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The cancellation law
for inf-convolution of convex functions

by

DARIUSZ ZAGRODNY (Léds)

Abstract. Conditions under which the inf-convelution of [ and g
fOg(e) = inf (F(y)+9(2))

hag the cancellation property (ie. f O h = g A implies [ = g} are treated in a con-
vex analysis framework. In particular, we show that the set of strictly convex lower
semicontinuous functions f : X — R U {+oc} on a reflexive Banach space such that
By | mroo £ (=) /||2]| = o0 constitutes a semigroup, with inf-convolution as multiplication,
which can be embedded in the group of its quotients.

1. Introduction. Let X be a real locally convex topological vector space
and f,h: X — RU{+o0} be proper functions, i.e. there exist points where
f and h ave finite. The inf-convolution of f and h at € X is defined by

¢EY fOh() = f (F(5)+h(a))

Many properties of inf-convolution are already known (see e.g. 2, 8]). They
have very deep consequences in a variety of noulinear problems (see {1, 2,
5], see also the Moreau-Yosida approximation); moreover, they seem to be
useful tools in integration of subdifferentials (see e.g. [15]). Howsver, the
cancellation property for inf-convolution has not been obtained so far for
the simple reason that it is not true in general. A simple counterexample for
strictly convex functions has heen communicated to me by S. Rolewicz.

COUNTEREXAMPLE. Let f,g,h: R — RU {-00} be as follows:
f(t) = exp(t), g(t) = exp(2t), h(t) = exp(~t) for every t € R.
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It is easy to calculate that f O h{z) =0 and g 0 h(z) = 0 for every z € R.
Thus
fOh=glOh doesnot imply f=g.

This counterexample shows that the cancellation law is not valid in the
set of all strictly convex functions on the real line. Thus the problem arises
of what properties of functions guarantee the cancellation property. In this
paper we provide such conditions (see Theorems 4.2, 4.3, 4.6), but it is still
an open question if they are necessary. The conditions, when expressed in
set-valued analysis language, mean that the subdifferential mapping 6h is
surjective and the domains of the multifunctions 8 f, dg are sufficiently dense
in the domains of f and g, respectively. If X is a reflexive Banach space and
the functions involved are convex and lower semicontinuous then the Ky
Fan inequality allows us to reduce the assumptions on h to the following
one: h is strictly convex and h(z)/||z|| — oo as ||z|| — co. If X i a Banach
space and the functions are convex and lower semicontinuous then one can
assume that b is uniformly convex.

Tt is also of interest that we get a new characterization of reflexivity of Ba-
nach spaces (see Proposition 3.5). Namely, if for every lower semicontinuous,
convex, proper function f : X — R U {+oco} the condition f(x)/| x| ~ oo
as ||z|| — oo implies that the operator 8f is surjective, then X is reflexive.

2. Some facts from convex analysis. The differential properties of
convex functions can be quite strange even in finite dimensions (see e.g. [10,
13, 17]). When we are concerned with convex (even continuous) functions on
infinite-dirmensional spaces we encounter objects which are nowhere Fréchet
differentiable or nowhere Gateaux differentiable (for beautiful examples on
I*,1° we refer to Examples 1.14 and 1.21 of [9]). Additionally, the infimum
operation is involved which destroys differential properties radically, so it is
hard to expect that the “classical differential calculus” can handle our ob-
jects. Luckily, there is a subdifferential calculus for convex functions, which
is our crucial tool in obtaining the cancellation property. Below we gather
some facts on subdifferentials; more details can be found in the references
given below.

DermaTioN 2.1, Let X be a topological vecior space and f : X —
RU {—00, 400} be a convex function which is finite at = € X. A continuous
linear functional z* € X™ (X™ stands for the dual space) is sald to be a
subgradient of f at ¢ if

fly) - f(z) 2 (¥, y ~z) forevery y € X.

The set of all subgradients of f at = is called the subdifferential of f at »
and is denoted by 8f(z).
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Convex functions are known to have nice properties relating to minima
(sce [2, 6, 8]). Below we cite two of them.

