurrences of w in B.
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Now we count the occurrences of w in n[n,n + k). First observe that
s-symbols B appear there at positions jp, for at least [k/ps| — 1 values of
4. Although they occur with frequencies depending on &, it follows from
our assumption that the frequency of each B differs little from v(B) if
is sufficiently large. We choose ko such that for k > kg the difference never

exceeds §, where
-1
( > N(w,B) ) :
Ps g

Without loss of generality we may also assume 6p,/ko < €. It is now clear
that w appears in n[n,n + k) at least

> (k/ps) = 1)((B) ~ §)N(w, B)
B

times. The occurrences that are not taken into account are either those
overlapping two consecutive s-symbols or those appearing at the extremities.
Their total number does not exceed [k/ps|lw| + 2p,.

Consequently,
1 2
(5 1) Set®) - o5w.5)
: B
59 ' 1 lw] 2
<22 Nw(8™n) < == 3 (w(B) + )N (w, B) + — + ff
=0 Ps g Ps

which, by the choice of § and kg, implies that for k& > kp the middle term
differs from

P 3
by less than ¢. This is a uniform Cauchy condition which clearly ensures the
required uniform convergence.
The “only if” part follows readily from the skew-product representation
given by &; : O(n) — Zy, x O(n'™), In fact, the strict ergodicity of the
product implies that of O(n)) and B is a single letter in n®.

As an immediate corollary we obtain the following criterion of strict
ergodicity.

CoroLLAry 1.1. If ap(B,C) = ap(B,C") for any B € W, and C,C" €
Wis (t=1,2,...) then the flow (O(n),S) is strictly ergodic.

As an application of Corollary 1.1 we propose the following construction
of strictly ergodic flows.
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EXAMPLE 1.1. Let A = {0,1}. We will define three sequences of words,
B, € A* and Cp,C;, € A*, with B, satisfying (1)-(8) and such that n =
lim,, B2 is a Toeplitz sequence with Wy(n) = {C;, C;} for any t.

We need the following notation. If B € A* and w & A* is a word whose
Jength coincides with the number of holes in B then we denote by B(w) the
word constructed from B by filling in its successive holes by the successive
letters of w.

Now we fix a sequence r, of positive integers. Let By = Oooool, O =
B1(01), €] = B1(10). Assume that By, Cy, and C}, have been defined. Then
define

By = Cp BB Cl,
Coy1 = CrCir G Y,
GrH-l = OT,,O;"“O;" O;:u
It is easy to check that conditions (1)~(3) are satisfled and the sequence
= lim,, BS° is not periodic. It is easily seen that the assumptions of Corol-
lary 1.1 are satisfied and therefore the flow (O(n), S) is strictly ergodic.

2. Regularity and topological entropy. The regularity of the se-
quence 1 was introduced in [Ja-Ke] as follows.

Let B, be a sequence of words in A* associated with n, satisfying con-
ditions (1)-(3) of the preceding section. Then, for any n > 1, let

1 , , .
dn(n) = 5‘(#{@ : Bn(i) # oo, 0 <4 < pn}).
n B
It is easy to deduce that the sequence dy,(n) is strictly increasing. Thus it has
a limit, denoted by d(n), in (0,1]. This is the regularity of the sequence #:

d(n} = limdn ().

A Toeplitz sequence 7 is called regular if d{n) = 1.

ExampLE 2.1. Let us go back to the construction of Example 1.1. We
can see that py = 4, Py = |Buaa| = (2rn + 2)| By, di(n) = 1/2, and
2t 2rndn(n) 2(1 ~ du(n))
dnp1 () = s dn(m) + =515
50

1~ dps1(n) = (1= da(n)}) (1 - rni- 1)'
Thus

wan=31 )

ne=l

Here we have d(n) < 1 if and only if 3, 1/r < cc.
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Remark 2.1. If n is Toeplitz, then O(n) contains many Toeplitz se-
quences different from n. However, it can be proved rather easily that for
any 77 € O(n) which is Toeplitz, d(7) = d(n). Thus, in particular, it makes
sense to speak of the regularity of a Toeplitz flow.

