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o-fragmented Banach spaces II
by

Jo B JAYNE (London), 1. NAMIOKA (Seattle, Wash.)
and C. AL ROGERS (London)

Abstract. Recent papers have investigated thie properties of o-fragmenied Banach
spaces and have sought to find which Banach spaces are o-fragmented and which are not.
Banach spaces that have a norming M-basis are shown to he o-fragmented using weakly
closed sets. Zizler has shown that Banach spaces satisfying certain conditions have locally
uniformly convex norms. Banach spaces that satisfy similar, but weaker conditions are
shown to be o-fragmented. An example, due to R. Pol, is given of a Banach space that is
o-fragmented using differences of weakly closed sets, but is not o-fragmented using wealkly
closed sets.

1. Introduction. Let X be a normed vector space and let 7 be a locally
convex topology on X. We say that (X, 7) is o-fragmented if, for each £ > 0,

o0
(1) X =[] X,

k=1
each set X having the property that each of its non-empty subsets has a
non-empty relatively 7-open subset of norm diameter less than . If § is a
family of subsets of X and the sets X} in (1) can always be taken from the
family S, we say that {X,7T) i8 o-fragmented using sets from S. We shall
be most interested in the case when X is a Banach space, T is its weak
topology and (X, T) is o-fragmented: in this case we shall say that X is a
o-fragmented Banach space.

In a series of papers {7-11] we have investigated the properties of
o-fragmented Banach spaces and shown that certain classes of Banach spaces
are o-fragmented and that Banach spaces of some other classes are not
o-fragmented; see also [6, 12, 16, 17]. In this note we show that some fur-
ther clagses of Banach spaces have this property.

We first consider a Banach space X that has an extended Markushevich
basis {z : v € I'}. Then after a simple normalization (see [18, p. 673 and
p. 691]) {z., : 7 € I'} is a family of points of X whose finite linear combina-
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tions are norm dense in X, and there is an associated family {f, : v I'},
called the coordinate functions, in X* with

[Hl=1 ~eTl,
folay) =1, ~vel,
Fylzs) =0, ~vel, bl v+#§,
and
ﬂ{kerfw 1y € I't = {0}
Such a basis is called an M-basis, for short.

Let F' be the norm closure of the linear span of {fy : v € I'} in X*. The
formula

ll=lll = sup{f(z) : f € F, ]| <1}

defines a new norm on the linear space X satisfying 0 < [||z|| < ||z|| for all
z # 0 in X. Note that X is not necessarily complete under ||| - ||, the norm
associated with the M-basis. The M-basis is said to be norming if the norm
[lj - lll i equivalent to the original norm || - ||, but we do not yet assume that
this is the case.

We introduce a locally convex topelogy on X. For each ¢ > 0 and each
finite subset A of I" write

_ N{Aje) = {z: [fs(z)| <efor § € A).
We form a locally convex topology on X by taking these sets N(4;¢) as a
base for the neighbourhoods of 0 in X. The condition (({ker f, : v € I'} =
{0} ensures that we have a Hausdorff topology. We call this topology the co-
ordinate topology. Note that coordinate closed sets are automatically weakly
closed.

We can now state our first theorem.

THEOREM 1. Let' X be a Banach space with a norming M -basis. Then
there 4s a coordinate compact subset Xy of X with U,f:;__l nXpy norm dense

in X. The space X with its coordinate topology, and so also with its weak

tapology, is o-fragmented using coordinate closed sets, and so also using
weakly closed sets.

This result can be regarded as a refinement of a result of John and Zizler
[10, p. 687] showing that a Banach space with a norming M-basis has an
equivalent locally convex norm, and so by [8, Theorem 2.1] is o-fragmented
using differences of weakly closed sets.

Note that in the proof of Theorem 1 we study Banach spaces with
M-bases that are not necessarily norming, and we obtain some information
about the structure of such spaces.

In §3 we give an example of a Banach space with a locally uniformly
convex norm that is not o-fragmented using weakly closed sets. Our original

icm

o-fragmented Bonoch spaces IT 71

example was a space of the form C(K) with K derived from a tree in the
spirit of Haydon [5]. Subsequently R. Pol showed us a simpler and better
behaved tree. We are grateful to Professor Pol for allowing us to reproduce
his example in the present paper.