THEOREM 2.2. Let X be a topological vector space and f : X — RU{+oo}
be a convex proper function (i.e. f is finite at least at one point). Then f
has a global mindmum at © € X if and only if 0 € 87 (z).

Tueonim 2.3. Let X be a reflexive Banach space and f @ X — RU{+o0}
be a lower semicontinuous convex function. If M C X is a nonemply conves
closed bounded subset and M N dom f 5 B, where dom f 1= {z | f(z) < oo},

then there is my € M such that
Jm) 2 f(zy)  for every me M.

Proof. The method of proof of Theorem 25.1 of [6] works in this
case. m

'The next results are counterparts of known classical results for nondiffer-
entiable functions. The first is the obvious part of the Moreau—Rockafeltar
theorem (see [8]).

THEOREM 2.4. Let X be a topological vector space and Hog: X —-RU
{+0c0} be conven functions, finite at z € X. Then

0f(z) + 0g(z) S (f + 9)(x).
The lemma below relates to the density of the domain of the subdif-
ferentials in the domain of a given function. It can be obtained directly,
repeating the method of proof of the Brondsted-Rockafellar theorem {see

e.g. Theorem 3.18 of [9]). However, in order to avoid a long argument, we
just indicate that it is a consequence of a mean value theorem.

LemMa 2.5, Let X be a Banach space and g+ X — RU{+cc} be a conves

lower semicontinuous function, finite at a € X . Then there are (23) C X
and (x}) C X* such that

k.hf{‘:u Ty = a, ;}iﬂ,g(m’“) =g(a) ond z} € dg(zy) for every k € N,
Proof. This is a simple consequence of Theorem 4.3 of [16] and Propo-
sition 6.5.1 of [3] (see also L1, 12]), w
Lemina 3.6 of (5] can be simplified to the following one when Proposition
6.5.1 of [3] is taken into account,

LEMMA 2.0, Let X be a Banach space and f, b : X — RU{+4-o00} be conver
proper lower semdcontinuous functions. If the inf-convolution is ezact ot z,
e there is T ¢ X such that the infimum in (1.1) is atteined at § and
E=x 7, then

o(f T h)(z) 8 (7) N OA(Z).

It is of interest that the converse inclusion also holds.
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LEMMA 2.7. If X be a Banach space and f,h: X — RU{+co} be proper
lower semicontinuous conver functions with f O h finite at © € X. Then for
every y such that
(2.1) f O h(z) = f{) + h(z ~ )
we have

8f(y) NBh(z ~y) S B(f O A)(z).
Proof Let y satisfy (2.1) and y* &€ 8f(y) N 0h{z — y). We have
- fy) 2 Whe-w
and
hu—2)~h(z—y) =y (u—2)—(e—y)} forallu,ze€ X,
hence
fz) +h(u— 2} 2 fly} + bz — ) + " u - o),
which implies
FORu)~ fOR(z) = (y*,u—2x),
soy* e 3(fOR)(u) m

In [3] (see Theorem 3.1.1) we find the Ky Fan inequality, which remains
true for the weak topology when X is a reflexive Banach space.

THEOREM 2.8. Let K be a nonemply, weakly compact, convesr subset of
o reflevive Banach space and ¢ : K x K — R be a function satisfying

(1) Vy € K, z — ¢(x,y) is lower semicontinuous with respect to the weak
topology,

(2) Vz € K, y — ¢(z,y) is concave,

(8) Yy € K, ¢(z.y) <0.

Then there exists ¥ € K which is o solution to
Yye K, ¢(%,y)<0.

3. Auxiliary results. Let us recall that a proper lower semicontinuous
convex function h on a Banach space X, h: X — R U {+oc}, is said to be
stricily convez if for all a, b € dom h with a 5 b we have

hta+ (1 - t)b) < thia) + (1 — t)R(b)
for every ¢ € (0,1), and h is said to be uniformly convex if for every € > 0
there is § > 0 such that

lle — B|| > & implies

a+b h{a) + h(b) — &lla — B||
JEDPE

for all a,b € domA.
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The lemma below tells us that if A is uniformly convex then the set
arg min h consists of only one point which is not “too far” from the origin.
Additionally, the operator dh is then injective and surjective.

