icm

STUDIA MATHEMATICA 111 (1) (1994)

Spaces defined by the level function and their duals
by

GORD SINNAMON (London, Ont.)

Abstract. The classical level function construction of Halperin and Torentz is ex-
tended to Lebesgue spaces with general measures. The construction is also carried farther.
In particular, the level function is considered as a monotone map on its natural domain, a
superspace of LP. These domains are shown to be Banach spaces which, although closely
tied to LP spaces, are not reflexive. A related construction is given which characterizes
their dual spaces.

1. Introduction. The familiar Hélder inequality is {for a measure A
on R)

[ 198N < WSl ol

B

where 1 <p < oo, 1/p+ 1/p = 1 and ||h|lnx = {f; |R|" dX)¥/" is the norm
on the Lebesgue space LY. The inequality is sharp, in the sense that

supl [ ig d)\{ = [ £lln,
R

where the supremum is taken over all functions g such that ||g][, 2 < 1. If g

is not free to range over the whole unit ball of Lﬁt, but is constrained in some
way, the sharpness of Holder’s inequality may be lost. The problem which has
motivated this work is that of determining a sharp inequality to substitute
for Hélder’s inequality when g is constrained to be positive and decreasing.
(Actually, it will be more convenient to require that g be non-negative and
non-increasing.} The substitute inequality is easy enough to write down but
some work i required to understand how to use the result profitably. The
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substitute is this: If g is non-negative and non-increasing then

(1) | [ fa | < Ufllaiallglr
iy

where
1 £llper
= sup{ f | flgdX : g non-negative and non-increasing, and ||g||y . < l}.
R

The proof of this inequality is trivial but to use it effectively we must un-
derstand the expression || - ||p;». That is the purpose of this paper.

This approach to Hélder’s inequality has been considered before. In [§],
Halperin introduces what he calls “D-type Holder inequalities™ which are
similar to (1.1) but in which the measure X is assumed to be just a weight
function times Lebesgue measure. Lorentz, in [4, §3.6], gives an account of
Halperin’s work and provides a new approach to the basic result, the con-
struction of the level function. Our approach will be similar to Lorentz’.
Halperin’s results have been used recently to prove weighted Hardy inequal-
ities [9]. Our generalisation here enables us to prove Hardy inequalities with
general norms. (See Section 7.) In particular, inequalities for series and in-
tegrals can be proved simultaneously.

In Section 3 we show that | - || is a norm and defines a space L%
containing L%. Sections 4 and 5 are devoted to the construction of the level

function and its extension to all of L’;l. The dual space, L% ’*, is constructed
in Section 6 and in Section 7 some applications of these ideas are outlined.
We complete this introduction by introducing some notation and then pro-
ceed to Section 2 where we clarify what is meant by a non-increasing function
in Lebesgue space.

Most of the notation used here is either standard or defined within the
paper. Hopefully, the remainder is discussed here. A Borel measure on R is
a non-negative measure defined on the Borel sets (the o-algebra generated
by the open sets) which is finite on intervals. Note that it is automatically
o-finite. If f and g are \-measurable functions we say “f majorises g” or “f
1s a majorant of ¢” provided f(z) > g(z) for M-almost every xz. We adopt
the convention that integrals written with limits include the limit points in
the range of integration except when the limits are +oo. Thus f;’ means

b
f[ a,f] but f°_ means f(_m,b]. The notation p’ for the conjugate index of p
is used throughout so that 1/p 4 1/p’ = 1 when 1 < p < 0,

2. Non-increasing functions and concavity. The definition of a non-
increasing function is straightforward.
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DEFINITION 2.1. Suppose S C R. A function g : § — [0,00) is non-
increasing on S provided g(z) > g(y)} whenever z < y.

In this paper, however, we will be concerned with Lebesgue spaces in
which functions are identified when they agree almost everywhere with re-
spect to the measure A. It is less straightforward to identify non-increasing
equivalence classes of functions. The object of this section is to formulate
a suitable definition of a non-increasing function in Lebesgue space. In ad-
dition we introduce the notion of A-concavity and illustrate the principal
connections between the two concepts.

To begin we must carefully define the essential supremum and the essen-
tial infimum,

DeriNiTION 2.2, If (X, 1) is a measure space and g : X — [0,00) is
j-measurable then
esssup,(g, X) =sup{a: p{z € X : g(z) > a} >0}, and
essinf, (g, X) = inf{a: p{z € X : g(z) < a} > 0}.
If 4X =0 then esssup, (g, X) = 0 and essinf,(g, X) = oo.
It is immediate that if ¥ C X then esssup,(g,Y) < esssup,(g, X} and
essinf,(g,Y) = essinf (g, X).

The next lemma contains an obvious (but not trivial) property of the
essential supremum and essential infimum.

LeMMA 2.3. Suppose u is a Borel measure and g : R — [0, 00) 18 Borel
measurable. Then g(z) < esssup,(g, [z, 00)) and g(z) > essinf (g, (—c0, z])
for p-almost every z € R,

P roof. We prove the first statement only. Let g(z) = esssup (g, [z, o0)).
Since 7 is non-increasing, it is Borel measurable. Choose sets Eq, Fq, E3, ...
of finite p-measure, whose union is all of R. Fix £ > 0 and set

Smn = {€ € B : g(z) —F(z) > &, en < g(z) <e(n+ 1)}

Certainly pSmn < 00 and Un_y Upeg Smin = {z € R : g(z) —7(2) > €}

To complete the proof we show that uSm » = 0 for each fixed m and n.
Suppose S > 0 for some m and n. If © € Sy, then g(z) > e+

esssup,(g, [z,00)) so x is not an atom for p. Hence, if xy is the characteristic

function of Sy,n, f_"*fw x gy is a continuous function of y. Thus there exists
ay € R such that [ xdu = (pSmn)/2 Choose z € Spmpn With z < y.
Since p([®, 00) N Smon) > 0, we have

§{(z) = esssup,(g, [2,00)) > esssup,(g, [z,00) N Smn) Z e
But since & € Sy n, (%) < g(z) —€ < e(n+1) —& = en. This contradiction
completes the proof. :
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There are many ways to approach the notion of a function being non-
increasing almost everywhere. The next theorem shows that five of the most
tempting are equivalent.

THEOREM 2.4. If 1 4s o regular, Borel measure and g : R — [0,00) is
Borel measurable, then the following are egquivalent.

(1) For some non-increasing function § on R, g = 7 p-almost everywhere.
(2) g is non-increasing on some subset S C R such that u(R\ 8) = 0.

)

)

(wx p){(@y): 22y, gla) <gly)} =
Whenever a <b < ¢ <d,

@

(4
d b
fan f o

(5) esssup (g, [z,00)) <
et

Proof (8)=(1).L
and by the lemma

d b

> [ odu [ d

[+ 4 a

essinf, (g, (—oo,]) for all z € R.

g(z) = esssup, (g, {7, 00)). Then 7 is non-increasing

9(z) < g(e) = esssup,(g, [, 00)) < essinf,.(g, (=00, 2]) < g(x)

for p-almost every » € R. Thus g = § p-almost everywhere.
(1)=(2). Set § = {z : g(z) = F(=z)}.
(2)=(3). If 2 <y and x,y € S then g(z) > g{y). Hence

(pxpH{(z,9) 12 <y, 9(z) < 9(y)} < (wxp)(((R\S)xR) U (Rx (R\S)))=0.

(3)=(4). f a < b < ¢ < d then for g x p-almost every pair (z,y) with
a<z<band c<y < dwehave g(z) > g(y) so

d b
[ [ o@due)= [

a<o<b,c<y<d

g(z)d(p x p){z, y)

g(y) d(p x )z, y)

1l
o g &
o
—
s
St
2
=
—
=
~
L._5
S
-
=
—~
2]
——

(4)=(8). Fix ¢ € R. If U is any Borel subset of (00, 2] and V is any
Borel subset of [z, oc) then the hypothesis of (4), together with the regularity

of y, yields
fd#fgduzfgdufdu-
v U v U

Set o = esssup,(g, [#,00)) and § = essinf,(g, (—o0,]) and fix £ > 0.
Choose U C {y < z : g(y) < B+ ¢} such that 0 < pU < oco. Choose
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Vc{y>x:g(y) > a—c}such that 0 < uV < oo. Now

(ﬁ+€)uVﬂU2fdﬂfyd#2fgd,ufd#2(0~6)#VuU
v u 14 0

s0 @ — & < B +¢. Since £ was arbitrary, o < 3 as required.

DEFINITION 2.5. Suppose u is a regular, Borel measure. A Borel mea-
surable function g : R — [0,00) is non-increasing p-almost everywhere, or

just p-non-increasing, provided one and hence all of the conditions (1)—(5)
of Theorem 2.4 are satisfied.

Condition (1) shows that we may now speak of u-non-increasing func-
tions in L% since an equivalence class (modulo equality p-almost everywhere)
is p-non-increasing precisely when (at least) one representative of the class
is non-increasing on R. Indeed, given a y-non-increasing function in some
Lebesgue space we are free to suppose that we have a non-increasing fune-
tion which represents the same equivalence class. Conditions (4) and (5)
will prove to be the most useful in the sequel, not only as properties of
known p-non-increasing functions but also as means of showing that a given
function is itself p-non-increasing,

Integrating & non-increasing function with respect to Lebesgue measure
gives a concave function. We will make use of an analogue of concavity
defined here. (See also [4].)

