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Domains of integral operators
by

IWO LABUDA (Oxford, Miss.) and
PAWEL SZEPTYCKI ({Lawrence, Kan,)

Abstract. It is shown that the proper domains of integral operators have separating
duals but in general they are not locally convex. Banach function spaces which can eccur as
proper domains are characterized. Some known and some new results are given, illustrating
the usefulness of the notion of proper domain.

1. Introduction. We consider linear integral operators of the form

(1.1) Ku(t) = [ k(t,s)u(s)ds, teT,
L

where S, T are o-finite measure spaces with measures denoted by ds, dt,
and k—the kernel of K-—is a measurable function on T x 9.

As usual, we denote by L0(S) and LO(T) the spaces of all measurable,
finite a.e. functions on § and T, respectively, and we consider K as an
operator from L%(8) to L°(T). The proper domain of K, Dy, is the largest
subspace of L9(S) for which the integral in (1.1} is defined as the Lebesgue
integral and is finite a.e., i.e.,

Dy = {u € LMS) 1 | K||ul(t) r= f |k(t, s)||u(s)| ds < oo a.e.}.
5

We insist on the adjective proper as distinguished from ertended. The
extended domain of an integral cperator is the largest solid subspace of L
to which the operator K can be extended by continuity (from Dg). For
details we refer to [AS] and to the remarks in Section 5.

The space L" is equipped with the complete metric vector topology of
convergence in measure on all subsets of finite measure; this topology, when
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convenient, may be defined by the F'-norm

(1.3) ox(u) = [ #(ju(z))é(x)dz, X =SorT,
X

where ¢ > 0 ae is in L*(X) and @ : [0,00) -~ [0,1] is a continuous,
increasing and subadditive function such that #(0) = 0. The usual choices
of & are B(u) = u/(1 + u}, B(u) = max{u,1}; we find it convenient to use
also $(u) = 1 - e,

We recall that a subset A of L° is solid (in L) if for every function
uw € A, A contains the order interval [u] = {v € L% : |u| € |[u] ae.]}.
A topological vector subspace of L9 is solid (the term locally solid is also
used in this context) if its topology is defined by a base of neighborhoods
of the origin which are solid. Thus the adjective “solid” refers to both the
space as a set and to its topology. An F-norm g in LY is solid (or monotone)
if o(v) < o(u) whenever |u| < |u| a.e. Clearly, (1.3) defines a solid F-norm
on L° and the space LY is solid (by default).

The notion of solidity can be introduced similarly with L® replaced by
any vector lattice; however, we do not need this more general setting.

We will need the following proposition.

Prorosirion 1.1 {[Dr]). Suppose that L is o solid metric vector space
algebraically included in L°(S). Then the inclusion L C L9(S) is continuous.

The proper domain D is equipped with the topology which is defined
by the solid F-norm

(L.4) ox(u) = os(u) + o (| K {|u)).

With this topology, Dk is a solid complete vector subspace of L9(S).
Also, K : Dg — L%T) is continuous. For the proof and for a further
discussion, we refer to [AS].

We note at this point, to avoid possible confusion, that the topology of
Dk is not the graph topology of the operator K (or | K'{). The latter topology
is usually not complete and the abstract completion of Dy in this topology
cannot be identified with a subspace of L°. These difficulties appear already
in the case of the operator with kernel k(¢,s) = 1 and the space S which
does not reduce to finitely many atoms (i.e., Ku = [, uds and the image of
K, KDy, consists of constant functions).

Our interest in the space Dy is motivated by the conviction that this
space is basic for the understanding of the integral operator K. Because of its
simplicity and generality, the use of the proper domain streamlines a number
of results obtained by other—sometimes more sophisticated—means. Several
examples to illustrate this claim are given in Section 5.
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We remark that proper and extended domains can also be introduced
for operators other than integral-—we return to this theme in Section 5.

We now outline briefly the questions to be addressed in this paper.

Since LY is locally convex only if the underlying measure space is purely
atomic, the topology of Dx cannot, in general, be expected to be locally
convex: for instance, when k = O-—a case excluded throughout this paper—
we have Dy = LP,

If T is purely atomic, then Dy is defined by finiteness of each of the
seminorms u — {|K||[w[(?) : t € T}. This family of seminorms defines the
topology of Dy and this topology is Jocally convex. Since T is countable,
Dy is then a countably weighted L' space.