LeMMA 3.1. Let X be o Banach space and h : X — RU{+o00} be a proper
lower semicontinuous uniformly convex function. Then

(1) 1'11"Jcl||m||_..,¢,o h(a")/HxH = 0Q,

(2) there is exactly one point, say x € X, such that h(z) = infx h,

(3) for every proper convex lower semicontinuous function f : X —
RU {+o0} and every © € X there ewists y € X such that

FOh(z) = fy) + bz~ y),

(4) for every x* € X there is z € X such that z* € dh(x),
(8) for all 2,y € X with z %y we have Bh(z) N HA(y) = 0.

Proof (1) By Lemma 2.5 there are ©q € X and z¥ € X* such that
xg € 8h(mg), ie.

(3.1) h(z) — h(zo) > (o), — mo) for every z € X,
hence
liminf h{z)/||z|| > ~iz|| > —co.
el oo
Define
a = lim inf h(z)/||z||
|z]|—c0
and choose a sequence (x,) C X such that lim,-,ec h{@n)/|[zn]| = @ and
im0 ||, || = o0. By uniform convexity of h, there is C > 0 such that
h(27 (Zn + 2im)) < h(zn) + b(zm) _ C“mn |
1274 @n +2m)] T @+ 3mll lon — m||
for every fixed n and m large enough, which forces, letting m — oo, that
a<a-C thus a = oo,

(2) Now, let (y,,) C X besuch that h(y,) — infy h. It follows from (3.1)
and part (1) that infx h € R. Now assume that for some £ > 0 there is a
subsequence (Yy,) G (yn) such that ||[yn, —¥ny,. || 2 £ for every & € N. Since
h is uniformly convex, there is & > 0 such that

€< |y, ~ T | < 51 (h(.lj'n.h) 4‘2?1(%;“44)
which is impossible since the right hand side tends to zero. Hence (y,) is
a Cauchy sequence and converges to some point z &€ arg minh. Since h is
uniformly convex there can only be one guch point.

(3) is an immediate consequence of (2) and the fact that if f is convex
then the function y = f(y) + k(2 ~y) is uniformly convex for every ¢ € X

- i]}.’l{f h) for every k € N,
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(4) Take z* € X*. By (2) and (3) the set argmin(h(-) — {z*,}) is
nonempty; let z belong to it. We have
h(y) — (&*,y) = h(z) — (e*, &) forevery y € X,
so z* € Oh(x).
(5) Suppose that there are #,y € X with © = v and 8h(z) N Sh(y) # 0.
Hence there is y* € 8h(z) N 8h(y) such that

B2 e +y) - hle) 2 27 @ +y) - @),
h@ Mz +9) — hy) 2 (0,27 (2 +y) ~ 0.
Thus h(27* (z + 1)) 2 27 (h(z) + h(y)), which is impossible. w
Assertion (3) of Lemma 3.1 is nothing but the statement that the in-

fimum in (1.1) is always attained when h is uniformly convex. Below we
provide a criterion for that, relaxing the assumption on h.

DEFINITION 3.2. Let X be a Banach space and f,h 1 X -~ R U {400}
be proper lower semicontinuous convex functions and a > 0. The function
f is said to be a-subdifferentially dominated by h if for every pair {(y,¥") €
X % X* with y* € 8f(y) there is r € R such that the set S(h,r) := {z € X'|
A(z) < r} is nonempty, bounded and for every © ¢ int S(h,r) with hl{z) =r
there is zg € S(h,r) such that

~Dh(z; —(z — m0)) > (y™, 2 — o) + allz -z,

where
h{x — t(z — z¢)) — h(z) .
t

Dh(z; ~(z — 20)) = int

Remark 3.3. Note that if h: X -+ RU {400} is a proper lower semi-
continuous convex function such that

lim A(z)/||z] = oo

el —eo

then every proper lower semicontinuous convex function f : X - RU{~+co}
is ce-subdifferentially dominated by h for every o = 0,

Indeed, let y* € 8f(y). Assume that h(zg) € R and choose R > 1 such
that .

h(z) — h(2o)
llz = 2ol
Let r == (jy*|| + o+ 1 + [h(zo)|)R and h(z) = 7. If ||z — o[l > R then

h(z) ~ h(zo)

|z ~ o

> || +a+1 for every z € X such that ||z -~ xol 2 R.