DEFINITION 2.6. Suppose A is a regular, Borel measure such that A(z) =
A(—00,2] < oo for all z € R. A A-measurable function G on R is said to be
A-concave provided

(2.1) (A(b) - A(2))(G(z) - Gla)} = (G(b) -

whenever ¢ <z < b.

G(z))(A(z) — Ala))

It is occasionally convenient to use (2.1) in the form
(2.2)  G(z)(A(B) ~ A(a)) 2 G(a)(A(B) — A(z)) + G(b){A(2) — Ala)).

It is not difficult to see that the definition of A-concavity implies the follow-
ing, seemingly stronger statement. If ¢ < b < d and a < ¢ < d then

(2.3) (A(d) — A(e))(G(b) ~ G(a)) 2 (G(d) — G(c))(A(b) — Afa)).
The next theorem relates the notions of A-non-increasing and A-concave.

THEOREM 2.7. Again let )\ be a regular, Borel measure on R such that
A{—00, 2] < 00 for all z € R. Suppase that f is a non-negative, A-measurable
function on R such that F(z) = [* fdA < 0o for all & € R. Then F is
A-concave if ond only if f is )\ -non-increasing.
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Proof. Suppose that f is A-non-increasing and that a <« < b. By part
(4) of Theorem 2.4, for each £ > 0,

b-te x4e bt z+€
fax [ rarz J rax [
w4 ade zt+e ate

As £ — 0 this becomes
(A(b) — A(2))(F{z) = F(a)) 2 (F(0) — F(x))(A(z) — A(a))

s0 F' is A-concave.

Conversely, if F' i3 A-concave then suppose a < b < c< dand e > 0. We
have a ~e < b<dand a —e < c—¢e < d 3o by (2.3),

(A(d) — Al — ))(F(b) — F(a —¢)) 2 (F(d) ~ F(c — &) {{(A(b) — Ala - €)).

Ag g — 0 this becomes
d b d b
fd)\ffd)\szd)\fd)\
[ a {44 o

50 by part (4) of Theorem 2.4, f is A-non-increasing.

THEOREM 2.8. Suppose A is a regular, Borel measure on R such that
A(z) = A(—00,z] < 0o for all x € R. If F is a non-negative, A-measurable
function on R which has a A-concave majorant then F has a unique least
\-concave majorant denoted by F°.

Proof. Let F*(z) = inf{G(z) : G is a A-concave majorant of F}. By
hypothesis the infimum is not empty so F®(z) < oo for A-almost every
. It remains to prove that F is A-concave since uniqueness follows from
minimality. Fix a,2,0 € R with o < 2 < b. If A(a) = A(b) then Ala) =
A(z) = A(b) so (2.10} holds trivially for F*. If A(a) < A(b) then for each
£ > 0 there exists a A-concave majorant G of F such that G(z) — F*(z) €
g/(A(b) — A(a)). Using the A-concavity of G in the form (2.2) we have

F*(@)(A(5) = A(0)) + & = G(a)(A(b) — A(a))

> Ga) (A®) — A(z) + C(B)(A(z) ~ A(a)
2 F*(a)(A(b) ~ A(a)) + F* (b)(A(z) ~ Aa))

and since £ was arbitrary,

F'(z)(A(8) - 4(0) 2 F (a)(A() — A(=)) - F*(5)(A() — A{a)).

Therefore F’ is A-concave.

icm

Spaces defined by the level function 25

3. The spaces Lil. Suppose that A is a regular, Borel measure on R
which satisfles A(—o0, 2] < oo for all £ € B, We make the definition

|filpir =sup [ |flgar
R

where the supremum is taken over all non-negative, A-non-increasing func-
tions g satisfying || gl a < 1. Note that our assumption A(—oc,x] < oo
ensures that there are non-trivial, non-negative, non-increasing functions
in LY. For 1 < p £ oo we have ||fllpin < | fllpy by Holder’s inequal-
ity. We define Lﬁl to be the collection of A-measurable functions f for
which [|f]pin < o0. It is easy to see that I3 is a vector space. Since
1 £ lois LU Fllp,» we see that L’;J' contains the Lebesgue space I}.

PROPOSITION 3.1. || - {|p;x 15 @ norm on L§* for 1 < p < oo.

Proof. Suppose | fllpn < oo. Certainly | f|[pia = 0 and if ||f|jppa =0
then since the characteristic function of (—oo, z] is in Lﬁl for all x € R we
have [*_|f|dA =0 for all z € R. Hence f is zero M-almost everywhere. Tt
is immediate from the definition that | - i/, is homogeneous and satisfies
the triangle inequality.

THEOREM 3.2. If f € LY with 1 < p < oo then | fllpin = {|fllpn o and
only if |f] is A-non-increasing.

Proof. If |f| is A-non-increasing then (|f|/||f|lp,2)?~" is also A-non-
increasing. (We may clearly assume that f is not identically zero.) Moreover,
i/

(F1/1f

|p,2 )P has unit L% -norm. Hence
1£llps = 1Fllpr 2 [ 1A/ )P dA = £z,
R

80 the two norms coincide.
Conversely, suppose that [|f]lpx = [|fllpin. For n = 1,2,3,..., choose
non-negative, A-non-increasing functions g, such that ||gnllp,x <1, and

[ 1£1gn @3 2 1 llp,2 — 1/m.

R

By the Banach-Alaoglu Theorem there is a subsequence gn, converging
weak* to some non-negative function g with ||gllz,» < 1. Since each of the
functions gy, is A-non-increasing we have, by Theorem 2.4, part (4),

d b d b
[ar [ gmdrz [gnar [ax

o 43
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whenever ¢ < b < ¢ < d. Together with the fact that the characteristic
functions of the intervals [a,8] and [c,d] are in L% this yields, as & — oo,

d b d b
fax [gdx= [gdr [ d
a a C 2
go ¢ is also A-non-increasing. Now for each k,
1ian 2 [ 1Flgn, d 2 1 £llpa — L/n
4
80, 48 k — 00, we have equality in Hélder’s inequality:

Ifllor = [ 1FlgdX < [Fllpallgly s < I Flpa
k

It follows that |f|P is a constant multiple of ¢” and in particular | Il is
A-non-increasing.

Since g = 1 is non-negative, A-non-increasing and in L$®, |iflix =
[ fll1ya for all f € L}. Thus Lil = Lj. Consequently, the above proposition
does not hold for p = 1.

Although the spaces Li"l and L3° are quite different, the above propo-
sition does not hold for p = oo either. Consider a bounded function f which

takes the value || f||o,) on some interval (—co,b). Whatever the function
does on the rest of the line we would have || fllcc1a = || floo,n-

EXAMPLE 3.3. For 1 < p < oo, L} ¢ IE.
Let A(z) = 2~ ?dz on (1,00) and let A(—co,1] = 0. Set f(z) = 21/ and
notice that f & LY. We will show that f € Lf{i. A calculation yields
(n')" o0
[ & -amae) = [ &7 -p)d\a).
! )
Suppose that g is non-negative and A-non-increasing and that [lg{|, » < 1.
Using the above calculation and Theorem 2.4(5) we obtain
() 'y
J @ = 2"7)g(z)aM(z) 2 essiati(g, (=0, 0] | (&' — ="7)dA(x)

1 1
2 esssup; (g, [(p')*, 00)) f (&P — p') dA(z)
')
> [ @~ gf)gle)ar(e).

(»')?
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Hence

f fodA = fmlfpg(m) dA\(z)

-0

o 00 Lfp
<# [ o)) < plalya( far)” <.
) 1

Thus ||fllpix < 9" s0 f € IE

. In order to understand the norm | - ||p;» we will represent ||f||,;» as
the L} -norm of a function associated with f. This associated function—the
level function of f—will be constructed in Sections 4 and &. It will have the
following properties.

DEFINITION 3.4. Let 1 < p < co. Given f € L% we say that f0 is a

p-level function of f provided | flloix = [|f°lipx and [[flgdr < [ fOgdr
for all non-negative, A-non-increasing functions g € L‘;’.

To show the existence of p-level functions we will require the construction
of Section 4. Unigueness, however, is straightforward.

ProrosiTION 3.5. If 1<p< oo and f € Lgl then there is af most one
p-level function of f. :

Proof. Suppose that f° and f are p-level functions of f. Using Minkow-
ski’s inequality and the definition above we estimate as follows:

172+ Flloa S %55 + 11152
= 2| fllpir = 2sup [ |flgdA
R

<sup [ (fP9+Fa)dA < [|If° + Fllpa-
R
Here the suprema are over all non-negative, A-non-increasing functions g
with ||g|lv.» < 1. Equality in Minkowski's inequality above yields f© = ¢f
M-almost everywhere for some ¢ > 0. Since || FClp.x = || filp,x it follows that
c=1and f = f A-almost everywhere as required.

PROPOSITION 3.6. Let 1 < p < oo and suppose that f € LZ*. If 0 is a
p-level function of f then fU is non-negative and A-non-increasing.

Proof. It is easy to see that if £ is a p-level function of f then | fO is
also. By the previous proposition f¢ = |f9] so fY is non-negative. Now the
definition of |||, together with the properties of the p-level function yields

1o = fllppr = sup [ 1flgdr <sup [ Fogdr={11lpun <1 pn
R R '
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where the suprema are taken over all non-negative, A-non-increasing func-
tions g with || gl x < 1. It follows that || f)p5 = [|f°]ip,5. By Theorem 3.2,
f9 is A-non-increasing.