In general, the definition (1.2) appears, at least formally, to be still equiv-
alent to the condition of the finiteness of the family of weighted L' semi-
norms u — |K||u|(t), t € T. If the quantifier “a.e.” in (1.2) was replaced by
“for every 7 (as can be done in many concrete examples), then D g would
be locally convex by the definition,

The aim of this note is to clarify what, if anything, remains of these two
propositions in a general situation.

On the positive side, we prove that Dy coincides piecewise with L1—a
notion to be made precise below—and, as a consequence, Dy has a sepa-
rating dual; this is a left-over convexity property. We also prove that Dy is
a Banach space if and only if it is a weighted L1

On the other hand, we show by means of three examples that even for
some “very nice” kernels &, Dy need not be locally convex. This seems to
emphasize a claim, already made in [R], that F-normed spaces (rather than
Banach or locally convex spaces) provide a natural framework for the study
of integral operators.

In the concluding remarks in Section 5, we elaborate somewhat on our
motivation for the study of domains of integral operators by giving a few ex-
amples of the usefulness of this concept. We also malke some simple remarks
about the Zak transform (which is not an integral operator!); we characterize
its domaing—proper and extended. It turns out that the proper domain. of
the Zak trangform hag a trivial dual and thus does not inherit the property
which for proper domains of integral operators is established in Section 2.

Throughout this paper, by a subset of a measure space we always mean
a measurable subset, by a function we mean a measurable function and we
use the symbol | E| to denote the measure of the set F and 1z to denote the
characteristic function of E.

2. Dy is piecewise L!. If Dy = {0} or if Dg = LP(S), then there is
not much more that one can say about Dy and we refer to these two cases
as trivial.
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In the first case we say that K is singular.

The second case occurs if and only if for almost every ¢ € T, the set
{s:k(t,s) # 0} consists of finitely many atoms ([AS], Th. 5.2i)) or is empty
when § contains no atoms.

To avoid the two trivial cases or variants thereof (e.g. the partly singular
case, see [AS]), we impose the following conditions on K.

(2.1) Foru € Dg,|Klju| = 0 implies u = 0.
(2.2) There 15 a funciion f € Dy such that f >0 a.e. on S.

Condition (2.1) is easily translated into an equivalent condition on the
kernel k.

(2.1 [{t e T :k(t,s) # 0} >0 forae s&b.
Remarks. 1) (2.1) is equivalent to the condition that the semi-F-norm
(23) Dic 5w or(|K|lu}

is actually an F-norm. Since with this F-norm Dy is a solid metric subspace
of L9, it follows from Proposition 1.1 that the F-norm (2.3) defines on Dy
a topology stronger than that of L% and hence the F-norms defined in (2.3)
and in (1.4) are equivalent on Dg.

2) If K satisfies (2.2), then K is called nonsingular ([AS]). There is no
simple translation of (2.2) into a corresponding property of the kernel k.

We now illustrate the significance of the conditions (2.1) and (2.2) in the
context of convolution operators.

In this case, T = § = R with the Lebesgue measure {or more generally
T = S is a locally compact group with the Haar measure) and k(¢,s) =
&(t — s), where & is a function of the single variable. In other words,

Ku(t) = kxu(t) = f k(t — s)u(s)ds.
R

ProrosiTion 2.1. Suppose that K is an operator of convolution. Then

(i) K satisfies (2.1) if and only if k0 on a set of positive measure.
(ii) K satisfies (2.2) (K is nonsingular) if and only if & € L},,. In this
case Dy C L}QC.

(i) is obvious, since for every s the set appearing in (2.1') is the transiate
s+8 of 8 ={oeR: k(o) +# 0}

For the sake of completeness, we recall a short proof of (ii). We may
assume that s > 0.

Because of the commutativity of the convolution product, the second
statement of (i) follows from the first. The “if’ part is immediate—if &
is in L} ., then every L' function with compact support is in Dg. On the
other hand, if K is nonsingular, then we can find a function f > 0 a.e.
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such that K f < oo a.e. We can next find a function ¢ > 0 a.e. such that
JpgE S (t) dt < co. By the Fubini theorem, the last integral can be written
in the form fm(fk(j’(s ~ t)g(t) dt)x(s) ds. Replacing f by min(f, f1) and g
by max(g,1), where fi € L%, fi > 0 a.e., we may assume that f€L'and
that g &€ L®; then the integral in parentheses defines a continuous function

of s which is positive everywhere and it follows that k € L.

In particular, when x(t) = t~*, the corresponding operator (the Hilbert
transform) is singular (this i3 a motivation for our use of the terms singular
and nonsingular).

Except for the situations when k == 0 or when D g = {0}, both conditions
(2.1) and (2.2) can be realized by the following modifications of the measure
space .

