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On the non-existence of norms for some algebras of functions
by

BERTRAM YOOD (University Park, Penn.)

Abstract. Let C(£2) be the algebra of all complex-valued continuous functions on
a topological space {2 where C(f2) contains unbounded functions. First it is shown that
C{f2) cannot have a Banach algebra norm. Then it is shown that, for certain £2, G(£2)
cannot possess an (incomplete) normed algebra norm. In particular, this is so for £2 = R”
where R is the reals.

1. Introduction. Throughout this paper let C(f2) be the algebra of
all complex-valued functions on a topological space 2 where C(£2) contains
unbounded functions. Also, let A be a subalgebra of C'(12) containing the
identity function e, for each f € A, also the conjugate function f, and where
A containg unbounded funclions.

Our initial observation (Proposition 2.1) is that A cannot be given a
Banach algebra norm. Then, by example, we note that A may or may not
possess an (incomplete) normed algebra norm. The case A = C(12) is es-
pecially interesting. It seems reasonable to conjecture that it never has a
normed algebra norm.

We verify this conjecture for C'(£2) if {2 is a locally compact Hausdorff
space provided that C(2) has a function h(p) where {p € 2 : hA(p) ="
o} is compact for each complex number a. In particular, C'(£2) has no
normed algebra norm if 2 is a closed unbounded locally compact subset
of R%,

The algebra of all rational functions of a complex variable is an example
of an algebra over the complex field which has no normed algebra norm. An
unrelated example was given in [1, Theorem 5.4].

There is considerable literature on the algebra of all real-valued contin-
uous functions on a topological space, see [3]. Our subject matter was not
treated there. '
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2. On norms for A. We begin with Banach algebra norms.

PROPOSITION 2.1. An algebra of complex-valued functions containing an
unbounded function cannot have a Banach algebra norm.

Proof. The values of an unbounded function must be in the spectrum of
that function. However, in a Banach algebra the spectrum of each clement
is bounded.

Among the examples of algebras A which have an incomplete normed
algebra norm is the algebra of all polynomials with complex coefiicients in
the real variable ; one simply chooses ag a norm of p(¢)

2| = sup{lp(t)| : 0 < ¢ < 1}.
We now turn to our first example where there is no such norm.

THECREM 2.2. C(£2) does not have a normed algebra norm if §2 is o
T1-space with a dense set of isolated points.

Proof. Suppose otherwise, that C(2) has the normed algebra norm
il £]]. Let A be the dense set of isolated points of 2. For each ¢ € A the
characteristic function §, of the set {¢} is in C(f2). For f € C(f2) we have
fé4 = £(g)8;. Thus

IF(D] 18ll = i £oall < A1 116

Therefore |f(g)| < |||} for all ¢ € A. As A is dense we see that f is a
bounded function. But as C'(£2) contains an unbounded function there can
be no normed algebra norm for C(£2).

In particular, the conclusion of Theorem 2.2 holds for C(Z) where Z is
the set of integers in the discrete topology.

We adopt the following notation. Let ${A4) be the set of all non-zero
multiplicative linear functionals on A. We say that v € &(A) is a point-
evaluator if there exists p € £2 such that v(f) = f(p) for all f € 4. We say
that A4 is snverse-closed if the inverse f~' lies in A for any f € A such that
f(p) is never zero. Also, if A has a normed algebra norm we denote by A°
the completion of A in that norm.

In the sequel, when A has & normed algebra norm we associate with 4
the following subset I" of 2. I is the set of all p & {2 50 that the mapping
Yp : f — f(p) is a continuous mapping of 4 as a normed algebra onto the
complex field.

We derive some elementary properties of I'. For Lemmas 2.3 and 2.4 we
assume that A has a normed algebra norm || f.

LEMMA 2.3. I' is o closed subset of 2 and I" 5% 02,

Proof. For each p € I', , extends to a multiplicative linear functional
Wy on A%, Thus, for f € 4, we have |f(p)| = |%(7)| < ||f||. Therefore, if ¢
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is in the closure of I' we have [f(g}| < || f||. Hence ¢ € I'. This argument
shows that every f € A is bounded on I". As A has unbounded functions
we see that I #£ 12,

LeMMa 2.4. Suppose thal each v € B{A) is a point-evaluator. Then I' is
non-empty and every f € A which vanishes on I' lies in the radical of A°.

Proof Since A® is a commutative Banach algebra with an identity
there must be a non-zere multiplicative linear functional ¥ on AS. The
restriction v of ¥ to A i3 a non-zero multiplicative linear functional on A
which is continuous on A as ¥ is continuous on A® By hypothesis v is a
point-evaluator f ~+ f(p) which is continuous, so that p € I". Note that if
f € A vanishes on I' then ¥(f) = 0. As ¥ can be any multiplicative linear
functional on A% we see that f is in the radical of A°.

