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Abstract, The existence of a projection vnto an ideal Z of a commutative group alge-
bra L1(@) depends on its hull Z(T) C G. Existing methods for constructing a projection
onfto Z rely on a decomposition of Z{T) into simpler hulls, which are then reassembled one
at a time, resulting in a chain of projections which can he composed to give a projection
onto Z. These methods are refined and examples are constructed to show that this ap-
proach does not work in general. Some answers are also given to previously asked questions
concerning such hulls and some conjectures are presented concerning the classification of
these complemented ideals.

0. Introduction. In this paper, we will examine the problem of detexr-
mining when a closed ideal T of a commutative group algebra L*(G) has
a Banach space complement. This examination will be based on the tech-
niques and results developed in the paper [4] of D. Alspach, A. Matheson
and J. Rosenblatt. It will be shown that the techniques from this paper are
not always able to construct a projection onto an ideal when one does exist.
The ideals illustrating this are constructed in L'(R®) and L (R*), so that if
we are to continue the successful sequence of papers [3], [1], ..., then we will
require some techniques beyond those described in [4]. We will also consider
the questions asked in the concluding section of [4], and consider questions
that seem appropriate to the search for a complete characterization of the
complemented ideals of group algebras.

The author would like to express thanks to Professors D. E. Alspach and
J. Rosenblati for their helpful and encouraging responses to this work, and
to the referee of this paper for a thorough and detailed criticism.

1. Definitions and basic concepts. For a commutative semisimple
Banach algebra 2 with carrier space (or maximal ideal space) &y C 2*, the
hull of a set X C 2 is Zy(X) = X+ Ny, and the kernel of a set X C &g
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is Ty (X) = 1X. The subscript 2 will usually be omitted. We say X C &y
is @ hull if it is the hull of some X C %; in particular, X = Z(Z(X)). Basic
properties of hull and kernel can be found in [6, Section 23], We say U is
regular if every closed X C @y is a hull and we say a hull X' C &g is a set
of synthesis if 7(X) is the unique closed ideal with hull X.

The commutative harmonic analysis we will use is largely contained in
the book [14] of W. Rudin, and we will mostly follow the notational conven-
tions therein. In particular, G is always a locally compact abelian group with
dual I", and each has group operation +, We will denote the set of compact
gymuoetric neighbourhoods of the identity in G by Ug. We identify I” with
the carrier space of the convolution algebra L'(G) and also with a subset
of the carrier space of the convolution algebra M(G). We will also use the
identification of L'(G) with its Fourier transform A(I'), and likewise iden-
tify M (G with B(I"). A coset in I' is a translate F of a subgroup A. Note
that A = E — E. It is a simple matter to transfer many objects and results
associated with A that are of a translation-invariant nature to corresponding
objects and results associated with E. For example, an open coset is closed.
The coset ring of E, written R(E), is the Boolean ring generated by the
(relatively) open subcosets of E. This consists of translates of sets in R(A).
We also define A(E) and B(F) to be the algebras of functions on E that are
translates of functions in A{A) and B(A) respectively, with norms such that
this translation is isometric. Then A(E) = A(M|g ={flg: f € A()}is a
regular Banach algebra of continuous functions on E such that & Ap) = B.
Similarly B(E) = B(I'})|g is a Banach algebra of continuous functions on
E, and A(F) is clearly a closed ideal of B(E). Cohen’s idempotent measure
theorem ([14, Theorem 3.1.3]) gives us that {xx : X € R{E)} is the set of
idempotents in B(E). With Eq the coset E with its discrete topology (a coset
in I'y) we denote by R(E) the set of closed subsets X of E with X € R(Eq).
In specifying subsets of locally compact abelian groups, we will follow the
notational conventions of [4] that algebraic operations take precedence over
cartesian products, which in turn take precedence over set operations. We
may also use redundant parentheses as an aid to clarity. In this context, if
X CG,thennX istheset X ...+ X = {my+... +2n :21,..., %0 e X},
rather than its subset {nz : z € X}, except in the case nZ = {nm : m € Z}.