The case when Dy # {0} but (2.2) does not hold is discussed in [AS]—in
this case S can be replaced by the support of the space Dy, i.e., the com-
plement of the maximal subset of § on which all functions in. D g vanish a.e.

If {2.1) or equivalenly (2.1') fails, then S can be replaced by its subset
{se8:{{t €T :k(t,9) % 0} > 0}, the support of the (possibly extended
valued) measurable function s - |{t € T': k(t, s) 5 0}|.

From now on we asaume that these modifications have been made and
that K safisfies the conditions (2.1) and (2.2),

Since the definition of Dy invelves only the operator u — |K|u|, we
simplify notations by assuming that, unless otherwise stated, k > 0.

As usual, we denote by u|E the restriction of a function % to a set E.

PROPOSITION 2.2. Suppose thot K satisfies (2.1). Then there is a se-
quence Sy, of subsets of S with S, T 5 such that u|S!, € L1(S)) for every
U € Dy and for everyn =1,2,...

Proof. Replacing the measures ds and df with equivalent finite measures
and suitably modifying %, we may assume that [T, ]5] < co.

Forn=1,2,... welet S| = {s € S: [{t: k(t,8) > 1/n}| > 1/n}; by
the hypothesis (in the form of (2.1')), the sequence 57, increases to S (it
may happen that S, 4 empty for a finite number of indices n), If u € Dg,
u 2 O, then there exista a sequence T4, T T {depending on u) such that
Jr, Ku(t)dt < oo for m = 1,2,... Denote by T),(s) the set {¢ : k(t,3) >
1/n}. :

For fixed n, we now choose m so that |[T\T\.| < 1/(2n). Then [T, N
Ta(8)f > 1/(2n) for every s € &, and by the Fubini theorem, :

. 1 1
”jm(z.)dtg = [ [ uwe)dtds> 55 [ u(s)ds,
Ton 51, TnOTn(s) S,
and u|S], € L{(S)), as claimed.
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ProposiTiON 2.2'. Suppose that K satisfies (2.2). Then there is o se-
quence Sy, of subsets of S with 5] T § such that for n = 1,2,... and for
every u in L'(SY) the function u extended by 0 to S\S!! is in Dy.

Proof. Let f be as in (2.2). Then there exists ¢ € L¥T), g > 0
a.e., such that [, gKfdt < oo. It follows from the Fubini theorem that
K*g(s) = [1k(t, s)g(t) dt < o0 a.e. (g is in the proper domain of the trans-
posed operator K*). We can now define S, = {s € §: K*g(s) < n} (it may
happen that S is empty for a finite number of indices n). If u € L'(§"),
u > 0, then

n fudsz ffk(t,s)g(t)dtdefg(i)dt f k(t, s)u(s)ds,

sy s, T T sy
and fSii k(t,s)u(s)ds < 00 a.e., as claimed.

Letting S, = 8] N SY, where S and 5 are the sets comstructed in
Propositions 2.2 and 2.2/, we get the following.

THEOREM 2.3. Suppose that K satisfies (2.1) and (2.2). Then there ex-
i5ts a sequence Sy, of subsets of § with S, T 8 such that Dy |8y = L}(S,) for

n=1,2,... In particular, the continuous linear functionals on Dy separate
its points.

Remarks. 1) In the context of Theorem 2.3, we can consider the function
space L'({S,}) defined by L}({S,}) = {u € L% : uS, € LY (8y) for n =
1,2,...}. With the obvious sequence of seminorms, this is a locally convex
F-space which by Theorem 2.3 contains Dy continuously. Also, if k(t,s) =
ls,(s), t = 1,2,..., then Dk = L'({S,}). However, as will become clear
from the examples in Section 3, the inclusion D ¢ L1({S,}) is in general
proper.

2) Replacing the increasing sequence S, with the partition Sy, S\91,
S3\83,... we can obtain an analogue of Theorem 2.3 involving a partition
of 8, rather than a sequence of subsets increasing to 5.

As corollaries to Theorem 2.3, we mention the following results which
support the opinion expressed in Section 1 concerning the usefulness of the
concept of proper demain. '

Theorem 2.3 implies that if 0 < p < 1 and if § is nonatomic then LP
cannot be contained in the proper domain of an integral operator (except
vxfhen k=0 and p = 0). For p = 0 this was observed in [AS]; the argument
given there is valid for 0 < p < 1 (and also shows that L cannot be
contained in the extended domain of an integral operator).

{A? independent proof of the preceding remark, for 0 < p < 1, is given
in {Sc].
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These results were generalized by de Pagter [P} as follows.