Examples are given in [3, p. 261] of Banach spaces that have locally
uniformly convex norms but admit no one-to-one bounded linear maps into
any ¢o(I") and, a fortiori, have no M-bases. The example of Pol, which is
important for our gemeral theory, provides another example of a Banach
space with a locally uniformly convex norm that has no M-basis.

Note that Haydon [5, see also 3, p. 325] has given an example of a Banach
space (with a Kadec norm) that is o-fragmented using differences of weakly
closed sets, but has no equivalent strictly convex norm.

Our second theorem takes a form suggested by the following theorem of
Zizler [19].

THEOREM Z. Let X be a Banach space with o family {Ty : v I'} of
bounded linear maps T, : X — X with the following properties.

(i) For each x € X, the map on I' given by v — || Tyz|| belongs to co(I).
(i) If x € X, then z belongs to the norm closure in X of the linear span
of {Tyx:vyel}.
(iil) For each v € I' the normed space T, X admits an equivalent locally
uniformly convez norm.

Then X admits an equivalent locally uniformly conver norm.
We prove

THEOREM 2. Let X be a Banach space with o family {T : v€ I'} of
bounded linear maps Ty : X — X with the properties (i) and (i) of Theo-
rem Z and elso the property (iv) below.

(iv) For each v € I', the norm closure X, of TyX 45 a o-fragmented
Banach space.

Then X is o-fragmended.

Further, if the Banach spaces in (iv) are o-fragmented using weakly
closed sets, then X will be o-fragmented using differences of weakly closed
sets,

It is easy to deduce from this theorem that the usual ¢y or £7, 1 < p < oo,
SUInE,
co{Xy:vel} or P{X,:vel},
of a family {X, : v € I'} of Banach spaces that are o-fragmented (or
o-fragmented using weakly closed sets), are themselves o-fragmented (or
o-fragmented using differences of weakly closed sets). These conclusions are
similar to but not identical with Theorems 6.1 and 6.2 in (8].
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Using a result of John and Zizler we obtain the following corollary.

CoOROLLARY 1. Let X be a Banach space with o transfinite sequence

{P,: 0 <~ £ I'} of projections of X into itself satisfying:
(1) sup{| P[] : 0 < v < T} < o3

(ii) PoPs = PsPy =Py for 0 € a £ <M and Py =0

(ili) PsX is the norm closure of the linear span of {PyX : 0 € v < 8}
when G is o limit ordinal with 0 < § < I'y and

(iv) Pr{X)=X.

If for each v with 0 < v < I', (Pyq1 — Py)X is o-fragmented (or o-
fragmented using weakly closed sets), then X is o-fragmented (or o-frag-
mented using differences of weakly closed sets).

Note that the conditions (i)-(iv) in this corollary are similar to the con-
dition that X should have a projective resolution of the identity, but contain
no conditions on the density characters of the spaces P, X.

2. Proof of Theorem 1. As we shall see, Theorem 1 will be a simple
consequence of the following lemma about Banach spaces with M-bases that
are not necessarily norming,.

LEMMA 1. Let X be a Banach space with an M-basis, and let |||-||| be the
norm associated with the M -basis. Then there is o coordinate compact subsel
Xo of X for which |J;__, nXy is || - ||-norm dense in X. The space X with
its coordinate topology, and so alse with its weak topology, is o~fragmented
by the norm ||| - ||| using coordinate closed sets.

Proof Recall that
e/l = sup{f(z) : f € F, [|f]| <1},

where F' is the norm closure of the set Fy of all finite linear combinations of
the points f,, v &I, in X*. Hence

llzlll = sup{f{=) : f € Fy, |I£]| < 1},

Since for each f € Fy the map  — f(2) is coordinate continuous, the
norm ||| - ||| is lower semi-continnous for the coordinate topology.