2yl + e+
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otherwise
M) = hao) | Ry + o+ 1)+ hz)| ~ h(ag) _ |, .
FErT e ol Zlrh+ats

By convexity we get

it Me =t~ 0) ~ b)) — h(a)
te(0,2] tlz — o - [z = 2ol

thus

= DPh(z;~(@ = 20)) 2 (|ly*]| + @ + 1) ||z — mo.
THEOREM 3.4. Let X be o reflexive Banach space and Hh: X —RuU

{+oc} be proper lower semicontinuous conver Junctions and « > 0. If f is
a-subdifferentially dominated by h then

(1) for every (y,9*) € X x X* with y* € Of(y) there is r € R for which
S(h,r) is bounded, and for every I € B(0,a) there isz € S(h,r) such that
y* + 1" € Oh(x), where B(0,a) = {z* € X* | |z*| < a},

(2) if & > 0 then fO h(z) > ~oc0 for every z € X, and for every u such
that fLIA(u} is finite there exists y € X such that fOh(w) = Fy)+h(u—y)
i.e. the inf-convolution is exact at every z € dom f O h.

Proof Take any y* € 8 f(y). Since f is a-subdifferentially dominated by
h, thera exists r € R such that the set K := S(h,r) is nonempty, bounded,
convex and for every = & int K with h(z) = r there is zp € K such that

~Dh(@;=(z~z0)) > (y*,2 — 2o} + al|z — .

Take any I* € B(0, ) and define ¢: K x K — R by
olu,v) = (Y + 1" v —u) — h(v) -+ h(u) for (u,v) € K x K.
By Theorem 2.8 we get T € K such that
(3.2) "+ v~ <h(v)— h(®) forevery ve K.
I y* 41" & OA(Z) then there is ¥ € X such that
"+ 1" 7 ~7T) > h(T) — h(7T),

hence for vy i= #T 4+ (L - 8T, t € (0,1], we get

H

W+ 07 -7 > bo) — h(E) 2 A NE,

Thus, if either h(F) < r or T € int K, then by (3.2) we get a contradiction
for ¢ > 0 small enough, If (%) = r, T & int K, then there is Fy € K such
that

(3.3) ~DWME;—(F ~To)) > (", T —%o) + a|F — T

On the other hand, by (3.2) we get

(" + 1,5 — %)) < DMZ; —(F — %))



icm

278 D. Zagrodny

hence
alffy | + ", 7~ ) 2 ~Dh(Fi (3 ~ 7))
which contradicts {3.3). Thus y* + [* € 8A(Z) and (1) is proven.
Now let o > 0 and z € X. If there is RB(z) > 0 such that

. Oh{z)= _ inf + h{z—y)),
(3.4) FOMe) = in (F(6)+he-1)
then taking into account Theorem 2.3 we infer that the infimum in (1.1)
is attained. So consider the case when for some sequence (yn) C X with
lynl = oo the sequence (f(yn) -+ h(z — yn)) I8 bounded from above. It
follows from Lemma 2.5 that 8f(y) 5 @ for some y € X, so let y* € 6 f(y).
By (1) there is r € R such that S(h,r) is weakly compact and for every
I* € B(0,a) we have a point Z, € S(h,r) so that y* + [} € 9h(ZE,), and
moreover,