Let M and L be solid vector lattices, M < L°(S), L ¢ LYT) and let
K be an absoluie infegral operator, i.e., |K| : M -~ L. Then the order
continuous functionals (normal integrals) separate points of M.

The last statement of Theorem 2.3 supersedes de Pagter’s result.

Moreover, for p > 1 we get the following remark. If S is not purely atomic
and p > 1, then Dy LP(S).

We will see in Section 4 that the preceding condition on S is not needed,
except for the trivial case when S consists of finitely many atoms (hence L°
is finite-dimensional).

We conclude this section with another observation concerning conditions
{2.1) and (2.2).

As it is of general interest to see how various properties of K affect
properties of the transposed operator K*, we mention the following result.

K is nonsingular (i.e., sotisfies (2.2)) if and only if the transposed op-
erator K* with kernel k*(s,t) = k(%, ) is nonsingular (see [AS]). If this is
the case, then K* satisfies (2.1) if and only if Kf > 0 a.e., where f is the
function appearing in (2.2) (i.e, f € Dy, f >0 a.e.).

Here is a short proof. Sufliciency: Suppose that K f > 0 a.e. and choose
g>0ae, g€ Dgw, such that f.’r gK fdt < co. Suppose now that K*v =1
for some v > 0. Let v, = min(eg,v), ¢ > 0. We see then that K*v, = 0 and
that fT v K fdt = 0; hence v, = 0 for all ¢ > 0 and therefore v == 0. On the
other hand, if K* satisfies (2.1), then S; = {s : k(t,8) > 0} is of positive
measure a.e. and

Kf(ty= [ k(t,s)f(s)ds >0 whenever |Si| > 0.
S

3. Examples of non-locally convex domains. We present here three
examples illugtrating the fact that, in spite of the residual convexity property
stated in Theorem 2.3, the proper domains of integral operators satisfying
(2.1) and (2.2) need not, in general, be locally convex.

The first example is the simplest and the most direct. It uses the standard
argument showing that the topology of LV (on a measure space which is not
purely atomic) is not locally convex. :

The second example deals with the convolution operator with a (smooth)
I! kernel.

In the third example, we present & construction of an operator whose
proper domain is €7, 0 < p < 1. The construction is related to classical re-
sults on positive embeddings of £ in LY and may be of independent interest.
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EXAMPLE 3.1. We take S = {1,2,...} with the counting measure and
T = [0,1) with the Lebesgue measure. For a sequence of integers m,, such
that m, 1 ~ m, — 0o 38 B — co, we consider the sequence of partitions
{Impt1s -+ Iy, } of T into (half open) intervals of equal length 1/(my,, -
Mmy), n=1,2,..., and define k(¢, s) = 1y, (t). The topology of the sequence
space Dy is defined by the F-norm {u(s)} — gr(K|ul), where gor is as
n (1.3). It is easy to see that Dy is not locally convex: the sequences
w(s) = (Mnt1 ~ Ma)ble, § = M + 1,0, Mpgy (With 8, denoting the
Kronecker symbol), have F-norms as small as we please if n is sufficiently
large, yet their arithmetic means

(Mpt1 ~ mn)ml(umn«{-l oot Uimgy,)

are identicaily 1 on 7.

Remarks. 1) The above example can be adapted to a nonatomic situ-
ation: if § =R, then we let K(t,s) = 15, (€)1),141)(s).

2) One natural choice of my, is my = 2" (the Haar scale}—the example
so obtained appears to be promising for a further study of Dy Tt would be
of interest to describe Dy and its topology directly in terms of its elements,
rather than in terms of their images by K. We note here that Dy cannot
be described by a simple growth condition and that it contains sequences of
arbitrarily rapid growth, provided they contain sufficiently many zeros.

3) There are several ways of producing oscillating kernels with modulus
equal to the kernel k(t, s) defined above. One of them is to replace (%, s) by
(—1)*k(t, 5); another one (still assuming that m,, = 27) is to let ky(t,8) = 1
on [27™r, 27" + 271 and ky (¢, 8) = —1 on [27™r 427, 27 (r 1 1))
(thus ki(t,8), s = 1,2,..., is the orthogonal Haar sequence). In each of
these two cases, the argument above shows that the extended domain of
the operator K cannot be locally convex. This observation would be of
some interest if we knew that the extended domain in one or in both of
the two examples was larger than the proper domain. It is an interesting
problem to determine the extended domains in these two (and in other
similar) cases.