4. The level function of a bounded function. Let A be our regular,
Borel measure and fix a non-negative, essentially bounded, A-measurable
function f. For convenience in stating results we make the following defini-
tions: M = || f|loo, 15 the best essential bound for f; F(z) = ffm Fd); and
A(z) = [*__d) Recall that we have assumed that A(z) < oo for o € R.
Since 0 < f £ M Malmost everywhere we also have F(z) € MA(z) < oo
A-almost everywhere. Recall also our convention that f* = | (=0, Which
implies that the noo-increasing functions A and F are right continuous
on R.

In order to construct fO we first construct F*(z) = ffm fOdA. Since f°
is to be A-non-increasing the function F should be A-concave.

DEFINITION 4.1. F? is the unique least concave majorant of F,

The existence of F* is guaranteed by Theorem 2.8 once we note that
F does have the A-concave majorant M A. Several useful properties of the
function F* follow immediately from the definition.

THEOREM 4.2. Suppose that

A 15 a regular, Borel measure such that A(z) = A(—o0, #] < o0

for all z € R,
(4.1) < f 15 a non-negative, A-measurable funetion such thaot

= [[flloo,x < 00,
F(z)= " _fd\ and F® is the least \-concave magomnt of F.
Then

(1) F*(b) — F"(a) < M(A{b) ~ A(a)) whenever a < b.
(2) limg—, o F*(2) = 0.

(8) F* is non-decreasing.

(4) F® is right continuous.

Prboof We begin with (1), Fix a,b € R with a < b. If A(a) = 0 then
0< PP(b) ~ Fla) < FP(b) < MA(D) = M(A(b) — Ala)) and (1) follows. If
A(a) > 0 then take ¢ < g and use the A-concavity of F* in the form (2.1)
to see that
(A(a) = A@))(F* () ~ F*(a)) < (F*(a) - F(2))(A(b) — 4(a))
' < F(a)(A() - Aa)) < MA()(A(D) — A(a)).
Now allow z — ~oc and divide by A(a) to conclude that FP(b) — F*(a) <
M(A(b) — A(a)), completing the proof of (1).

icm
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Since 0 € F'(z) < MA(z) and limg,_ o A(z)
limy——cc F?(z) = 0, the conclusion of (2).

We prove (3) by contradiction. Suppose that F® is not non-decreasing.
Then there exist 2,b & R such that ¢ < b and F*(a) > F*(b). Either F is
bounded, in which case the constant function with value lim, .., F(z) is a
A-concave majorant of ', or else F' is unbounded, in which case limy._, 00 F()
= co. In either case we have limz 00 F{z) 2 Fb(a) > F*(b) so there exists
some y > b such that F(y) > F*(b). Since F* is concave and a <b<ywe
have

(42)  (AQy) =~ ABNEFE()) - F'(a)) 2 (F(y) — F(B))(A(b) — Ala).
Now F?(y) ~F*(b) = F(y)—F"(b) > 0 and A(b)— A(a) > 0 so the right hand
side of (4.2) is non-negative. The left hand side is therefore non-negative as
well. However, F*(b) — F’(a) is negative by assumption and A(y) — A(b) is
non-negative. It follows that A{y) — A(b)} = 0. We have

0 = M(A(y) — A(d))
=M [drz [jdi=F(y)
(5] (B3]

This contradicts the choice of y and completes the proof of (3).
To prove (4) fix ¢ € R. By part (1) and the right continuity of A,

0 lim (F(4) - Pa)) < M lim (A(y) -~ @) = 0

= 0 it follows that

— F(b) > Fly) — F'(b).

Thus F* is right continuous at . This completes the proof of the theorem.

To determine the function f° from F® we require the following differen-
tiation lemma together with the Radon-Nikodjm theorem.

LEMMA 4.3 ([7, p. 262]). If G is a non-decreasing function which is right
continuous then there is o unique Borel measure p such that for oll a,b € R
with @ < b we have

p(a,b] = G(b) - G(a).
THEOREM 4.4. There is a non-negative, A-non-increasing, A-measurable
function fO satisfying

= ff”am

for all z € R. fO is called the level function of f with respect to A.

Proof. Apply Lemma 4.3 to F* producing a Borel measure p satisfying
F*(z) — F*(a f( o2 34 whenever a < z. In particular, allowing a — —oo

yields Fb(m) = [ dp, The assumption of regularity on A, together with
part (1) of Theorem 4. 2, shows that [ dp < M [y dA for all Borel sets E.
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Thus 4 is absclutely continuous with respect to A and we may define £9 to
be the Radon-Nikodjm derivative of  with respect to A. £° is non-negative
and A-measurable and we have

Fx) = fd,u— ff%\

Since F” is A-concave we apply Theorem 2.7 to conclude that f° is A-non-
increasing.

Although we now have a definition of the function f? the relationship
between f and its level function has not been fully examined, In the remain-
der of this section we will first explore and then exploit the close connection
between f and f°. We will show that f and f° agree A-almost everywhere
except on a collection of disjoint intervals where f° is constant. The corre-
sponding intervals in Halperin’s construction were called the level intervals
for the function f and prompted the name “level function” for (a variant
of) fO.

It will be convenient to use the notation G(z—) = limy_ y<x G(y). Since
A, F, and F® are all non-decreasing the limits A(z—), F(z—), and F*(z-)
exist for all z € R U {oo}. The corresponding limit from the right will not
be needed since 4, F, and F? are all continuous from the right. In keeping
with this, G(—oc) will be taken to mean limgy ..o G{z).

THEOREM 4.5. Suppose (4.1) holds and define the subset U of R by
U={zeR:F(zg)> F(z) and F*(z—) > F(e~)}. Then

(1) if F*(z) > F(z) for some & € R then there exists some b > o such
that (z,b) C U,

(2) if F*(z—) > F(z—) for some © € R then there erists some a < z
such that (a,2) C U, and

(3) U is open.

Proof. Suppose that F*(z) > F(x). Since F is right continuous we
may choose b greater than z such that F(b) < F'(z). If y € (z,b) then
Fy) > F'y—) = F(z) > F(b) > F(y) 2 F(y—) so y € U. This proves
(1). Now suppose that F*(z—) > F(z—). Choose o less than = such tha
Fa) > Flz—). If y € (@, ) then F*(y) > F'(y=) = F"(a) > Flz-) 2
Fly) 2 F(y—) soy €U and (2) is proved. (8) is immediate.

DEFINITION 4.6. Suppose (4.1) holds. Define a;, b;, and I; by

U={zeR: F*(z) > F(z) and Fr(z—) > F(z-)},
U =U;(a:,b) (disjoint union),
(43) (ai:bi) c Ii - [a'z':b'i]’ .
a; € I; it and only if F*(a;) > F(a;), and
bi € I; if and only if F*(b;~) > F(bi—)
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Since U is an open subset of R it is a (finite or countable) disjoint union
of open intervals. This defines the points a;,b; € [—c0, 00]. Adding in one or
both endpoints as specified to the interval (a;, b;) gives the interval I;.

The intervals I; are subsets of R since if for some i, a; = —co then
FP(~00) = 0 = F(—o00) so —co & I;. Also, if b; = oo for some % then either
F(oo—) = oo or else the constant function with value F(co—) is a A-concave
majorant of F' and hence of F”. In either case F*{co—) = Floo—) s0 00 € I;.

The intervals I; are disjoint since their interiors are the disjoint com-
ponents of the open set U and if b; = a; for some i and § with b; € I
and a; € I; then we would have F’(a;) > F(a;) and F*(b;—) > F(b;—) so
b; = a; € U, which is impossible.

THEOREM 4.7. Suppose that (4.1) and (4.3) hold. f° is constant A-almost
everywhere on each interval I;.

Proof. Fix ¢ and drop the subscripts so that I = I;, a = a;, and b = b;.
It is sufficient to prove the following three statements:

(1) fO is constant A-almost everywhere on (c,d) whenever (¢,d) C I
and 0 < A{e, d) < oo;

(2) f9 is constant A-almost everywhere on [a,d) whenever [a,d) C I
and 0 < A, d) < oo; and

(3) f° is constant A-almost everywhere on (c,b] whenever (c,b] C I
and 0 < A(e,b) < cc.

We begin with (1), Let m = (F*(d—) — F*(e))/(A{d-) — A(e)), Cr =
F*(d—) —mA(d—) = F*(c) —mA(c), and Cp, = sup{F(z) ~mA(z) : z € R}.
We will show that Cr = Cy,. Since mA + €y, is A-concave and majorises F,
by the minimality of F* we have
(4.4) F* <mA+ Cp.

In. particular, Or = F¥(c) — mA(c) < Cn.

To show that C; > O, we take a sequence {y,} C R such that
iy 00 F(4n) = mA(yrn) = Cp,. For each n either y, > d, ys < ¢, or
¢ < yn < dand at least one of these conditions must hold for infinitely
many n. We digtinguish three cases based on this observation.