Flys) = Fly) 2 " 9 — 9)

and
T~ Yn)— W{En) 2 Y+ 18,2 —yn —Tn) foreveryneN,
hence
FYn) + (e ~yn) 2 f(y) + h(ZFa) + (0" 8 =y = Tn) + (15, 2 = Fn) -~ {50 4.
Note that for a properly chosen sequence (1)) (namely (I*,yn) = —al|ynl)

we get a contradiction, since the left hand side is bounded from above and
the right hand side becomes oo as n — oo. Hence, if ||yn|| — oo then
Fn) + hAle — yp) — oo, and thus for every » € X there is R(z) > 0 such
that (3.4) is valid. =

Observe that combining Remark 3.3 and Theorem 3.4 we conclude that
if f is a proper lower semicontinuous convex function such that
i |00 F(2)/]]2]| = oo then its subdifferential operator f i surjective.
This property can also be used to distinguish reflexive Banach spaces:

ProposiTION 3.5, Let X be ¢ Banach space. The following conditions
are equivalent:

(1) X is reflexive,

(2) for every proper lower semicontinuous conves Junction f : X -
RU {+oc},

lim flz)/||z] =occ implies X*= | 8f(z).

[l ] —oc
mEX

Proof (1)=(2) follows from Remark 3.3 and Theorem 3.4.
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(2)=(1). Let K C X be any closed, convex, bounded and nonempty
subset and z* € X*. Define

) = ~(z*, 1) ifzekK,
00 ifx g K.
For this proper lower semicontinuous convex function we have

1mj | ~sme J(#)/]]2]| == 00, hence there is ¥ € K such that 0 & 8f(%), which
implies that

v o .
(@, EF) > (2", z) for every z € K.
Thus every continuous linear functional z* attains ite supremum on K. By

the James theorem (see [7]) the set K is weakly compact, which implies the
reflexivity. m

4. Main results. In this section sufficient conditions for the cancellation
law to hold are given.

LEMMA 4.1. Let X be a topological vector space and f,h + X — RU{+o0}
be proper convex functions and y € X, If

Of(y)noh(z) # 0  for some z € dom h
then for T =y -+ & the inf-convolution f O h(%) is finite and
FORE) = f(y) + h(F - y).

Proof. Assume that 8f(y) N Oh(z) # 0 for some ¢ € X. Let & 1= y + .
It is easy to check that

Gh(Z ~y) = —0h(T - )(),
hence, by Theorem 2.4, we get
0 & 0f(y) ~ Oh(z) = 8f(y) + Oh(T — ) (y) S B(f() + M= - )){w).
It follows from Theorem 2.4 that fOA(E) = f(y) + h(F ~y). =

THEOREM 4.2. Let X be a topological vector space and figh: X —
R U {-oo} be proper conver functions such that

(2) if there is 2 € X such that f(z) > g(z) then there are 2,y € X such
that f{y) > g(u) and 8f(y) N Oh(z) # 0,

(3) if there is z € X such that g(z) > f(z) then there are o,y € X such
that g(y) > fly) and 8gly) N Bh{z) # 0.

Thﬁn f = .

Proof Let 2 € X and f(z) # g(2). Suppose f(z) > g(z). By assumption
(2) there are 2,y € X such that #{y) > g(y) and Of(y)Nh(x) # 0. It follows
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from Lemma 4.1 that for some T € X we have
FOR(E) = f(y) +h(@ - ),
hence
fORE) > g(y) + ME —y) 2 g O A(T),

which contradicts (1); thus f(2) = g(z) for every z € X. The proof of the
other case (g(z) > f(z)) is similar. w

Conditions (2) and (3) are sufficient for the cancellation law to hold. In
the sequel we provide an analytical condition to ensure that (2) and (3) are

valid on a Banach space when the functions involved are lower semicontin-
uous, namely

U 8f(y)yJdgly) © U dh(z) and domdf(y) = dom dg(y).
yeXx neX
Let us look how it works in particular cases.
THEOREM 4.3. Let X be a reflexive Banach spoce and f,g,h + X —

R U {40} be proper convex lower semicontinuous functions and a > Q. If
[ and g are c-subdifferentially dominated by h and

(1) fOh(x) = g h{z) for every z € X,
(2) f(w)NOh(z —w)NBh(z —v)MBg(v) = for all z,u,v € X, u # v,

then f = g.
Proof. It follows from Theorem 3.4 that
(4.1} | 87 () udgly) € |J oh(z)

yeX zeX
and for every = € X such that f O h(z) € R there are u,v € X for which
FOhz) = flu) + h(z — uw) = g(v) + h(z - v).