We transfer our attention to the subspace 5 of RY consisting of all points
£ = (& :veTI)of R of the form &y = fy(z), vy € I, for some z in X.
Define the linear map ¢ : X — = by

ple) = (f(z): v eI,

Then ¢ maps X bijectively to &, since ({ker fy : ¥ € I'} = {0}. We trans-
form the norm |||+ ||| to Z by taking [}|p(z)||! = |||||| for each # in X. The
coordinate topology on X corresponds exactly to the restriction to & of the
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product topology on RT. Thus the norm ||| ffj on = is lower semi-continuous
for the product topology.
We return to the space X for a while. We study the sets

Xp=Az:|fy(#)}<nlforyel and
| £+ ()] > 0 for at most n elements v of I'},
forn =1,2,... For each v in I', we have fs(z,) = 6,5 s0 that ra., € X for
all v with |r| < 1. Also, for n,m > 1, the vector sum X, + X,,, is contained
in Xp4m. Since the linear span of {z. : v € I'} is norm dense in X, it follows

that the set |Joo,, X, is norm dense in X,
Further, on writing

1
XO = U ”EXna
n
Tl
we see that [ J7, n®Xq is also dense in X under ||- || and so under ||| - |i.
We study the images 5y, = ¢(X,), n >0, in 5. We have
1
Zo={J 58,
ne=]

and
E,={t:£eR”, |&]|<nforalyel and
|€| > O for at most n elements v of I'}

for n > 1. Note that | J72, 5y and (J,o; n* 5o are dense in = under [ - [f|.
We now verify that =, is closed in R’ for each n > 1. Suppose that 7 =
(ny:7v € I') is any point of R not in 5,,. Perhaps

sl > n

for some & in I'. Then n lies in the open set {{ : |£5] > n} that does not
meet =,,. Otherwise, there will be n + 1 distinct elements, say 8(0), §(1), ...
oy 8(n), in I with
Inseiy| >0 for 0 < i< n.

In this case n lies in the open set {£ : [€5p| > 0 for 0 < 4 < n} that does.
not meet =, Thus T, is closed in B*. Since =, lies in the compact set
{€:16,) < n, vy e I'} of RT, it follows that 5, is compact in R? and so also
in 5 with its product topology.

Note that =y = [Joo.,(1/n?)5,, contains the origin of & and that any
open set in the product topology that contains the origin also contains all
but a finite number of the compact sets (1/n?)5,, n > 1. Hence 5y is
corapact in & with its product topology.

It now follows that Xg is compact in the coordinate topology of X, so
that X is generated by a coordinate compact set.
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We now show that, for each n > 1, the set =, with its product topology
is fragmented by the ||| - |i|-norm on 5. To prove this we have to show that
for each non-empty subset & of &, and each £ > 0, there is a non-empty
subset of © that is relatively open in the product topology and of || - {||-norm
diameter less than e. Let ¢ > 0 be given and let € be a non-empty subset
of Zp. If © just contains the origin, its ||| - (|l-diameter is zero. So we may
suppose that @ contains a non-zero point, and we can choose 6 # 0 in @ so
that 6 has at least as many non-zero coordinates as any other point of .
Let 85, 6 = &§(1),...,6(k), with 1 < k < n, be the non-zero components
of §. Consider the neighbourhood Ny of & defined by

Ny = {€: € > 0for 1 <4< k)

All points £ in Ny M@ have [£5,y] > 0,1 <1 < k, and so, by the choice of ©,
have

£y =0 forye& {§(1),...,6(k)}.
Thus Ny MO lies in a k-dimensional linear subspace of Z. On this subspace
the product topology and the ||| - |||l-norm topology coincide. Hence we can
choose a neighbourhood N3 of 4 in the product topology, contained in Ny,
with || - [I|-diameter(N; N @) < e. Thus 5, with its product topology is
fragmented by the ||| - {||-norm.

Since the norm ||/ - [|| is lower semi-continuous for the product topology,
s En 8 [||-]|l-dense in & and each set 5, is fragmented by (1 1Il, it follows
by Lemma 2.3 of [8] that 5 with its product topology is o-fragmented by
IIl - Il using sets closed in the product topology. It follows that X with its

coordinate topology is o-fragmented by the norm || - ||| using coordinate
closed sets.

Proof of Theorem 1. The results follows immediately from Lem-
ma 1 when the M-basis is norming so that the norms ||| - ||| and || - || are
equivalent.

_ 3.. An example of Pol. Let Tj and Ty, be the sets of all finite and
infinite sequences of natural numbers and write T = Ty U T We write
s<tifs,t €T and either s =t or s is an initial segment of ¢.