Recall that if 5 is regular, then it is strictly ergodic and measure-theoreti-
cally isomorphic to its maximal equicontinuous factor, which is the group of
(pt)-adic integers (see [Ja-Ke], [Wi]).

DEFINITION 2.1. The eventual regularity of the Toeplitz sequence n glven
a period structure p; is the sequence é(n) = (d(n'V),d(n‘®),...).

We say that two flows (O(n), §) and (O(w), §) are topologically isomor-
phic if there exists an invertible homeomorphism f : O() — O(w) such
that fo§ = So . In [Do-Kw-La] (see also [Lal]) the following isomorphism
criterion is proved for Toeplitz flows which are not necessarily over the same
alphabet:

' Two Toe_pl?itz flows (O(n), S) and (O(w), S) are topologically isomorphic
if and only if for some t > 1 there is o Toeplitz sequence & € O(w) (recall
that O(w) = O(@) from minimality) such that

n® = g
modulo a bijective map from Wy(n) to W,(@).
From this and Remark 2.1 we obtain
‘Proposrrion 2.1. If (O(n), S) and (O(w), 8) are topologically isomor-
phic, then one can find a choice of period structures such that the corre-

sponding eventual regularities are eventually equal, 1.e. there exists some iy
such that d(n'®) = d(w®) for any ¢ > 1.

Herr—f is a simple example which shows that the regularity d(n) is not a
topological invariant and illustrates the above proposition.

EXAMPLE 2.2. We take the same construction as in Example 2.1 except
that we start with the following slight modification:
By = 00c0l, C} = B;(0) = 0001, Ci = By (1) = 0011,
Tl'len de'note by w the associated Toeplitz sequence. It ig easy to compute,
still calling 7 the sequence constructed in Example 1.1, that
1= d(w) = 3(1 - d(n)).

Then if 37 1/rn < oo, both sequences are non-regular and moreover their
regularities are different. But it is easy to see that the associated flows are
‘E’opologically isomorphic by the above isomorphism criterion with ¢ = 1 and
w = w. Thus, the regularity is not a topological invariant. On the other hand,
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it easily follows from Proposition 2.1 that if G(n) and O{w) are topologically
isomorphic and d(n) = 1, then d{w) = 1.

In view of this example, we can easily understand that it is possible, given
finitely many rational numbers 0 < g1 < ... < gk < 1, to construct Toeplitz
flows (O(74), 9), ..., (B(n*), §) with regularities g1,..., o5 respectively and
all being topologically isomorphic (we could for example construct Toeplitz
flows for which the regularity appears as an infinite product of rational
numbers; see [La2] for further information about such products).

In the following example we construct a countable family of Toeplitz
flows that are topologically isomorphic and whose associated family of regu-
larities is dense in the unit interval. Theorem 1.1 will be used to verify strict
ergodicity.

ExamPLE 2.3, This example is based on “Toeplitz sequences constructed
from subshifts”, due to S. Williams (the reader is referred to Section 4 in
[Wi]}. Our construction differs slightly from [Wi] in that we allow repetitions
of words of the subshift ¥ used to fill up the holes in the p;-skeleton of 7.
This does not influence the properties of the constructed flow so we use
freely the results of Section 4 of [Wi].