First suppose that y, > d for infinitely many n. Since F' is A-concave
we have

(Alyn) ~ A(d=))(F(d-) = F*(c)) 2 (F* (ya) = F*(d—))(Ald-) - A(0)),
or equivalently, C; > F*(y,) — mA(yn), for infinitely many n. This implies
that Cy > Ch,. N

Next suppose that ¥, < ¢ for infinitely many n. By the A-concavity
of F*,

(A(d=) = AE)(F*(c) = F*(yn)) = (F*(d=) = F*(){A(c) — Alyn))-
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That is, C; > F*(y,) — mA(yy), for infinitely many n so again C; > C,,.

In the remaining case, ¢ < y, < d for infinitely many n, let y be a limit
point of {y,} in [c, d]. If y is a right limit point then Cr, = F(y) —mA(y) <
F*(y) — mA(y) < Cn by (4.4). Similarly, if y is a left limit point then
Cp = F{y=) - mA(y—) € F*(y—) ~ mA(y—) £ Cr. Thus either Fb(y) =
F(y) or F*(y—) = F(y=) so y ¢ U. We are left with two possibilities,
either y = cor y = d. If y = ¢ then y must be a right limit point so
Cr = F(c) —mA(e) = Cr and if y = d then y is a left limit point and
therefore Cr, = F(d—) — mA(d—) = Cr.

Now we use the fact that Oy = O, to show that f 0 ig constant A-almost
everywhere on (c, d). Let z € (¢, d). Using the form (2.2) of the M-concavity
of F* we have

FH(z)(A(d~) — A(0)) > F* () (A{d—) = A=) -+ F*(d=}(A(z) ~ A(c)),

which can be written in the form F*(z) — mA(z) > C;. We now apply (4.4)
to obtain Cp, > F’(z) — mA(z) > Cy for all 2 € (¢, d). This implies that
J2 o (fO=m)d\ = F*(z) — mA(z) is constant on (c,d) and hence f9 = m
A-almost everywhere on (¢, d) as required.

The praof of (2) is similar. This time let m = (F*(d—)~F*(a~))/{A{d~)
- Ae~)), Cr = F'(d~) — mA(d-) = F*(a~) — mA(a—), and C,, =
sup{F(z) — mA(z) : € R}. Since Cy, has not changed we still have (4.4).
Thus Cr < Cpn. To show that Oy > €y, we again take a sequence {un} CR
such that limy, o (F(Yn)—mA(ys)) = Cp, and split the argument into cases.

If y, > d for infinitely many n or 4,, < a for infinitely many n then the
A-concavity of F* implies that C7 > F”(yn) — mA(y,) for infinitely many
nso Cr > Cp. If a <y, < d for infinitely many n, let y be a limit point
of the y,’s in [a,d]. As before, y & U/ s0 either y = g or v = d. The case
¥ = a cannot occur since if ¥ = a then y is a right limit point and by {4.4),
Fla) —mA(a) = Cp > F’(a) — mdA(a), It follows that Fla) = F*(a) so by
the hypothesis (4.3), a ¢ I, which is contrary to assumption. If ¥ = d then
Y 18 a left imit point and therefore C,, = Fld—) —mA(d-) = C;.

To show that f? is constant A-almost everywhere on [a, d) take z & [a, d).
The A-concavity of F* yields F*(z) — mA(z) > Cy, which combines with
{4.4) to give C; = F*(z) — mA(z) for all z € [a,d). This implies that
S -m)ydr=pF () — mA(z) is constant on [a,d) and hence f=m
A-almost everywhere on (a, d). Moreover,

(£°(a) = m)Ma} = (F*(a) — mA(a)) — (F*(a) — mA(a~)) = C; — Cr =10

50 e{ithe; Ma} = 0or f%a) = m. It follows that 77 = m A-almost everywhere
on |a,d).

The proof of (3) wilt complete the theorem, Let ma=(F (b) - F(c))/(A(b)
=A(e)),Cr = F*(b)~mA(b) = F(c)~mA(c), and Cy, = sup{F(z)—~mdA(z):
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z € R}. Again we have (4.4) so C; € C,,. To show that Cr > C,, we take
a sequence {#,} C R such that limp s (F(yn) — mA(yn)) = Oy, and split .
the argument into cages.

If yn, > b for infinitely many n or y, < ¢ for infinitely many n then the
A-concavity of F* implies that C; > Fly,) — mA(y,) for infinitely many
nso Cr 2 Cp. It ¢ <y, < b for infinitely many n, let y be a limit point
of the yn’s in [e,b]. As before, y & U so0 either y = b or y = ¢ The case
y == b cannot occur since if y = b then y is a left Hmit point and by (4.4),
F(b=)—mA{b~) = O, Z F°(b~)~mA(b-). It follows that F(b~) = F*(b~)
so by the hypothesis (4.3}, b ¢ I, which is contrary to assumption. If y = ¢
then y is a right limit point and therefore C, = F(c) — mA(c) = C.

To show that f© is constant M-almost everywhere on (c,b] take z €
(c,b]. The A-concavity of F* yields F*(z) — mA(z) > C;, which combines
with (4.4) to give C; = F*(z) — mA(z) for all z € (c,b]. This implies that
fi“oo(f” —~m)d) = F*(z) — mA(z) is constant on (¢,b] and hence f¥ = m
A-almost everywhere on (¢, b].

Knowing that f¥ is constant on the intervals I; allows us to compute its
value on each I;,

COROLLARY 4.8, Suppose (4.1) and (4.3) hold. If M\I; < oo then
£ = (125 [ fd
I

for A-almost every t € I;. If AI; = 0o then

708) = limsup(U/ML N (~o0ya])) [ Far

Tin(—co,z)
for A-almost every t € 1;.

Proofl Drop the subscript ¢ as before and suppose without loss of gen-
erality that AJ > 0. First suppose that Al < 00. By the theorem,

Pty = (/AL [
I

for A-almost every ¢ € I. The first statement of the corollary will follow if
we show that [, fd\ = [, 7 dA. Four simple consequences of Definition 4.6
will be useful: If ¢ € J then F’(a—) = F(a—), if a & I then F*(a) = F(a), if
b & I then FP(b~) = F(b--) and if b € I then F*(b) = F(b). There are four
cases. If I = (a,b) then '

[ $d\=F=)~Fla) = (=)~ P’(a) = [ [\
! I

If I = (a,b] then
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J fax=F@®) - Fla)=F(b) - F*(a) = [ fdx.
I
If I = [a,b) then I

[ fdr=F(b-)~ Fla~) = F*(4~) = F'la—) = J roda.
I
If I =[a,b] then '

[ fdx=F(@) - Fla~) = F*(b) ~ F*(a~) = f Fodx
I i

Suppose now that Al = oo and denote by m the value that £0 takes A-
almost everywhere on I. Since all intervals bounded on the right are A-finite
by assumption we must have either I = (a,00) or I = [a,00). The arguments

for the two cases are similar so we consider only the case I = (a,00). We
have F*(a) = F(a) and

limsup(1/A(I; N (~o0, ]))

prifa Jo @l

. F(z)=F(a)
- _fm ,m}f dA=limsup e

) Pz} — F(a)
=B i)~ A

ﬂ:(rt;?mins to prove the inequality m < limsup,_,  (F(z) - F(a))/(A(z) -

Fo'r a fixed ¢ > a let s = sup{(F(z) — F’(c))/(A(z) — A :
(¢,00), A(z) > A(c)}. Ky > ¢ then F(y) < s(A(y)c— A((cgm%l— F"(S?)If ymgec
then by the A-concavity of F?,

(Afz) ~ A())(F*(¢) = FP(y)) = (F'(z) - F*(c))(A(c) — Aly))
> (F(z) ~ F()}(4(e) - Ay))

for each z > e Tt follows that F(y) < Fb < s{A(y) - A b(c).
-We% have shown that the A-cgnca‘% )functiogw.y)s(./i(;g »Eyf)l(c)) Ef)l)‘?"-?c;? n(:fe)m-
jorises F'(y). Since F’ is the least A-concave majorant of I we have F’(y) <
s(A(y) — Ale)) + F'(c) for all y € R. In particular, if y is chosen so that
Aly) > A.(c), we have s > (F*(y) ~ F*())/(Aly) — Ale)) = m.

Now if > ¢ and A(c) > 4(a), we have the trivial inequality m <
s(A(z) ~ A(e))/(A() ~ A(a)) + m(A(c) ~ A(a))/(A(z) ~ A(a)) so0

. F(z) ~ F*(c) Az) — A(c) Ale) — A(
™S ( Alz) = A(c) A(z) = Ala) "”"A(i‘) - A(ZD
S F(z)~ F(a) P(z) - F(a)
e s B A) = Ala) = Lmsup Alz) - A(z) '
This completes the proof.

= M.
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As mentioned, f and f° coincide except on the intervals I;.
THEOREM 4.9. f© = f A-almost everywhere off U; 1.
Proof. Let E =R\ | J; I;, set

o0 = { 1

It is enough to show that G = F” for then g = f0 A-almost everywhere
and hence f = f® A-almost cverwhere on F. If 2z € E then each interval
I; lies either entirely to the right or entirely to the left of x. Let J, be the
collection of those indices ¢ for which I; lies entirely to the left of z. Note
that for each i € J, I; C (~00,z], s0 AI; < co. By Corollary 4.8,

) forteE, r
t) fortdF, and G(z) = fgdA.