For the discussion of the next example we have to recall the following
known result which will also be used in Section 4.

THEOREM MN (Maurey-Nikishin, [N]). Suppose that |T| < oo and that
C is a bounded convez set in L9(T) = {u € L%(T) : u > 0}. Then for every
€ > 0 there exist o subset T, of T and o number M, > 0 such that for all
fe€C, we have ng fdt < M,.

For a o-finite space T', Theorem MN implies the following:
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TueoREM MN'. For a set C' as in Theorem MN, there exist sequences
T, and My, with |Ty| < co, T, T T, and M, > 0 such that Jp, Fdt <M,
for all f € C and all n.

ExaMPLE 3.2. Given three sequences 6, — 0, £, —= 0, n,y — 00 ag
|m| — oo (m = 0,£1,:2,...), we denote by I, the characteristic function
of the interval [n — 6,,n+-6,] and consider (as in Section 2) the operator of
convolution Ku = & *u with kernel & = 377 I, For an integer r > 1,
define f™ = 3.7 .o MnJm, where J,, denotes the characteristic function of
the interval [m/r = &g, m /7 -+ £,,). The sequences 6y, &y, nm will be chosen
below.

The support of a convolution being the sum of the supports of its factors,
In # Jp 18 O outside of the interval

(32) [n + 'm'/T “571._5m,:n+m/?' + 6, +6m].

It follows that the (double) sum  * f7(t) contains an infinite number of
nonzero terms only if ¢ is a fraction of the form ¢/r with g integer. Hence
the sum % f7 is finite outside of a countable set and f™ € Dx. On the other
band, if I is any open interval containing a fraction ¢/r, then there is an
index n(I) such that for [n| 2 n(I) the intervals in (3.2) with n4m/r = g/r
are all contained in J. The integral of a convolution being the product of
the integrals of its factors, we have

f w* fTdi > Z nq—nreq—?zrﬁn-
i

Inlzn(I)

Choosing 6, = 27"g,, = 27" /r and #,, = 2™, we see that the sum on the
right hand side is infinite for any choice of n(J). It follows that x * f” is not
integrable over any interval containing a fraction of the form g/r.

We now show that the existence of such a function 7 € D implies that
Dy cannot be locally convex,

To this end, let u,(s) = u{s +7), w € LY(S), 7 € [0,1]. It is easy to
see that the function [0,1] 3 7 ~ u, € LO is continuous. Let now u € D,
u 2 0. Bince K(uy) = (Ku),, the finction 7 — u, € Dg is also continuous
and it follows that the sot U/ = {u, : v € [0, 1]} is bounded in Dg (it is
actually compact). Suppose now that Dy is locally ¢convex. Then the convex
hull of U, ¢[U], is bounded in Dy, and so is its image K(c[U]). Applying
Theorem MN to the set K(c[l/]) ¢ L%(T) (in fact we use the resulting
estimate only for functions in KU), we conclude that there is a set T of
positive measure and a constant M such that [, Ku,(t)dt < M for all
7 € [0,1]. Integrating with respect to » and using the Fubini theorem, we
conclude that [, fdt Kult+r)drdt < M, It follows that for every u € Dy,
Ku is integrable over an interval of length 1 and since any such interval
contains a fraction of the form g/r, this leads to a contradiction when u = f7.
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Remarks. 1) Choosing a sequence A, > 0, r = 2, 3,..., such that
F=3_Af" is convergent in Dy (here we use the completeness of D K), We
can construct a function f € Dg such that Ku = & * f is not integrable
over any interval.

2) By the construction, the function x belongs to L'. By “rounding off
the corners of its graph” one can modify % so as to make it arbitrarily
smooth.

3) The above example should be compared with the observation recorded
already in Section 1. The proper domain of the convolution operator with
kernel x which is bounded and has compact support is Li,, (which, of course,
is locally convex).

In the third example we make use of p-stable independent random vari-
ables constructed by means of the following classical theorem of Bernstein
which we quote here for the sake of completeness; for details we refer to [F].

A function % : [0, 00) — [0,00) is said to be completely monotone (c.m.)
provided it is infinitely differentiable and satisfies the condition (—1)™y™) (X
>0forall x>0and foralln=20,1,2,...

THEOREM. 4 function ¥(X}, A > 0, is the Laplace transform of a prob-
ability distribution F on [0,00), () = Jo € dF () = L(dF)(X), if and
only tf 1 is completely monotone and ¥(0) = 1.