We include the empty sequence @ of zero length within T, as an initial
segment of each sequence in 7. Then T is a “tree” under the partial order .
We use the natural interval notation:

[sfl={r:s<r<t}, (s,t)={r:s<r=t},
etc. We take the sets |
[0,¢], teT, and T\[B,¢], teT,
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as a subbase for the open sets of a topology, the interval topology, on T.
Note that for all ¢ € T, the family {(s,#] : 5 < ¢} is a neighbourhood base
for ¢t in T All the sets [0,¢], t € T, are compact in this topology, and so T’
is locally compact.

Since T is locally compact, we can form the one-point compactification
K of T by adjoining a single point, say co, to T. Let C(K) be the Banach
space of all continuous real-valued functions on K.

Since the third derived set of K is empty, & result of Deville [2, Théo-
reme 2.5] shows that C'(K) has a locally uniformly convex renorming (see
also Haydon & Rogers [6]). Hence C(K) is o-fragmented using differences of
weakly closed sets [8, Th. 2.1]. Banach spaces of type C(K), for much more
general locally compact trees, have been studied by R. Haydon [4, 5].

Since each interval [§),4], ¢ € T, is both open and compact in T, the
characteristic function x[p ¢ of this interval (tacitly augmented by the value
0 at o0) belongs to C(K). The set Z of all such functions x4 is, in fact,
pointwise closed in C(K), but we do not need to use this.

We now suppose that (C(K), pointwise) is o-fragmented using pointwise
closed sets, and we seek a contradiction. Under this assumption, we can
write £ = |J2.., 5y, with each =), a relatively pointwise closed set in £ with
the property that each non-empty subset of &, has a non-empty relatively
pointwise open subset of diameter less than 1/2.

Let 7: 5 — T be the map carrying the point £ of = that is the charac-
teristic function of the interval [0, %] to the point 7(£) =t of T". Then

Too = 7(2) N Too = | J (T(Fn) N Two)-

We identify T with NN with its usual product topology. In this topology Tae
is of course a Baire space. Using the Baire category theorem we can choose
n 50 that 7(Z,) N Tee is dense in some open Baire interval of T, = NY,
that is, a set of the form “all £ in T, with initial segment ¢jm of length m
coinciding with s, for some s in Ty and some m > 0”. So 7(5,) N Teo i
dense in [, 00) N Toy, for some s in Ty, where we use [3,0c) to denote the
generalized interval of all ¢ in T" with s = t.
We now show that

[8,00) N Ty C T(Zn).
Otherwise there would be an r in [s,00) N Tp not in 7(Z,). So
& = X[o.r] € E\En.

Since =, is pointwise closed in =, we can choose a pointwise open neigh-~
bourhood of &, in £ that does not meet Z,. We may take this pointwise
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open neighbourhood of &, to be of the basic form N N Z where
N={£:£(0)=0, {(p)=1for 6 €0, pc P}

with © a finite subset of T'\ [, 7] and & a finite subset of [@, r]. Here we use
the fact that the points of = are all characteristic functions. For each 8 in
6N (r,00), there will be an immediate successor of 7, say 7y, with r < rg < 6.
So we may choose an immediate successor, say w, of r, that avoids all the
points rg, § € 6. Now, for all v in [u,c0} we have X[e,w) € N, so that
X[ & Sn- Thus [u,00) does not meet 7(Z,,). However, [u,00) N Ty is a
non-empty open subset of [s,00) N T, in the NY¥ topology, and it does not
meet 7(5y,) N Teo. This contradicts the density of 7(5,) N1y in [s, 00N T,
s0 that we must have [s,00) N Ty C 7(5,).
The set
E;L = {X[(D,u] TuUg [S,OO) I TQ}

1s a non-empty subset of 5. By our assumption concerning 5, there is
a relatively pointwise open subset G of = that meets 5, in a non-empty

set of diameter less than 1/2. So we can choose a point &/ = X[0,u)> With
u € [s,00) N Ty In 5} NG, and then a basic open neighbourhood

N={£:4(0) =0, £(p)=1for 8 € B, ¢ c &}
of {’ contained in G, with © a finite subset of T\ [, u], and & a finite subset
of [B,u]. Thus diam(Z}, N N) < 1/2. Since @ is finite, it contains only a

finite number of immediate successors of u. So we can choose an immediate
successor w of u that is not in ©. Now the points

€ =xpuls € =Xpu]

both lie in 57, NN but ¢(w) = 0 and £”(w) = 1, so that the diameter of
&, NN must be at least 1. This contradiction shows that (C{K), pointwise)
is not, o-fragmented using pointwise closed sets.