It follows from Lemma 4.1 and (4.1) that for every % with 8f(%) s 0 there
is T such that

FOAE) = f(@) + (@ -T) and (@) N OLE —~ T) % 0.
By Lemma 2.7 we get
B af (@) Now(E~a) C g R)(T).
There is T € X such that
9 0h(3) = 9(8) + h(z - ),
hence, by Lemma 2.6, we get

0 # 0f(w) NOk(Z —u) C Bg(T) N AT — T),
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which, by {2}, implies that @ = ¥, thus 87(@) # ¢ implies 0g(@) # 0 (analo-
gously 8g(v) # 0 = 0f(@) # 0); so we have dom 8F = dom 8. Now applying
Lemma 2.5 and taking into account (4.1) we infer that assumptions (2} and
(3) of Theorem 4.2 are satisfied, which implies f = ¢. w

Remark 4. If b : X — RU {+0c0} is a strictly convex proper lower
semicontinuous function then

Oh{z)NOR(y) =0 forallzyec X, z3#y.
This can be obtained in the same way as assertion (5) of Lemma 3.1.

Note that if we take into account Remark 3.3 then Theorem 4.3 yields
the following

CoroLLARY 4.5. Let X be o reflevive Banach space. If f,g,h : X —
RU {+cc} are proper lower semicontinuous convex functions such that b is
strietly conver and

b Afe)/||z] = oo

]| —+eo
then
fOk=9g0h implies f=yg.
THEOREM 4.6. Let X be o Banach space and f, g,k : X ~ RU {+oc}

be proper lower semicontinuous conver functions. Moreover, suppose b is
uniformly convex. Then

fOh=gOh implies f=g.
Proof. It follows from Lemma 3.1 that

U osw)udety) ¢ | ohlz)

YyeX zEX
and

Oh(u) NOh(v) =0 for all u,v € X, u+# v,

and for every z for which f O h(x) is finite the inf-convolutions f O A and
g1k are finite. Repeating the reasoning from Theorem 4.3 we deduce that

dom &f = dom dg, and again applying Lemma, 2.5 we infer that assurnptions
(2) and (3) of Theorem 4.2 are satisfled. w
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Concerning entire functions in Bg-algebras
by

W. ZELAZKO (Warzawa)

Abstract. We construet a non-m-convesy nou-commutative By-algebra on which all

entire functions operate. Qur example is also a -algebra and a radical algebra, It follows
that some results true in the commutative case fail in general.

A 3()—algf:bra (.an algebra of type Bp) is a topological algebra whose
underlying topological vector space is a completely metrizable locally convex

space. The topology of a By-algebra A4 can be given.by means of a sequence
{|-|:) of seminorms such that

(1) lz}1 Slzle < ... forallzin A
and
(2) 2yl < Cilzlipilyligr forallz,ye 4, i=1,2,. .,

where C; are positive constants (one can easily have C; = 1 for all %, but here
it is more convenient to have inequalities of the form (2)). A Bo-algebra A
is sald to be multiplicatively-convez (m-convex for short) if the seminorms
(1) can be chosen so that instead of (2) we have

(3) lzyli < l2ldlyls

Note that (1) implies that if || - || is & continuous seminorm on a Bg-
algebra A, then there is an index m and a positive constant C such that

(4) (| £ Clalm

An element @ of an algebra A4 is said to be quasi-invertible if there is an
element i in 4, called a quasi-inverse of , such that moy = yoz = 0, where
zoy = xya-+y. Thisis equivalent to (z--¢e)- (y+e) = (y+e)- (z-e) = e,
If A has a unit element e, or to this relation in the unitization A, of A, if
there s no unit in A. That means that the quasi-inverse of an element % is
uniquely determined by .

forallz,y € 4, i=1,2,...

€ for all z in A.
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