— 00

Gz)=> [fd+ [ fdr
180 It (—o0,zINE
=Y [fax+ [ fdx=F().
i€ty I; (oo, 2|NE

For z € E, however, we must have F(z) = F”(z) since if F(z) < F*(z) then
by Theorem 4.5 {1), =z is the left endpoint of some connected component
(04,8;) of U and according to Definition 4.6, x € I;, contrary to assumption.
Thus G(z) = F’(z).

If a; € I; for some 4 then F*(a;—) = F(a;—) and an argument similar to
the above shows that G{a;—) = F*(a;-).

If # € E then z &€ I; for some 4. If g; & I; then

Glz)=Gla)+ [gdr=F(a)+ [ fdr=F(a)
(@i,%] (4,2]
If a; € I; then
G(z) = Gloi=)+ [ gdh=Flai=)+ [ fPdr=F(a).
[ag,a] [evi,2]
This completes the proof.

The decomposition of f now enables us to show that f° is indeed the
p-level function of f that we set out to construct. This fact is established in
Theorems 4.11 and 4.12. Theorem 4,10 is needed in the proof of 4.12 but is
also an interesting and useful result in its own right.

THEOREM 4.10. Suppose that (4.1) and (4.3) hold. For any a 2 0,

oo oo

[ orax= [ () ax

—20 —o0
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Proof. By the previous theorem, f° = f A-almost everywhere off Ui 5
80 it is enough to show that

(45) J U0 ax= [ () an
L I;

for each interval I;. If AI; < oo then Corollary 4.8 shows that f© takes the
value m; = (1/AL;) [}, fdA A-almost everywhere on I;. Thus,

f(fn)a_fd)\ me ffd)\ m_"lfd)\ f fo atl gy

I,; IT.
If A\; = oo then

fO(t) = limsup(L/A(LiN (—00,2])) [ FdA=my

grreo Fi1{—00,2]
A-almost everywhere on I;. If m; > 0 then |, 1, fdA = oo and both sides of
(4.5) are infinite. If m; = O then it is enough to show that f = 0 X-almost
everywhere on I; since then (4.5) holds trivially. Either I; = (a4, o0) and
F*(a;) = F(ay), or I = |a;, 00) and F*(a;—) = F(a;—). Thus for ¢ € I; we
have either
[ FaX=F(t)— F(a;) < F*(t) - F(a;) = [ ffar=0, or
(a4,1] (ast]
[ fdx=F(t)— F(a;~) < F*(t) = F*(a;—) = [ ffax=0.
[ﬂ-ist] [a‘i>t]
It follows that f = 0 A-almost everywhere on I;. This completes the proof.

THEOREM 4.11. Suppose that (4.1} and (4.3) hold. If g is non-negative
and A-non-increasing then fi fgdh < [ fOgdA.

Proof By Theorem 2.4(1) we may suppose that g : R — [0,00] is
non-increasing. Therefore, for each s > 0, Es = {t € R : g(t) > s} is (either
empty or}) an interval of one of the two forms (—o00, z), or (—oo, z]. Since for
all £ € (—~o0, 0],

J fdx=Fa-)<F-)= [ fd
{~oo,z) (—o0,2)
and for all z € (—oc, x0),
J I =F@@) < FP)= [ o
(—o02) (—o0,q]

we see that fp fdX < Jg, fldXforall s > 0.
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The theorem now follows by Fubini’s Theorem:
ff )g(t) dA(t) ffdsf ) dA(t fff t) dA(t

<f [ £0() dxe) ds-ff” (®)g(2) dA(2).

0 E,

TEEOREM 4.12. Suppose that (4.1) and (4.3) hold. If 1 < p < o0 and
FeLinLy then ||fllpa = 1£°lpa-

Proof. It follows from Corollary 4.8 and Theorem 4.9 that ||f%||cox <
| flloc,s and Theorem 4.10, with o = 0, yields || f°ll1,5 = || f]|1,». Thus f° €
Ii N L3 and hence f0 € Lp Now, by Theorem 4.11,

Iflpr =sup [ fgar<sup [ fOgdr = fllppr < [|Fllpa
R R’

where the sup is taken over all non-negative, A-non-increasing functions g
with |iglly » < 1.

To prove the opposite inequality note that since foe L%, (£°/1| 0|5,
is non-negative, A-non-increasing and has L’;-norm L (Xt |f%p,n = O then
% = 0 A-almost everywhere so f = 0 -almost everywhere and the resul
follows.) Thus, by Theorem 4.10,

e 2 150 [ SUOP A= [70G30 [ (PP 83 =17l

R

et

5. The level function extended to L’;\i. I this section we consider the
construction of the level function as a mapping f — f°. The first theorem
of this section shows that the mapping preserves order, which enables us
to extend the construction of the previous section to a map from }I}p to
I%. The notation introduced in Section 4 will be used freely throughout
this section and since we must now consider the level function counstruction
applied to more than one function we will use g, @, G¥, and ¢° to correspond
to f, F, F* and f in the obvious way.

We begin with a simple exercise in measure theory.

Lzmma 5.1, Suppose g = 0 13 an essentiolly bounded A-measurable func-
tion and g® is the level function of g. Then

L FO-G)
(5.1) B A = Aw)

makes sense, exists, and equals g°(t) for A-almost everyt € R. Here G*(z) =
[ g%dx and A(z) = A(—00,a].
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Proof To show that the limit makes sense we show that the denomi-
nator is non-zero for all & < ¢ for d-almost every ¢ € R. That is, that the
set T = {t € R: A(t) = A(z) for some = < ¢} has A-measure zero. To each
t € T assign z; < t such that A(zy,t] = A(t) — A(zy) = 0. Let S be the
open set { Jyop(w4,t). Certainly § ¢ T.If t € T'\ § then (24,2) C Ssotis
an endpoint of a connected component (maximal open subinterval) of S. It
follows that T'\ § is at most countable. Since 7' clearly contains no atoms
of X we see that A(T'\ §) =0.

Now S is a union of open intervals in R and hence is a countable subunion
of those intervals. Since each interval (z¢,t) has A-measure zero it follows
that AS = 0. Therefore AT = AS+ AT\ 5) =0.

To show that the limit exists we must consider the points of discontinuity
of ¢%. ¢° is A-non-increasing so by Theorem 2.4(1) we may assume without
loss of generality that gV is non-increasing. It follows that ¢g° has at most
countably many points of discontinuity. The set T together with the set of
points of discontinuity of g° which are not atoms for A has A-measure zero.
Suppose ¢ is outside this set. If £ is an atom for X then the limit clearly exists
and equals g°(£). If t is not an atom then ¢° is continuous at ¢ and since g°
is non-increasing,

o o G~ G (=) _ 4
g (ﬂfm <g (z).

Allowing & — t— we see that the limit (5.1) exists and equals g°(t).

THEOREM 5.2, Suppose f and g are non-negative, essentially bounded,
A-measurable functions with f < g A-almost everywhere. Then f° < 4°
A-almost everywhere. Here fC and g° are the level functions of f and g
respectively.

Proof. By Theorem 2.4(1) we may assume without loss of generality
that both f° and ¢ are non-increasing. Moreover, since f° is constant
A-almost everywhere on its level intervals I; (Definition 4.6} we may also
assume without loss of generality that f° is constant everywhere on each
L. As usual, let F(z) = [*fdX, G(z) = [°_gd\ F'(z) = [*_ fd),
G (z)= [7  ¢"d) and A(z) = A(—o0, z].

Choose t € IR such that the limit (5.1) equals g%(t). Set m = fO(1),
O = sup{F(z) —mA(z) : z € R}, and Dy, = sup{G(z) — mA(x) : z € R}.
Our first tagk is to show that both Cp, and D, are finite. Since mA+Cyy is a
A-concave majorant of F the minimality of F* implies that F* < mA+ Cp,.
Similarly G* < mA + Dy,. Since f° is non-increasing and m = f0(t) the
function F*(z) — mA(z) = °_ (f* —m) d\ is non-decreasing for < t and
non-increasing for = > ¢, Hence

(5.2) Con = sup{F’(z) — mA(z) : z € R} = F*(£) — mA(t) < oo

icm

Spaces defined by the level function 39

where the first equality follows from
C =sup{F(z) ~ mA(z) : 2 € R}
< sup{F*(z) — mA(z) :z € R} < Cpy.
If the function G® (z) —mA(z) = f_mw(gowm) dA is eventually non-increasing
then Dy, < oo as for Cy,. If the function is not eventually non-increasing
then g"(z) > m for all z and in particular g°(¢) > m and the theorem is

proved. We may assume therefore that D, < oo.
The main step in. the proof is the proof of

(5.3) there exist @, > ¢ such that ﬂlErgc(G(mn) —mA(zy,)) = Dy
Before we prove (5.3) we will show how (5.3) will complete the theorem.

If z <t then the proof of the Lemma 5.1 shows that A(t) — A(z) > 0, so
Alzy,) — A(z) > 0 for each n. Since ¢" is non-increasing and z, > t,

G (t) — G"(z) _ G'(ms) — G*(z) _ G*(mp) — D — mA(z)

A =A@ = A =A@~ A — 4@
Do (C(a,) ~ mA(z,))
Az, — A@)
Do = (G (20) = mA(zs)
SR 1O R (e

As n — oo this becomes (G*(t) — G*(2))/(A(t) — A(z)) = m. As z — t— we
have g°(t) > m by the choice of t. This completes the proof subject to (5.3).
En route to (5.3) we show

(5.4) there exist vy, = t such that nlirl;o (F(2y) — mA(z,)) = Cp.