Let 2 < py < py < ... he such that p, | ppia. Put pg =1, Ay = pn/Pa—1,
and assume A, odd. For two sequences of positive integers k = (k) and
k' = (kl), we write x ~ &' if the sequences coincide for some n onwards.
Now for all k such that

(a) 25 bp < Ap — 2,
(b) #y, is even,
we will construct 0-1 Toeplitz sequences 1 = 7' such that

(i} 7 is a Toeplitz sequence constructed from the subshift ¥'={01°°, 10},
(ii) n is strictly ergodic,
(idi) d(n) = limy, dy, where dy = K1/ M, Gng1 = dn + (1= dn)Bnr1 /A,
(iv) (O(n"), 9), (O(n*),S) are topologically isomorphic if (ky} ~ (x},).
We construct by induction. First let By = bgby ... by, .1 where

bob1 e bm"wg = 0101.. .0, bm-—l =L, = bmmg =00, bm—l =1,

Then put ¢y = B (0101...010) and C] = B1(1010...101) (this means
that the holes of By are filled in consecutively with the two words of length
A = &1 in ¥). For the inductive step assume B, Cpn, and ¢}, have been
constructed. Then let By = vovy ... va,,, -1 where

%0+ Vgnys -3 = CaChCnCly. .,
1),;,“%,1_1 =, ., = 'U)\H_H_z = Bn, U)\n-rl*l = C’,:l
Then define Cpq = Bp41(0101..,010) and C} 1y = Bpya(1010...101).
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We have |Cy,| = pn, and for every n the only n-symbols are C,, and C/,.
Since the «, are even and the A, — , odd, C, appears at positions jp,,
with frequency

1 1
Vp = ap(am On+1) = "2_(1 + by +1)
n

in Cpyy and with frequency vj, = 1 —vp in (11 By the same token C,
appears at these positions with frequency ¥, in Cp1 and v, in C b Now
let v, 5 and r/n , denote the frequencies of C’n (at positions gpﬂ,) in Crap
and Cy b, respectlvely We have

/ ! / !
Vo, byl = Vn bV -+ Vn,k:yk’ V*n.,.‘c-\—-l = Vp, k¥t V-n,,icyfﬂ
and check by induction that

y ml@+__;L_~) g, m1@~ ! )
A L WU VA L L N WS Wy

Since A, > 2, we obtain
limvp . = li’?w’n‘,‘, =1/2.

Now the assumption of Theorem 1.1 is verified and (ii) follows.
Checking (i) and (iii) is easy and clearly (iv) follows from the criterion
of [Do-Kw-La]. Finally, we have

1—d(n*)=ﬁ(1—x)

n=1
To get the denseness of the associated regularities d(n*), it suffices to choose
sequences (ky ) and (py, ) such that

. - K4
Il (0-5) -

which simply means > &,/A. < 0o, and next construct all possible se-
quences &' that are eventually equal to # and satisfy the conditions (a)
and (b) for the chosen (p,). The denseness is then obtained using classical
arguments on infinite products (ef. [La2]).

We recall that given any u € £2, the topological entropy h(u) of the flow
(O(u), S) is equal to lim, n~*log N,,, where N, is the number of distinct
words of length n in 4. For the Toeplitz sequence 7 it is not hard to see that

H#Wy < Ny, < pyoy (#Wyoq )PP
which yields the following entropy formula (appearing in [Lal] and [Do-Kw-
La)):

hr) = lin — Log(#W,(1).
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ProOPOSITION 2.2, If 1 is a Toeplitz sequence, then

h(n) < (1~ d(n)) log (#4).
Proof. Obviously
#Wi(n) < (AP (L= ()

so the assertion follows immediately from the entropy formula above.
The following is a corollary to Proposition 2.2.
CoRroLLARY 2.1. If n is o Toeplitz sequence and h(n) > 0 then
d(n™) — 0.
Proof We have

h(n®) < (1~ d(n™)) log (#W.(n)).

The entropy formula applied to the Toeplitz sequence n(*) over the alphabet
A, implies h(n™) = p;h(n) (alternatively, the same is obtained from [Ne]
with the help of the isomorphism @;). This gives

-1
1—%@»mwwmwmwwzwﬂim%mm0 S,

which means d(n{*) — 0.