Since K is a scattered compact Hausdorff space, the pointwise topology
and the weak topology coincide on all bounded subsets of C(K). It follows
that (C(K), weak) is not o-fragmented using weakly closed sets.

4. Proof of Theorem 2. By a suitable scaling we may assume that
|T5]| <1 for all y in I". We also assume that I" is well-ordered.

We fix £ > 0 until the end of the proof.

For each m > 1 and each z in X, let

Ap(z) = {y € I : | Ty(2)|| > 1/m}.
Let am(z) = |Ap(2z)! and let
Ap(z) = {az,1),..., a(z, am(z)}
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with a(z,1) <... < &z, am(z)), suppressing the dependence of the a’s on
the parameter m for simplicity of notation. For n > 1 and r = (T1y.-2370)
# 0 a vector with n rational components, we introduce the sets

X{m,n,7) = {.'1: :Gm(z) =n and Ha: - i""jTa(:c,j)EH < 5}.
j=1

We first verify that
X ={0}uU U{X(m,n,r) rm>1, nx1, 0#reQ).

Consider any = # 0in X. By condition (ii) we can choose a finite rational lin-
ear combination of linearly independent vectors chosen from {T\z : vy € I'},

! .
SAY 3y 851y, %, with

’gs.

!
Hx - Z 8310,
j=1

We may suppose that I > 1, that [s;| > 0 for 1 < j <!and that ||T,,z| > 0
for1 <7<l

Now we can choose m so large that |T,,z| > 1/m for 1 < j < [. Then
Am(z) D {7;:1 < j <1}, and taking n = an(z) we have

[} n
D 5Tym = Y 15Tt

for suitable rationals r;, 1 <7 < n, [ of these being identical in some order
with sy, 1 £ 7 £ [, the others being zero. This ensures that

n
”m—- Z?‘ij(m,j):D” < g,
J=1

so that z € X(m,n,r). Thugs X is the union of the origin and the sets of
this form.

We now show that for fixed m > 1, n > L and » € Q", the set X{m,n,r)
is the difference of two weakly closed sets. First note that for each z,

U= {&: |55 > 1/m for 7 € An(e)}

defines a weakly open neighbourhood of z such that 4,,{¢) D An(z) and
80 Gy (€) > am(z) whenever £ € U. Hence, for each k > 0, _

Gy = {2 : am(z) < k}
is weakly closed. Now _
X(m,n,7) C{z: am{z) =n} = C,\Cna1
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for n > 1. Thus it is sufficient to prove that X(m,n,r} is weakly relatively
closed in {z : anm(z) = n}.
Let e € {z : am{z) =n}\ X(m,n,r). Then

i
He - erTa(e’j)e“ > E.
j=1
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Write .
w={eex:|le- Z;rou(e,jg“ > e},
pa

Then W is a weakly open neighbourhood of e. As above, choose U to be a
weakly open neighbourhood of e such that 4,,(¢) 2 A (e) whenever £ ¢ U.
Then, if £ € UNW N {z: am(z) = n}, we must have 4,,(&) = 4,,(e) and
therefore

HE - Zn:TjTa(EJ)E” = H§ - Xn:"jTace,ﬂﬁH > &,
j=1 i=1

and § ¢ X(m,n,r). This proves that X (m,n,r) is weakly relatively closed
in {® : am(z) = n}, as required.
For each v in I" let X., be the norm closure of T,X in X. By condi-
tion (iv), each X, v € I, i8 o-fragmented. Write
Y=co{Xy:vel}
for the o sum of the Banach spaces X, v € I'. By Theorem 6.1 of [8] the
space Y is o-fragmented and is o-fragmented using weakly closed sets in the

case when each X,,, v & I', is o-fragmented using weakly closed sets. The
map R: X — Y defined by

Re=(Tyz:vel)
is a linear map from X to Y. Further, for z in X,
1Rzl = sup{||Tyz| : v € I'} < sup{| T3] - || : v € I'} < |12

So R is bounded.
For fixedm > 1,n > 1 and r € Q7, r 5 0, we take

§=68(mnr)=c/lrly with |ols = frel 4.+ .