If F*(t) = F(t) then (5.4) follows from (5.2) by setting y, = ¢ for all n.
Otherwise, F*(t} > F(t) so by Theorem 4.5 there is some b’ such that
(¢,b") € U (Definition 4.6). Let I be the level interval of f which contains
(£,b"). Note that ¢ € I since either ¢ is interior to I or else ¢ is the left endpoint
of I and F*(t) > F(t) so that t € I by Definition 4.6. Now f is constant
on I so fY takes the value fO(t) = m on I. Let b be the right endpoint of
L. be I then F'(b—) > F(b-) and since b € U we have F’(b) = F(b).
Thus Cp = F'(1) — mA() = F°(b) — mA(b) = F(b) — mA(b) and (5.4)
follows with g, = b for all n. If b & I then F*(b) > F(b) and since b & U we
have F?(b—-) = F(b—). Thug Cp, = Fb(t) ~ mA(t) = F°(b-) ~ mA(b-) =
F(b—) — mA(b—) and (5.4) follows with {y} taken to be any sequence in
(t,d) which converges to b.

We are now ready to prove (5.3). Let {z,} be any sequence of real
numbers such that Dy, = limywee (G(2n) — mA(2r))- If 2, > ¢ for infinitely
many n then {5.3) holds on dropping to a subsequence. Otherwise we may
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assume (after dropping finitely many terms) that =, < ¢ for all n. In this
case we show that Dy, = limp—.00(G(yn) — mA(ya)) to complete the proof.
Since @, <t < 1, We have

Gly) - Glzn)= [ gddz [ fdr=Fly) - Fzn).
(znyn) (5 n]
Thus
02 — Glyn) ~ Flzn) + G(an) + F(yn)
= D, = (Glyn) — mA(yn)) + Cm ~ (F@s) — mA(zs))
= (Dm — (Gl&n) = mA(zn))) = (Cm — (F(yn) — mA(yn)))
and since Hmp_oo(Dm — (G(zn) — mA(zn})) = Hmy—oe(Cm — (Flyn) —
mA(y,))) = 0 we have
1im Dy — (G(yn) ~ mA()) + Cor — (Flan) — mA(za))) < 0.

Both Dy, = (G(yn) —mA(yn)) and Cp, — (F(,) —mA(z,)) are non-negative
80 we have limy, ., oo (G(yn) — mA(yn)) = Dy, as required.

The exténsion of the map f — f° from bounded functions to arbitrary
functions in Lﬁl is not done by continuity but by monotonicity. We need
the following lemina to show that the properties of the p-level function carry
over as well.

LeMMA 5.3, Let 1 < p < oo. Suppose that

(1) {frn} increases to f pointwise A-almost everywhere and 0 < f, € LI;L
for each .

(2) {hn} tncreases to h pointwise A-almost everywhere and h,, € L% for
each n.

(3) hn 15 a p-level function of f, for each n.

Then h is o p-level function of f whenever f € L&, Also, f € LB if
end only if h e L.

Proof Fixg e Lﬁ"’ with g non-negative and A-non-increasing. Since hy,
is a p-level function of f, we have fi fagdA < [ hngd) and ||Anfpa =
[ f|lp1r- By the Monotone Convergence Theorem (used twice),

(5.5) Rffgd)\znlﬂo ﬁf frgd < lim Rf hngdA=Rf hg dA.

Also, by the Monotone Convergence Theorem for p < co and trivially for
P =00,

il = lim allps = Bm [17alloir < 1l
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To complete the proof we need || filp1a < ||hl/p,». This follows from (5.5)
(allowing g to vary) and Holder's inequality:

IFlpss = sup [ fgdA <sup [ hgdA < |h]p
E ®
where the suprema are taken over all non-negative, A-non-increasing func-
tions g with |lg|ipa < 1.

We are now ready to prove the existence of p-level functions.

THEOREM 5.4. Suppose that 1 Sp < oo. If f € Li"’ then f hos o unique
p-level function fO. Moreover, f° is independent of p in the sense that if
fe XN LY then fO is both the p-level and the g-level function of f.

Proof For n = 1,2,... set fo(z) = min(n,|f{z)|) when z £ n and
fa(z) = 0 when 2 > n. Note that f, € L} N L$°. Clearly, {f,} increases to
| f] pointwise. Also, by Theorem 5.2, the level functions FU form an increasing
sequence. Finally, Theorems 4.11 and 4.12 show that f2 is a p-level function
of f, for each n. The hypotheses of Lemma 5.3 are satisfied and we have
F € L& so we conclude that fO, the pointwise limit of {f2}, is a p-level
function of f. Uniqueness was already proved in Proposition 3.5. The p-
independence of f9 is clear from the construction.

With this result the concept of a p-level function becomes superfluons.
The level function construction of Section 4 extends unambiguously to every
function in Uj<peoo Lﬁl.

DEFINITION 5.5. Suppose f € Lﬁi. The level function fC of f is the
p-level function whose existence is asserted above.

The next two results extend Theorems 5.2 and 4.10 to apply to this
larger collection of level functions.

COROLLARY 5.6, Suppose that f and g are in |Jjcpcon L’;\l and that
If] < |g|. Then f0 < g°.

Proof Forn=1,2,...set fo(z) = min(n, | f(z)|) when z < n, folz) =
0 when & > n, gn(x) = min(n,|g{x)]) when z < n and gn(z) = 0 when
z > n. Note that fn, g, € L} NI, Clearly 0 € fn < gn 50, by Theorem
5.2, f9 < ¢V, The proof of Theorem 5.4 shows that f° and g° are the
pointwise limits of {9} and {g0} respectively. It follows that f0 < g° as
required.

COROLLARY 3.7. Suppose that 1 < p < oo, f € L2 and & > 0. Then

(5.6) [ 1A da= [ (50> ax
-3

19



42 . Sinnamon

Proof. As usual set f,(z) = min(n, |f(z)|) when 2z < n and fo(z) =0
when z > n. Note that f, € LiNLY for each n. We can apply Theorem 4.10
to get

[ fldr= f (fmettax
R R

for each n. Since {f,} and {2} increase to |f| and f° respectively, we may
apply the Monotone Convergence Theorem to both sides of the integral
above. This yields (5.6).

In order to prove that L’)’f is a Banach space it remains to show that
it is complete. The proof will follow along the same lines as the proof (in
Royden [7]) that the LP-spaces are complete. Indeed, we will use the usual
characterisation of completeness——that every absolutely summable series is
summable, To proceed, we need analogues of some L? convergence results:
The Monotone Convergence Theorem, Fatou's Lemma, and the Dominated
Convergence Theorem.

Our substitute for the Monotone Convergence Theorem is

THEOREM 5.8. Juppose 1 <p< oo and 0 < f1 < fa < ..., fn € Lﬁl.
Then the pointwise limit, f, of {fn} satisfies

(5.7) I£llp1x = lim [ fnlpia-

In particuler, f e Lil whenever the limit in (5.7) is finite.

Proof. If the limit in (5.7) is infinite then the statement is trivial so
suppose that the limit is finite. We will apply Lemma 5.3. We have {f,}
increasing pointwise to f and, by Corollary 5.6, {f7} increasing to some
function, say g. Since each f2 € L%, the usual Monotone Convergence Theo-
rem shows that ||g|; 1 = limp_e | f2]ip,x and hence g € L%, (Note that this
statement is valid for p = oo as well, although not by the Monotone Con-

vergence Theorem.) By Lemma 5.3, f € L}, and by Definition 5.5, g = f°.
Thus

fllpir = llgllps = B [l fRllp = i || fallpss
as required.

- Just as the Monotone Convergence Theorem leads to Fatou’s Lemma we
are led to

COROLLARY 5.9. Suppose that 1 < p < oo and that {f,} is a sequence
of non-negative functions in L’;l. Let f(z) = lminf, o fo(z). Then

(5.8) 1 fllp1x < liminf || folpy.a.

In particular, f € Lﬁj‘ whenever the left hond side of (5.8) is finite.

icm
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Proof. Define Ay, by hn(2) = infisn fi(z). {hn} increases to f and since
hy, < fn we have h, € L5* for each n. By Theorem 5.8 we have

||prl)\ = T}H’gﬂ ”hn”pi?\ = lﬂgf “hn”,'oi)\ < 1%1111-Ef an“pl)v

Passing from Fatou’s Lemma to the Dominated Convergence Theorem
usually involves the linearity of the integral. The Lﬁl norms are not given as
integrals and the map taking f to f 0 is not linear (it is not even sublinear!).
The proof below uses Corollary 5.7 as a substitute for this lack.

LEMMA 5.10. Let 1 £ p < o0, Suppose { fr} converges pointwise A-almost
everywhere to zero, 0 < fr, < g, and g € Lﬁi. Then {fn} converges to zero
in LY.

Proof. Consider the sequence {2¢— fy } of non-negative functions in L“;\‘L.
Since liminfp—oo (29 — fn) = limy—00{2¢ — f) = 2g, using our analogue of
Fatou’s Lemma, (Corollary 5.9} we have

2gllp1x < Uminf |29 — fullpys < limsup |29 — fallpir < [|2glipx
' N—+00

where the last inequality is from the hypothesis 0 < f, < ¢. Thus
limy—oo |29 = frllpir = [[2¢]lp1s- To complete the proof we will show that
1 £allors < 1261155 =129 full5) s from which it follows that lim,— oo || fallp1a
=0 as required.