3. Cyclic approximation of Toeplitz flows. In this section we exploit
William’s “Toeplitz sequences constructed from subshifts” to obtain systems
isomorphic to group extensions. This will enable us to construct stnctly
ergodic Toeplitz flows with partly continuous simple spectrum.

Let T be an invertible measure preserving transformation ({automor-
phism) of a standard Lebesgue probability space (X, u). We denote by
the point partition of X.

According to Katok and Stepin (see e.g. [Co-Fo-Si], Chapter 15}, an
automorphism 7" admits cyelic approzimation (c.a.) with speed f(n) if there
exist measurable partitions £, = {Cp,..., Ch,—-1} — € and automorphisms
T, permuting cyclically the elements of £, such that

by =1
N WTC; & TuCy) < flhn).

j=0

If T admits c.a. with speed 6/n, § < 1, then it has simple spectrum ([Co-
Fo-Si]). The c.a. with speed o(1/n) implies rank one; moreover, if T' admits
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c.a. with speed 1/n” then the spectral measure is concentrated on a set of
Hausdorff dimension not exceeding 1/r (see [Iw]).

THEOREM 3.1. Let p1 < pa < ... be positive integers with py |pyyq and
assume that there exists s > 2 such that, for every k 2 1,
s°|p.  for all sufficiently large &.

Let f(n) > 0 decrease to zero. Then there exists a strictly ergodic 0-1
Toeplitz flow which admits c.a. with speed f{n) and has partly continuous
spectrum with the only eigenvalues of the form exp(2mik/py) (arising from
the maximal equicontinuous factor).

Proof. Let YV be the shift orbit of a strictly s-periodic sequence, e.g.
10...0°. The number of words of a fixed length never excceds g in Y, We
construct a 0-1 Toeplitz sequence n by induction.

Step 1. Choose p,, with 8|pn, and find an integer 0 < p} < pn, — 1
such that (s,p}) = 1. Now fill up the positions —1,0,...,pn, — p} — 2 with
any sequence of 31 = p,, — P} symbols 0,1 using both 0 and 1. Then repeat
the pattern with period py, to obtain the p,, -skeleton of . The density of
the skeleton is equal to dy = (Pn, — p})/Pn, 50

pfl. = (]' - dl)pﬂ,:
is the number of holes in each py,-period. Finally, let

0<e < f(Bpm)/Q.

Step 2. Choose an integer 8y > s with (s, f3) = 1. Fill up the holes in
the B2 consecutive py,-words

"?{“Pmso), W[O,Pm)= vy 'f?[(ﬁz - 2)pm, (162 - 1)Pn1)

using all possible words of length p} in V' (words may be repeated). Now
repeat the pattern with period pn,, where iy is chosen sufficiently large to
ensure § | Az, where Ag = py, /Py, , and Bop) /Pn, < €. We thus obtain the
Pngy-skeleton of n of density dy = dy + (1 -~ d1)fz/ra. Clearly dy - dy < &1
and the number of holes in each py,-period equals
vy = (1~ do)pa, = pi(Ag ~ fBa)
50 (s,ph) = 1. Finally, we choose g, > 0 such that
&y +€2 < f(spnl)/zz Eg < f('sp'na)/g'

It is clear how to continue the process by induction, At the end of the
ith step we choose £; > 0 to satisfy

g1t e < fopn,)/2
f2t... e < f(spﬂz)/az ceny 85 € f(‘gpm.)/z'
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We have g|A; where ); = Pni/Pni_,- The density of the pn,-skeleton of 5
is di = di—y + (1~ di—1)B:/ i, where §; is the number of words of length
p;1 in ¥ used-—with possible repetitions—to construct the D -skeleton.
The condition (s, 3;) = 1 implies (s,p}) = 1, where

P =1pi_y (N — Bi)

is the number of holes in the p,,-skeleton. Moreover, d;y; — d; < &; s0
d—d; £ f(sp;)/2, where d = lim, d;.