If $(A) = e%Y), then ¢ is c.m. if the derivative ¢’ is c.m. This is, for
instance, the case when ¢(A) = 3, 0 < p < 1.
This choice of ¢ gives rise to the following

EXAMPLE 3.3. For 3 and ¢ we use the Bernstein theorem to conclude the
existence of a probability distribution F' such that exp(—AP) = L{dF)()\).
By a standard argument we construct then a sequence {k(t,8):5=1,2,...}
of nonnegative independent random variables on [0,1] with distribution F;
then fol e ) gt = exp(—MP) for s = 1,2,... We consider the integral
operator K with kernel k(t,s), where § = {1,2,...} and T = [0,1]. Let
J = {{u(s)} s uls) 20, {s: uls) > 0}is finite}. If {u(s)} € J, then,
because of stochastic independence,

1 1 '
(34) [ (1—eHuy g = f (1——&"21"(3)’“(‘“""))dtm1—-exp(Zu(3)p),
0 0

and it follows that the identity mapping ## 2 7 — 7 o Dx is an isometry
if Dg is equipped with the appropriate F-norm (note that u — gr (| K| |u}),
with g7 as in (1.3), i an F-norm on Dy because of (2.1)) with &(z) =
1—e~ 1ol and if ¢ is equipped with the F-norm appearing on the right hand
side of (3.4). Since the set J is dense in D &+ (by the dominated convergence
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theorem) and also dense in €%, it follows that Dy, = ¢ . Both spaces being
solid, we conclude that Dy = £7.

Remarks. 1) It would be interesting to see if by some other choices of
the function ¢ one could construct operators whose domains are sequence
spaces other than £7,

2) The Bernstein theorem shows that the argument above fails for p > 1;
in the next section we confirm thai this example is truly exceptional, and
that for » > 1 the space €7 cannot occur as a domain of an integral operator.

4. Weighted ' spaces. In this section we characterize Banach spaces
which can occur as proper domains of integral operators. Qur conclusion is
that, except for the curious example 3, the only LP space which may occur
as a proper domain ig L1

Throughout this section, L is a vector subspace of L°(S), We recall that
the Kothe dual L' of L is defined by L' = {v € L°(S) : [ |vu|ds < oo for
allu e L}.

If L is a solid Banach space then, with the natural norm, L' is a solid
Banach space as well. In this case L' is a closed subspace of the dual space L*.

We say that L s a countably weighted L' if there is a sequence g, > 0,
9 € L', such that L = {u € L% : [; galu|ds < oo for all n} and such that
Js galulds = 0 for all n implies that v = 0 (or equivalently that |J, {s :
gn(s) > 0} = 8). If L is a countably weighted L', then—with the obvious
topology—it ig a solid locally convex F-space.

For example, the space L'({S,}) with S, T § and its special case L
are countably weighted L* spaces.

A solid Banach space L i3 a countably weighted L' if and only if L is an
L} with weight.

The “if” part is obvious; to verify the “only if” part, we take the sequence
{gn} 28 in the definition and define g = ¥ cngn where the sequence a, > 0
is 50 chosen as to make the series converge in Z’. Then L is seen to be the
space L1 with the weight g.

TuroREM 4.1, Let K satisfy (2.1) and (2.2). If Dy is o Banach space,
then it is an L' with weight. Conversely, every L with weight is the domain
of some integral operaior.

Proof. The second part is immediate (the assumption that L is a Ba-
nach space is not needed). We can take T' to be a single point and let
k{t,s) = g(s), the function appearing in the definition (or T = {1,2,...}
and k(t, 8) = g:(s)).

To prove the first part, we consider B.., the set of all nonnegative func-.
tions in the unit ball in Dg. Since Dy is assumed to be a Banach space,
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this i3 2 bounded subset of Dy and ¢ = KB, ig a subset of L0 satisfying
the conditions of Theorem MN (recall that & > 0}. We use this theorem to
find sequences T, T I and M, > 0 such that an Kudt < M, for all n and
for all u € By. It follows that the functions gn(s) = [ k(t,s)dt (which
are finite a.e. because of (2.2)) belong to the Kothe dual of Dy and, by
the Fubini theorem, that the condition [ gn(9)|u(s)|ds < oo for n=1,2,...
implies that u € Dg. Also, if [ gn(8)|u(s)|ds = 0 for all n, then |K|[u| =0
and, by (2.1), u = 0.

We now list some examples of function spaces which are not weighted L1
and which therefore cannot occur as proper domains of integral operators.

Unless § consists of finitely many atoms, L? (or ) (possibly with
weight} is an L' with weight if and only if p = 1. We already derived a
similar conclusion from Theorem 2.3 under the additional assumption that
S was nonatomic.