By Corollary 5.7, with o = p ~ 1, we have

(5.9) l120— fulZyy = [ (@g— )" dr = [ (29— fu)((29 — fn)°)P 7" dA

Y R

= [ 20((2g - £2)°P " A — [ fal(29 - fa)?)P~" N
R R

To estimate the first integral in (5.9) we use the definition of the Lﬁl norm
(note that ((2g ~ £,)°)P~" is non-negative and A-non-increasing):
[ 20((20 — 1277 a1 < [20lipiall (29 = £2)°7 2
M B
= {2gpsall (29 — £l
= [|2g]lpsx[120 = FullZ3 < |129115,,-

To estimate the second integral in (5.9) we note that 29— fn > 29— g =
92 fuso (29— Fu)? = f2 by Corollary 5.6. This observation, together with
another application of Corollary 5.7, yields

[ fol2a = 107 dn 2 [ f(fSP A= [ ()P dh = | £all}
14 R

R .
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Combining the above estimates we have

129 - fn“pl)\ < ”29”;0,]_)\

which completes the proof.

an”yp:»l)\!

Note that the last result does not include the case p == co. It is easy to
see that the result fails in that case.
Our analogue of the Dominated Convergence Theorem now follows easily.

COROLLARY 5.11. Let 1 € p < oo and suppose that {f,} converges
pointwise A-almost everywhere to f. If there exisis a g € Lﬁ‘L such that
Ifn] < g A-almost everywhere then {f,} converges to f in Lf‘l.

Proof Let hy = |f — fn]/2. Clearly |f| € g A-almost everywhere so
0 < hp, £ gand {hn} converges pointwise to 0. By Lemma 5.10, {h,}
converges to 0 in L4*. L. It follows that {f,} converges to f in LP

Having established some control over convergence in Lﬁl we are ready
to prove

THEOREM 5.12. Lpl is complete for 1 < p < oo,

Proof It is enough to prove that every absolutely summable series
in Lp is summable. Suppose fi, fo,... are functions in Lf{ such that
EZ’;I | fellpir = M < co. Set gn = > 5y |fu|. Clearly {g,} is an increas-
ing sequence of non-negative functions and ||ga|lpix < iy I fellpin < M.
Theorem 5.8 shows that the pointwise limit ¢ of the sequence {gn} is in
Lﬁl. In particular, g is finite A-almost everywhere. Thus for A-almost every
z € R the series 3 5. ; fi(z) is absolutely convergent and hence convergent.
Set s(z) = Y.po; fu(z). Now s, = 35, fx is a sequence of Lgl func-
tions converging pointwise to § A-almost everywhere and satisfying |sn| <
g. Corollary 5.11 completes the proof, showing that {s,} converges to s
in L5,

6. The dual of L5, In this section we identify the dual space of L’;J'.

At the centre of our construction is the following definition.

DEFINITION 6.1. Suppose that ¢ is a A-measurable function. Define §
by
§(x) = esssup,(lg}. [z, 00}).
Clearly 7 is non-negative, non-increasing and A-measurable. Lemma 2.3

shows that § > g A-almost everywhere. Indeed, 7 is the smallest non-
increasing majorant of g.
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LemMa 6.2. If 0< ¢
every ¢ then 0 £ 7; £
every .

< ...cand limg o go(2) =

92 9(x) for A-almost
< ... a,nd limy oo §r (@) =

<
7P G(z) for A-almost

Proof. It is immediate from the definition that 0 < g, < 7, +1 <7
for all n. Thus §(x) = limp—00 §,(z) exists and § < §. Moreover, 7 is a

non-increaging function. Since § > 7, > g, A-almost everywhere for each n
we have § > g A-almost everywhere. Thus

g(z) = esssup, (g, [z,00)) < esssup, (7, [, 00)) =
which completes the proofl.

E(m‘))

Now we define our candidate for the dual space of Lﬁl.

DEFINITION 6.3. ||g/pran = |G|y x and Lgf* is the collection of functions
g for which ||g|prea < co.

L’)’\’* is a subspace of Lf\f
see that || - [|prsn I8 & niorm.,

since we have |[g||p.a < ||g[lpen. It is easy to

THEOREM 6.4, Suppose f € LI;L, 1<p<oo. Then

(61) sp {| [ F9dA|: lgllomn <1} = £ i,
R
Proof. Since g > |g| A-almost everywhere we have
| [ £aax < [ 1flglar< [ Ifigaa
R R R
Since 7 18 non-increasing, Definition 5.5 and Holder's inequality show that
[1fiar < [ £°5dx < [ £llpa ]G]y -
R R
By Definition 6.3 this is
(62 | [ 790] < 1 Flloa ol
R’
Thus we have “<” in (6.1). To prove “>” note that for any non-negative,

A-nomincrcasmg function g with ||g|lp,» < 1 we have |[sgn(f)gllpea < 1and
| o Fogn(f)gdA| = [, |f]g dA. The definition of |||/ »,x completes the proof.

LEMMA 6.5. Suppose 1 < p< oo. If fe P and g € Li’* then for each
a € (0,1) there exists a non-negative function h € Lﬁl such that ||h|lzx <
| fllgsn and Juhlgldr > a2 S |G dX.

Proof. Without loss of generality we may suppose that f and g are
non-negative. Fix o € (0,1), and for each n € Z define B, = {z € R :
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o™l < g(x) € o). Note that since g is non-increasing the sets B, are
intervals such that if n < m then B, lies entirely to the left of B,,. (It
may happen that B, is empty for some n, in which case this statement is
vacuously true.) Moreover, if we include the sets B_..o = {# € R: §(z) = oc}
and Beo = {z € R: g(z) = 0} then we have R = g, (1o} Bn, @ union of
disjoint sets. We will prove the lemma on each set By, n € ZU {d=c0}. That
is, for each n € Z U {£oo} we will construct a function hy, : B, — [0,00)
such that

(6.3) fhngd)\ztaez ff'g'd)\, and
Bn Bn

(6.4) [ hgdr< [ fea
B. By

for all non-negative, non-increasing functions ¢. Once each hy, is constructed,
the lemma will follow on setting h(z) = h,(z) for 2 € By, n € Z U {xx}.

It remains to construct the functions . First set hoo = 0 on Bo and
note that (6.3) and (6.4) hold. Next, if AB, = 0 then any definition of
hﬂ will satisfy (6.3) and (6.4) trivially. In particular, this includes the case

n = oc since g € Lp'* implies AB_o. = 0. We are left with n € Z and

ABn > 0. Note that AB,, # oo lest we violate the assumption g € L“J *. We
let y, be the right endpoint of B,, and distinguish two cases, v, € B and

Un & Bp.
Case 1: y, € By,. The definition of the sets By implies that
ess sup, (g, (yn, 00)) = esssup, (9’ U B’“)
k>n
< g™t o« G(yn) = esssup, (g, [yn, 00)).

Hence AMyn} > 0 and F(yn) = g(yn). Set hn(yn) = (1/Myn}) fB fdX and
ha(w) = 0 for © € B, \ {y}. To verify (6.3) we estimate as follows:

J tngdh= (WA} [ £aN)glga) Ml = ( f 7dX)500n)
By By By

zaffa”’d,xzaff?d)\zaz [ fzdx

By By By,

To prove (6.4) fix a non-negative, A -non-increasing function ¢ and note that
since A{ya} > 0, Theorem 2.4(2) implies that ¢(zx) > &(yn) for A-almost
every ¢ € B,,. Thus

fhgbdA—-(ffdA) fqudx

Spaces defined by the level function 47

Case 2: y, & By. Let x € B,. Since y, € Ussn Br we have

ess 5up, (¢, [¥n) 00)) = Flym) < o™ < G(x) = esssupy (g, [z, 00)).

Thus Az, ys) > 0 and G(z) = esssup, (g, [z, 9n)). If we define the set A by
A={z e R:og(z) < g(z)}, we have
esssupy (g, [#,Un) \ A) < esssup, (o, [z, yn) \ A) < esssup, (07, [z, vn))
= af(z) < §(z) = esssup, (g, [z, yu))
50 A[z,¥n) N A} > 0 and F(z) = esssup,(g, (v, ys) N 4). Now choose

g, L1, T2, - 0 By converging to y, such that A([my, zxy1) N A) > 0 for
k=10,1,2,... Define h, by

0, TE B, < Za,
(/7020 0) VA f,_ s, FON 00 S5 < 21, € 4,
(1/)\([Jlk, .’L‘k+1) N A)) f[ﬂ?k——lafﬂk) fdx, z,<z< Tht1, & € A,
0, z € B, \ A.