Denote by (¢ the compact group of (p,,)-adic integers. Clearly, G is
isomorphic (as a topological group) to the group of (p;)-adic integers so
to simplify the notation we omit the double subscripts. G is the maximal
equicontinuous factor of O(n) and according to [Wi], Section 4, there is a
bi-measurable mapping ¢ of G x ¥ onto O(n) such that So¢ = ¢poT, where
T is the piecewise power skew product defined by T{g,y) = (g + 1, $99)y),
with 8(g) = 1 if 0 € Aper(g) and 8(g) = O otherwise (where Aper(g) is the
set of those n € Z for which the condition defining a Toeplitz sequence is
not satisfied for w € 771(g) at n).

In other words, T is the group extension of the rotation (G, ;) by means
of the measurable cocycle ¢ : G — Z, = Y defined by ¥(g) =0 if g € n(C)
and ¢(g) = 1 otherwise. Here, C = {w : 0 & Aper (g(w))}. More precisely,
ktGi={g€G: g1 =...=g; =0} and let ki, ..., ky be the places where
the holes appear in the p;-period of n. Now

\x(C) = (U (G + ko).

i =1

Moreover, ¢ establishes a one-to-one correspondence between the ergodic
invariant measures on (O(n), S) and the ergodic T-invariant Borel measures
on G x Y; for any fixed invariant measure, ¢ becomes a measure-theoretic
isomorphism of the two systems ([Wi], Theorem 4.5).

In particular, the strict ergodicity of the flow (O(n), §) will follow once
it is shown that there is a unique T-invariant measure on G x Y. Therefore,
by & well known result of Furstenberg [Fu], to get the strict ergodicity, it
suffices to prove that T is ergodic for the product measure u on G x ¥ (with
Haar measures on G and Z,). Consequently, as cyclic approximation with
sufficiently good speed implies ergodicity (f(n) < 8/n with § < 4 will do,
see [Co-Fo-8i)), the strict ergodicity will automatically follow from the rest
of the theorem.

Now we prove that the skew-product group extension (G x Y,u, T) ad-
mits c.a. with speed f(n). For i = 1,2,..., we define the partition §; =
{Co,...,Cep-1} of G x Y by letting Cp = G; x {0} ‘and C; =T/ Cp with
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Ti(g,y) = (g+1,y + vi(g)) where

bi(g) = { 1 if g € Uity (Gi + k;),
0 otherwise.
Since the number of G';-cosets on which %:(g) = 1 is equal to p/ and (s, p) =
1, we can see that T; has period sp; and permutes cyclically the elements
of &. It is now clear that £ — e. To estimate the approximation error we
observe that
sp;—1

Y WTC; AT =2p{ # i} = 2(d ~ di) < flapy).

J=0

It remains to prove that ¢ is a weakly mixing cocycle, i.e., the only
eigenvalues of T are those occurring in the rotation ¢ — g -+ 1 of G. These
are the numbers of the form exp(2iwk/p;). Our argument will be similar
to that of Keane (Lemma 7 in [Kel]). Suppose ¢ is an eigenvalue. Then it
corresponds to an eigenfunction of the form f(g)x(y), where f € L2(Q)
(in fact, f € L(G) by ergodicity) and x is a character of the finite cyclic
group Z, = Y. It is now clear that ¢* corresponds to the eigenfunction
Fla)x*(y) = f*(9) € L*(G). Since T acts as the ergodic rotation by 1
on L(G), we obtain ¢* = exp(2imk/p;) for some k and 7. Therefore, ¢ =
exp(2imm/sp;) for some m & Z. Now we write { = (exp(2izm/p; )41/,
By construction, s|A;4; so ¢ is an eigenvalue of the rotation g —~ g+ 1
which ends the proof of the theorem, ’

Remark 3.1. If s = 2 then the Toeplitz flow constructed above is (mea-
sure-theoretically) a Zj-extension of the rotation (G, 7). Therefore, by a
result of M. Lemanczyk ([Le]), if f(n) = o(1/n?) then our Toeplitz flow
Is isomorphic to a (generalized) Morse flow. With some care Lemariczyk's
proof can be improved to show that o(1/n) implies Morse.