Since Y is o-fragmented, we can write ¥ = Ui‘?;l Yy, with Y, =Y (m, n, 7, k),
for k 2 1, o-fragmented down to &, that is, with the property that each non-
empty subset of Yy has a non-empty relatively open subset of diameter less
than 6. Further, when the spaces X.,, v € I, are o-fragmented using weakly
closed sets, the sets Y3 can be taken to be weakly closed in Y.

We show that, for k& > 1, the set X(m,n,r) N R-1(Y}) is fragmented
down to 7e. Consider any non-empty subset ¢ of this last set. Since 0 %
R(C) C Yy, there is a-weakly open subset U of ¥ such that R(C) N U # 0
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but diam(R(C) N U) < §. Choose a point ¢ of ' in the weakly open set
V = R™N(U) that necessarily meets C. Now we can choose a weakly open
neighbourhood W of ¢ with

A (€) D Ap{c) and trm(€) 2 an(c) = n,

for all £ in W. Consider any £ in X(m,n,7) N R=YY,) NV n W. Then
am(€) = am(c) = n and An(€) = An(c). Further, RE € Y, MU and Re €
Vi N U, so that || RE — Relf < 6. Hence [[T,€ - Tye|| < & for v in I" and, in
particular, for v € A(§) = A(c). Thus

T n
H PILLNIEDY V‘.v'Ta(c,j)CH <lrlé<e.
d=1 =1

Since £ and e belong to X (m,n,r) we also have

" n
= Z"‘jTa(e,ﬂEH <e Hc - }:roa(c,j)cH <e,
3:]‘ jﬂl

and noting (¢, 5) = «(c, j) for 1 < j < n, we have [|€ — c| < 3. Hence
diam(X (m,n,r) N R~ (Yi) NV N W) < 6z,

and X(m,n,r) N R1(Y}) is fragmented down to 7e.

Since, for fixed m, n, r, the sets R~1(¥%), k > 1, cover X, and & may
be arbitrarily small, it follows that X is o-fragmented. Further, when the
spaces X., v € I', are o-fragmented using weakly closed sets, the space X
is o-fragmented using differences of weakly closed sets.

Proof of Corollary 1. Foreachy, 0 <y < I, write T, = Pyyq ~
P,. Then, by (ii), T, is a projection, and hence T,(X)={z € X : T,z = =}
is necessarily closed. From [13, Lemma 2], on noting that the condition

sup{[|TH] : 0Ly < I} < 0

suffices in place of the condition ||7%| = 1, 0 £ 7 < I', for the proof in [13],
it follows that {T>, : 0 £ v < I'} satisfies the conditions (i) and (ii) of
Theorem. Z. Hence the corollary follows from Theorem 2.
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Volume approximation of convex bodies
by polytopes—a constructive method

by

YEHORAM GORDON (Haifa), MATHIEU MEYER (Paris),
and SHLOMO REISNER (Haifa)

A_bstr‘act. Algorithms are given for constructing a polytope P with n vertices {facets),
contained in {or containing) a given convex body X in R?, so that the ratio of the volumes
[K\ P|/|K| (or [P\ K|/|KT) is smaller than f(d)/n2/(4-1),

1. Introduction. This paper deals with constructive approximation of
general convex bodies by polytopes, in the volume-difference sense. Specif-
ically, given a convex body (compact, convex set with non-empty interior)
K in R¢, we intend to construct a polytope P contained in K (or containing
K) so that the quotient of volumes

K\P| [ IP\K]
(L w ()

wili be small. (The notation |A| for a measurable subset A of R% is used
here to denote the k-dimensional volume of A, where k is the dimension of
the minimal flat containing A.}

There exists a large body of results concerning approximation of convex
bodies by polytopes. We refer the reader to the surveys [5] and [6] by Gruber
for information on this subject.

It was proved by Bronshteln and Ivanov [2] (cf. also results by Dudley
(3] and Betke and Wills [1]} that for any convex body K contained in the
Euclidean unit ball B§ of R and every sufficiently large positive integer n,
there exists a polytope @, containing K, with at most n vertices, whose
distance from K in the Hausdorff metric is less than ¢/n?/{4=1) where ¢ is
an absolute constant. It is easy to check that the proof in [2] provides also
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