To prove {6.3) note that g(x} > ag(z) > a™*? for 2 € B,, N A. Then

hn () =

[ bgdr= | hngd)\+i [ hngar

B, [za,21)NA b=1 [z} mppr)
=(1/A([eo,z)4)) [ fdx [ gdx
(‘—DO,.’BQ)QB” [:L‘g,m]_)ﬂA
oo}
+y (U A(zrm)nd) [ fdx [ gaa
k=1 (Brw1,2x) [@h, T4t )NA
2o fdrA+de™ [ far
(~o0c,z4)M B, k==l (Zpt1,24)NBp
2a?( gd)\—l—z 1) fgd)\)—aszgd)\
(= 00,80) 1B kel [y )

The proof of (6.4) uses Theorem 2.4(5). Let ¢ be an arbitrary, non-negative,
A-non-increasing function., Then

[ hngpd = (1/([zo, m1) N A)) [ fdx [ gax
By,

(~eo,20)N By [mo,21)NA

+i(1/)\([wmwk+1)ﬂf1)) [ fax [ ¢dr

k==l (Zhuw1,Tr) [Pk, ERr1)NA
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A

ess sup;, (@, (zq, 00)) f FdA

(—oo,za)}M By,

[ fax

(B 127k

+ Z ess supA(éﬁ, [mk: 00))
k=1

< essinf) (¢, (—o0, zo]) f FdA
(—~oo)N2,
+ Z essinf (¢, (oo, Tk} f fdx
k=1 (Bi—1,8h)
< [ fed+Y. [ feédr= [ fedr
(_wimﬂ)an k=1 (Wk—lamk) By,

This completes the proof.

THREOREM 6.6, Suppose g € Lﬁ'*, 1< p<oo. Then
sup {| [ f9d|: 1Flpsa €1} = fgllpar
R

Proof. The theorem is well known in the case p = L since ||-|[1ya = ||-[|1,2
and ||+ ||lcosn = || lloo,n- For L < p < 00, “<” follows by (6.2) above. The proof
of “>" in the case 1 < p < oo uses Lemma 6.5. Without loss of generality
assume that g is not A-almost everywhere 0. Set f = (g/1g]lp2)? " if
p # oo and set f =1 if p = oo. Then f is non-increasing so by Theorem 3.2,
I £liser = [[flpn = 1. Fix @ € (0,1) and let h be the function given by
Lemma 6.5. We have ||hsgn{g)|ipin < 1 s0

sup{lﬁ! fgd)\‘ N Flpia < 1} > ‘H{ hsgn(g)gd)\‘ =n! hig| dA

2o [ fgdh=a? (gl = lgllwn
R

Let o« — 1 to complete the proof.

THEOREM 6.7. Suppose 1 < p < oo. The dual space of L5* is L’;*. More
precisely, each function g € L‘; " gives rise to a continuous linear functional
Lg on Lﬁl given by Ly(f) = [, fgd\. The norm of Ly is ”g!lp’*)\ and every
continuous linear functional on LYY is L, for some g € I *.

Proof Ifg e Lﬁ}* then Theorem 6.6 shows that L, is defined on L% and
that it is continuous, having norm ||g||prea- (Lg is clearly linear.) Suppose

Spuces defined by the level function 49

now that L is a continuous, linear functional on Lf‘l. We wish to show that
L= L, for some g € LY.

Since LY is a subspace of L2 (with | Joia < llp,x) we may consider L as
a continuous linear functional on L’;. By the Riesz Representation Theorem
there is a function g € LY such that L{f) = [, fgd for all f € L%. To
complete the proof we show that L{f) = fm fgdi forall fe Lﬁl and that

'

gely

To do the first we set fu(z) = min(n, max(—n, f(z))) for # < n and
fa(z) = 0 for z > n. Consider the sequence {|f,g|}. This increases pointwise
to |fg|. The Monotone Convergence Theorerm yields

Rf fold =l Rf |[fngldX = lim L(|f.| sgn(9))
<L B | Fallpox < DEIF o < co.

Thus fg € L1. Now consider {f.} as a sequence in L2'. We have |f,| <

|f| & L’;\i for each n, so by Corollary 3.11, {f,,} converges to f in L})’\J’. Since
L is continuous,

L(f) = lim L(fn):ﬂlim f fngd)\=ffgd)\
R R

T O

where the last inequality follows from the Dominated Convergence Theorem
using our observation that fg € Li.

The second task, to show that g € Lﬁ’*, uses Lemma 6.2. Set gn(2) =
min(n,|g(x)|) when x < n and set g,(z) = 0 when z > n. Note that

gn € L";’* and {g, } increases pointwise to {g|. Thus {g, } increases pointwise
to 7. The Monotone Convergence Theorem implies that

1m flgallpes = [l s = (3l = lollron

Also, by Theorem 6.6,

lgrlren = sup| f S dX| < sup [ 1Fllal éh = wup L1 sgn(e)) < 2],
R R
Here the suprema are taken over all functions f with ||f|lpia < 1. The
! .
conclusion is that |{g] pres < ||L]| 50 that g € L} ™ as required.
COROLLARY 6.8, Lﬁ’* is complete for 1 < p < oo,
Proof. The dual space of any normed linear space is complete.

ExamMrLE 6.9. L"(’{l 18 not reflexive for 1 < p < oo.



50 G. Sinnamon

Suppose A satisfies the following mild conditions. There exist a,b € R
such that 0 < A{~o0,a] < o0, 0 < Ala,b] < 00, and A is not supported on a
finite set in (a,b]. In this case we will show that L5°(a, b] may be viewed ag
a subspace of L ™ (for any p € (1,00]) with equivalent norms.

If g € LY (a, b] with [|gllpeo(a,s) = M then extend g to be defined on all
of R by setting g(z) = 0 for z E_-’ (a b]. Clearly, §(x) = M for z € (—o0,4d]
and g(z) = 0 for z € (b, 00). Thus

a b
MP A(~o0, q] = f 7 d) < 1315 5 < f 7" d\ < MP M—o0,b]
—0 —0
and 50 |lgllrs(e,s) ~ 9ller. By the Hahn-Banach Theorem every linear
functional on L$(a, b] extends to a linear functional on Lﬁf*. Since A is not

supported on a finite set, there are linear functionals on L§°(a, b] which do
not arise via integration against any function on (a,b]. It follows that the

dual space of Lﬁl* is not Lﬁi.

The characterisation of the dual space of L";\l in terms of the function
g makes it possible to explicitly calculate the Peetre K-functional for the
pair (L}, L5°). The interpolation results obtained in this way may be found
in [10].

7. Hardy’s inequality. For which indices p and ¢ and which non-
negative weight functions u and v does there exist a constant €' for which

(7.1) (f| [ #ewte (0 t|'v(a)ds) " gc(f|f(z)wu(t)dt)”‘"

—o0 —00

holds for all f? The answer to this question is the Hardy inequality with
weights provided by [6], [2], {5, §1.3.2], [9] and others.

For which indices p and ¢ and which non-negative sequences {uy} and
{vn} does there exist a constant €' for which

(S5 ()
k=0

n=0 k=0

for all {f4}? Unsurprisingly, this similar question has also been answered.
(See [1].)

Hardy’s inequality with measures is more general than both of these
answers.

THEOREM 7.1. Suppose 0 < ¢ < oo and 1 < p < oo, Let p and v be
regular, Borel measures on R and take C to be the smallest positive constant
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(possibly infinite) such that

F: /
( f ‘ f _'fd,wlqdl/(m))l q < C( f If|pdp.)l/p
B —-oo 14
holds for all p-measurable functions f. Then
(1) If p < g then

C'Nsup( f du)l/q( fdy)l/pl.

yER o

2)If1<g<p< o then

o ([ (Fa)™(Ja am)"

Ry
B)If 0<g<l<p<octhen

o ( (o) (T )" an)"

-0

Here 1/p+1/p' =1, 1/g+1/¢' =1, Y/r=1/qg—1/p, and A ~ B means
that there exist positive constanis ¢1 and ¢o such that ¢ A < B < coA.

The proofs of (1), (2), and (3) all appear in [8] but parts (1) and (2)
are quite similar to the analogous results for (7.1} found in [6], {2] and
[5, §1.3.2]. Part (3) is proved for weights in [9} but the result relies on
Halperin’s level function with respect to weights. The level function with
respect to measures, as constructed here, enables us to extend the Hardy
inequality in [9] to the statement (3) above.

To avoid a tedious enumeration, no mention of endpoint cases (p =
1,00; ¢ = 0,1, 00) has been made in the statement of Theorem 7.1. Results
are available in the references cited which carry over to this more general
setting.
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Domains of integral operators
by

IWO LABUDA (Oxford, Miss.) and
PAWEL SZEPTYCKI ({Lawrence, Kan,)

Abstract. It is shown that the proper domains of integral operators have separating
duals but in general they are not locally convex. Banach function spaces which can eccur as
proper domains are characterized. Some known and some new results are given, illustrating
the usefulness of the notion of proper domain.

1. Introduction. We consider linear integral operators of the form

(1.1) Ku(t) = [ k(t,s)u(s)ds, teT,
L

where S, T are o-finite measure spaces with measures denoted by ds, dt,
and k—the kernel of K-—is a measurable function on T x 9.

As usual, we denote by L0(S) and LO(T) the spaces of all measurable,
finite a.e. functions on § and T, respectively, and we consider K as an
operator from L%(8) to L°(T). The proper domain of K, Dy, is the largest
subspace of L9(S) for which the integral in (1.1} is defined as the Lebesgue
integral and is finite a.e., i.e.,

Dy = {u € LMS) 1 | K||ul(t) r= f |k(t, s)||u(s)| ds < oo a.e.}.
5

We insist on the adjective proper as distinguished from ertended. The
extended domain of an integral cperator is the largest solid subspace of L
to which the operator K can be extended by continuity (from Dg). For
details we refer to [AS] and to the remarks in Section 5.

The space L" is equipped with the complete metric vector topology of
convergence in measure on all subsets of finite measure; this topology, when
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