As shown. in [Do-Kw-La), there exist strictly ergodic Toeplitz flows with
po.sltlve entropy; this implies the presence of an infinite Lebesgue multi-
plicity in the spectrum. On the other hand, Toeplitz flows constructed in
'l?heorem 3.1 are strictly ergodic and have simple spectrum with a highly
smg.ula,r, but non-trivial, continuous part. Moreover, there exist gtrietly er-
godic non-regular Toeplitz flows with purely discrete spectrum ([Dc;—lw],
Remark 4). This suggests the following questions. |

QuesTioNns. Can a strictly ergodic Toeplitz flow have an irrational eigen-
fra.lue?lDo all eigenvalues arise from the maximal equicontinuous factor? Is
it possible to construct a non-regular strictly ergodic Toeplitz flow measure-
theoretically isomorphic to its maximal equicontinuous factor?

[Co-Fo-8i]
[Do-Iw]
[Do-Kw-La
[l

[He-Ro]
[tw]

[Ja-Ke

[Ke]
[Lal]

[La2)
e)
[Ne]

[Ox]
(Wi

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF WROCLAW
WYBRZEZE WYSPIANSKIEGO 27

50-370 WROCLAW, POLAND

E-mail: IWANTK@MATH.IM.PWR. WROC.PL

Strictly ergodic non-regular Toeplitz flows 203

References

L P. Cornfeld, 8. V. Fomin and Ya. G. Sinai, Frgodic Theory, Springer,
1982.

T.Downarowicz and A. Iwanik, Quasi-uniform convergence in compact
dynamical systems, Studia Math. 89 (1988), 11-25.

T. Downarowicz, J. Kwiatkowski and Y. Lacroix, 4 eriterion for
Toeplitz flows to be isomorphic and applications, preprint.

H. Furstenberg, Strict ergodicity and transformations of the torus, Amer.
J. Math, 83 (1961), 573-601.

E.Hewitt and K. A. Ross, Abstract Harmonic Analysis, I, Springer, 1963.
A. Iwanik, Approzimation by periodic transformations and diophantine
approzimation of the spectrum, preprint.

K. Jacobs and M. Keane, 0-1 sequences of Toeplitz type, 7. Wahrsch.
Verw. (Gebiete 13 (1969), 123-131.

M. Keane, Generalized Morse sequences, ibid. 10 {1968), 335-353.

Y. Lacroix, Contribution & éiude des suites de Toeplifz el numération en
produit infini, Thesis, Université de Provence, 1992.

—, Metric properties of generalized Cantor products, Acta Arith. 63 (1993),
61~77.

M. Lemadazyk, Ergodic Zo-eztensions over rational pure point spectrum,
category and homomorphisms, Compositic Math. 63 (1987), 63-81.

D. Newton, On the entropy of certain classes of skew-produet iransforma-
tions, Proc. Amer. Math. Soc. 21 (1969), 722-726.

J. C. Oxtoby, Ergodic sets, Bull. Amer. Math, Soc. 58 (1852), 116-136.
8. Williams, Toeplitz minimal fows which are not wniquely ergodic,
7. Wahrsch. Verw. Gebiete 67 (1984), 95-107.

UNIVERSITE DE BRETAGNE OCCIDENTALE

- PACULTE DES SCIENCES ET TECHNIQUES
DEPARTEMENT DE MATHEMATIQUES

6, AV. V. LE GORGEU

20275 BREST, FRANCE

E-mail: LACROIXGKELENN-GW. UNIV-BREST. FR

Received November 2, 1993 (3183)
Revised version February 2, 1994