The amalgam space £#{L%) is an L' with weight if and only if p = g = 1.

An Orlicz space is an L' with weight if and only if it is the L! space
(ie., the weight is equal to 1).

L{{8y)}) does appear as the proper domain of an integral operator (see
Section 2) and Lj . is the proper domain of the convolution with any kernel
& which is in L' and has a compact support of positive measure,

QUESTION. If D is locally convex, is it a countably weighted L7

5. Concluding remarks. In the next few paragraphs we elaborate on
the remarks we made in Section 1 about the importance of the notion of the
proper domain.

The following result can be found in [AS].

THEOREM 5.1. Let L € LY%(S) and Ly < LO(T) be F-spaces with both
inclusions continuous. Suppose that L C Dy (set theoretic inclusion) and
that KL C Ly. Then the operator K : I, — Ly is conlinuous.

The theorem is an immediate consequence of the completeness of Dy
and of the closed graph theorem. It remains valid whenever the cloged graph
theorem is valid for operators from L to L;.

The following are a few examples of known results which are special
cases of Theorem 5.1, We formulate only the hypotheses under which these

results were obtained, the conclusion in all of them being the same as in the
theorem.

Banach ([B], 1922): L and L, are Banach spaces satisfying additional

properties. This result was an inspiration to the introduction of the proper
domain,
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Korotkov ([K], 1983): L and L are solid Banach spaces (Banach func-
tion spaces) with Ly satisfying the so-called Gribanov condition (which is
superfluous because of Proposition 1.1).

Halmos and Sunder ([HS], 1978): L and L; ave Hilbert spaces.

Zaanen ([Z], Th. 96.9, 1978; sce also [MN]): L and L, are ideals (i.e.,
solid vector subspaces of L") which are Banach lattices.

The continuity statements in [Z], [MN] and other literature on kernel
operators in Riesw spaces impose usually the condition of regularity. A kernel
operator (i.e., an iutegral operator) is regulor (or an absolute kernel operator)
as an operator from a solid space L into another solid space L; provided
L C Dy and |K[(L) € L. The point of Theorem 5.1 is that neither solidity
of L and L nor the regularity of K {(when L and L; are solid) is needed for
the conclusion.

We next give one example of a situation where the concept of the proper
domain of an integral operator simplifies considerably the original proof of
an interesting known result.

As usual, K™ denotes the operator with the transposed kernel &*(t,s) =
k(s,1t).

TaroreM (Sunder [Suj, 1978). Let S = T and let K be an integral
operator with a kernel k = 0 such that for some normed solid space L we
have L C Dg N Dgw and K and K* are bounded operators from L to L.
Assume that there is o function g € L such that g > 0 a.e. Then K is a
bounded operator from L2 to L? (in particular L? C Dg) and |K ||z <
(1&~K])2)2.

Proof. By Fubini's theorem (||Ku|3 = (Ku,Ku) = (K*Ku,u) <
|l K* K| |ul|?, where (u,v) = [wu¥) it is sufficient to prove that K*K is a
bounded operator from L* to L* with an appropriate bound for the norm.
This is so if K* K satisfles the well known Schur test which we state here in
the special form (see e.g. [Ga] for the general formulation):

Let & = T and let K be an integral operator with positive symmetric
kernel. Then L2 ¢ Dy and K 1 L — 2 is bounded if and only if there is
a function ¢ € D with ¢ > 0 a.e. and a constant € such that K¢ < C¢.
Then || K| < ¢,

To construct snch a function ¢ for the operator K*K (which clearly
has a symmetric kernel), we take an arbitrary & > 0 and we let ¢ =
Lo | KK ||z, 4 ) K*K)*g, where g is the function appearing it the
hypotheses of the theovem. This is a series with nonnegative terms whose
partial sums form a Cauchy sequence in L (note: we do not assume that L
is complete). Proposition 1.1 implies that the series is convergent in LY(8).
The same argument shows that the series K*K ¢ is also convergent in L%(S)
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and it follows that ¢ € Dg-x and that K*K¢ < (||K*K| + £)¢, which
completes the proof.

The concept of proper (and extended) domain together with some of its
properties can be extended to some operators in L? which are not necessarily
integral. Rather than exploring this idea in a general setting, we restrict our
attention to the Zak transform (see e.g. [D]). The point we are making is
that the results which were established in the preceding sections fail in this
case and are therefore peculiar to integral operators.

The Zak transform (also known as the Weil-Brezin map) plays a role
in applications, e.g. in solid state physics and in signal processing. It is not
an integral operator but some of the considerations concerning domains of
integral operators still remain meaningful for this transform.