As is well known [6, Th. 2.3.4], every f € A in the radical of A€ satisfies
lim || £ */™ = 0. We shall use this fact later.

Lemma 2.4 shows that we need a criterion to ensure that every v € ${A)
is a point-evaluator.

LemMa 2.5. Suppose that A is inverse-closed. If A also contains a func-
tion h where {p € 2 : h{p) = h{py)} is compact for each py € 2 then each
v € $(A) is a point-evaluator.

Proof Foreach f € Alet Z(f) = {p€ 2: f(p) =0} and let v € $(A).
We note that Z(f) is not void if 4(f) = 0. Let f;, € A, j = 1,...,n,
where each v(f;} = 0. We claim that ﬂ?ﬁl Z( f;) is not void. For suppose
otherwise. Then, for each p € {2, there is some f; where f;(p) 5 0. Hence
g= fifi+ ...+ fufu is never zero and v(g) = 0O contrary to the above
remark,

Next, v = h — y(h)e is in the kernel of v and Z{v) = {p € 2 : h(p) =
4(h)}, which is compact and not void. The sets Z(v)NZ(f) as f ranges over
all f & A with v(f) = 0 form a collection of closed subsets of Z(v) with the
finite intersection property. Hence there is some ¢ € Z(v) where f{g) = 0
for all f € A satisfying y(f) = 0. Now let k € 4. We have v(k — y(k)e) = 0,
so that (k) = k(g).

We remind the reader of our standing hypothesis that C(£2) has un-
bounded functions,

THEOREM 2.6. Lei (2 be o locally compact Housdorff space. Suppose that
C(42) has a function h where {p € 2 : h(p) = h(po}} is compact for each
po € £2. Then C'(12) cannot have a normed algebra norm.

Proof. Suppose that C({2) has a normed algebra norm | f||. Let £ be
the subalgebra of C(2) consisting of all f € C(f2) which vanish at infinity.
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The preceding lemmas apply to C(£2). Let po € £2, py & I'. There exists
a neighborhood U of pg disjoint from I'. By [4, Th. 6.78] there is a neigh-
borhood V of py where V is compact and V < U. By a version of Urysohn’s
lemma [4, Th. 6.80] there exisis a continuous function g(p) from 2 to [0, 1]
so that g(po) = 1 and g(p) = 0 for all p ¢ V. Then g(p) has compact sup-
port, so g € . Now g(p) vanishes on I". Then we see, by Lemma 2.4, that
g lies in the radical of the completion of C(£2) in the norm || f||. Therefore
Lim [|g™(|*/™ = 0.

But || f|| defines a normed algebra norm on 5. Hence a theorem of Ka-
plansky [5, Th. 6.2] tells ug that

I £l 2 sup{|f(p)| : p € £2}
for all f € E. Fach 9" € E, so that [|g"]| > 1 for each positive integer n.
This contradicts lim [|g" ||/ = 0. Hence C'({?) has no normed algebra norm.

The existence of the function / in Theorem 2.6 was to ensure that every
non-zero multiplicative functional on C(£2) is a point-evaluator. Thus we
have the following.

THEOREM 2.7. Let {2 be a locally compact Housdorff space. If every non-
zero multiplicative functional on C(£2) is o point-evaluotor then C{12) has
no nermed algebra norm.

COROLLARY 2.8. Let £2 be any unbounded closed locally compact subspace
of R™. Then C(2) has no normed algebra norm.

Proof. For each p = (z1,..., ) in R™ we set h(p) = 2? +...+22. The
set {p € §2: h(p) = h(po)} is a bounded and closed subset of R”. We can
now apply Thearem 2.6,

THEOREM 2.9. Let £2 be a zero-dimensional Hausdorff space. Suppose
that there emists a function h in C(£2) where {p € 2 : h(p) = h{py)} is
compact for each py € 2. Then C(£2) does not possess a normed algebra
norm.

Proof. Suppose that C(12) has a normed algebra norm. By Lemmas
2.3-2.5 the set I' 3 (2. Therefore (see [3, p. 247]) there is a closed and open
set A in §2 which is disjoint from I', There is ¢ € C(f2) where g(p) = 1,
p € Aand g(p) =0forp ¢ A, As g(I") = 0 we see that ¢ lies in the radical of
the completion of C'({2) by Lemma 2.4. This is impossible as ¢ 18 a non-zero
idempotent,

COROLLARY 2.10. If 2 48 an unbounded zero-dimensional subapace of the
comples plane then C($2) does not have o normed algebra norm.

Proof. The function h(z) = 2 used with Theorem 2.9 provides this
conclusion.
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