The Zak transform Z is defined on functions of the real variable and its
range consists of functions defined on the square @ = (0,1) x (0,1); it is
given by the formula

o0
Zu(s,t) = Z u(s — 1) exp(2milt).

l==—00

It is natural to define the proper domain of Z as follows:

o0
Dz={ueI'®): 3" fuls—1)| = | Z|ju(s)| < oo for . s € (0,1)}.

=00

Z can be defined in a similar manner in LY(R"™), n > 1.

As in the case of integral operators, equipped with the F-norm v —
or(|Z{[ul), Dz is a solid F-space and for every F-subspace L of Dy
such that L is continuously included in L°(R), Z is continuous from L
into L°(Q).

It is clear that Dz contains all measurable functions with bounded sup-
ports; it is also clear that it contains the spaces LP(R) for 0 < p < 1. Hence
there are no continuous linear functionals on D z other than zero.

The usefulness of the operator Z lies in the fact that it can be extended
to a unitary operator from L2(R) onto L*((). It is thus meaningful to look
for a maximal extension of Z. For the lack of a more general class of spaces
with the consistency property, we define such an extension in the class of
solid spaces.

As in the case of integral operators, we define the complete golid group
norm gz on LY(R) by Fg(u) = or(u) + sup{oq(Zv) : v € Dz, v| < |ul},
and we define the extended domain D5 as the closure of D z in LY equipped
with this norm.

Equivalently, one could define this extended domain as the completion
of Dz in the weakest solid topology making the operator Z : Dy — LO(R)
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continuous; such an abstract completion can then be realized as a subspace
of LY(R}. .

As in the case of integral operators, D'y contains continuously ail the
solid spaces to which Z can be extended by continuity.

We have the following characterization of the extended domain of Z:

Dz = LY(¢4R)

= 1) = {u e L'®): Y fua- 1P = ui(sf <oone)

)

the topology of Dy being defined by the F-norm u — 2(0,1) (11)-

To prove the inclusion of LY(£2) in Dy, consider any u € L°(£2); then for
ae. s in (0,1) the series Zu(s,t) is convergent in L?((0, 1)) and therefore it
is convergent in LY(@). It follows from the uniform boundedness principle
that Z extends to a continuous operator from L°(£2) into L°(Q) and, by the
maximality of Dz, we get the announced inclusion.

The proof of the reverse inclusion is similar to that used for integral oper-
ators:if u € Dz then for any sequence £, = =1 the sum ¥ Enlipnntt € Dz
and from the known necessary condition for the unconditional convergence
of serfes in LY, we gee that u € LV(£?),
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o-fragmented Banach spaces II
by

Jo B JAYNE (London), 1. NAMIOKA (Seattle, Wash.)
and C. AL ROGERS (London)

Abstract. Recent papers have investigated thie properties of o-fragmenied Banach
spaces and have sought to find which Banach spaces are o-fragmented and which are not.
Banach spaces that have a norming M-basis are shown to he o-fragmented using weakly
closed sets. Zizler has shown that Banach spaces satisfying certain conditions have locally
uniformly convex norms. Banach spaces that satisfy similar, but weaker conditions are
shown to be o-fragmented. An example, due to R. Pol, is given of a Banach space that is
o-fragmented using differences of weakly closed sets, but is not o-fragmented using wealkly
closed sets.

1. Introduction. Let X be a normed vector space and let 7 be a locally
convex topology on X. We say that (X, 7) is o-fragmented if, for each £ > 0,

o0
(1) X =[] X,

k=1
each set X having the property that each of its non-empty subsets has a
non-empty relatively 7-open subset of norm diameter less than . If § is a
family of subsets of X and the sets X} in (1) can always be taken from the
family S, we say that {X,7T) i8 o-fragmented using sets from S. We shall
be most interested in the case when X is a Banach space, T is its weak
topology and (X, T) is o-fragmented: in this case we shall say that X is a
o-fragmented Banach space.

In a series of papers {7-11] we have investigated the properties of
o-fragmented Banach spaces and shown that certain classes of Banach spaces
are o-fragmented and that Banach spaces of some other classes are not
o-fragmented; see also [6, 12, 16, 17]. In this note we show that some fur-
ther clagses of Banach spaces have this property.

We first consider a Banach space X that has an extended Markushevich
basis {z : v € I'}. Then after a simple normalization (see [18, p. 673 and
p. 691]) {z., : 7 € I'} is a family of points of X whose finite linear combina-
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