If X is 2 Banach space with a closed subspace 2) we will use two equiv-
alent criteria for the existence of a Banach space complement to §)—-firstly
the éxistence of a continuous projection (henceforth a projection) X — 7
and secondly the existence of a linear transformation T € B(%/9),%) with
Qp ol = Iy;y. (Here Qp is the quotient mapping ¥ — X/ and Iy /g
is the identity mapping on %/9).) Such a continuous linear right inverse to
the quotient mapping is commonly called a splitting map, since it gives a
splitting of the short exact sequence 0 — 2} «» ¥ - X/P — 0. Such a
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criterion appeared in a different guise in [4], where a closed subspace 3 of %
was sought such that Qyl3 : 3 —» X/9) is an isomorphism.

As in [4], our approach to the problem of characterizing the comple-
mented ideals in group algebras starts with the result [12, Theorem 1.4] of
H. P. Rosenthal, which states that if 7 is complemented, then X = Z(I) &
Ro(I'), and since such X is of synthesis (see [7, Theorem 3.9]), we have
T = Z(X). Thus the problem is that of characterizing those X € R{T") for
which Z(X') has a Banach space complement, that is, those X with comple-
mented kernel.

It ig clear that if Ey,...,E, are closed cosets in I" and Xn € R(Ex)
(1 <k < n), then Uj..; X lies in Re(I"). Also, by [7, Theorem 3.1], the con-
verse holds, in that for any X € R(I'), there exist closed cosets Ey, . .. B
and sets Xy € R(Ey) with X = {J7_, X. Moreover, we can assume that

each X} is of the form
%e=B\( | Bu),
185<my

where my > 0 and each Ej; is a relatively open subcoset of E. Such Xy
we will call elementury sets, and we will denote the set of all such sets
by Re(I"). In particular, closed cosets and the empty set are elementary
sets, and a finite intersection of elementary sets is elementary. We could,
if we liked, also assume that a decomposition into elementary sets has the
property that each Ey; is of infinite index in Ej. Little seems to be gained
by this, and the resultant class of elementary sets is not closed under finite
intersections. The example 2Z\{0} = (4Z\{0})U(4Z+2) = Z\((2Z-+1)U{0})
shows that the decomposition of a set X € R(I") into elementary sets is
not always uniquely determined and the coset Ej is not always uniquely
determined by the elementary set Xj. Elementary sets were shown to have
complemented kernel in [11, Lemma 11]. '

A decomposition of X € R.(I") into elementary sets provides a possibil-
ity for constructing a projection L{G) ~ Z(X), since we have

LMGY 2 I(X)) 2T(X1 U Xy) 2... 2 T(X),

so that if there exists projections
(11) NGy D rx) B ron ux) B By ax),

then P, o... 0 P is the required projection onto Z(X). We will call {1.1)
an elementary chain of projections onto T(X). One aspect of this type of
construction relevant to the current paper is that there are configurations
of elementary sets X7,..., X, for which there is no elementary chain of
projections as in (1.1), but if Xi,..., X,, are permuted, then an elementary
chain of projections does exist. Examples illustrating this phenomenon will



126 A, G. Kepert

be discussed below, and we will consider how these can be used to construct
hulls X' € R.(I") which have complemented kernel, but for which we cannot
construct an elementary chain of projections.

The first such example constructed in this paper is one where the hull X
is a finite union of subgroups A;,..., A, such that Z(X') is eomplemented,
but for which there is no permutation = of {1,...,n} for which there exists
a. chain of projections

(12)  LNG) - I(Apq)) = T{Angy U Arizy) = ..

= Ay U U Ay

Thus, there is no elementary chain of projections relying on the given de-
compasition of X into elementary sets. This answers Question 4.1 of [2].
However, we will show in Proposition 3.4 that in this case there is an ele-
mentary chain of projections based on an alternative decomposition of X
into elementary sets. This example does, nonetheless, cast doubt on the exis-
tence of an elementary chain of projections onto an arbitrary complemented
ideal in a group algebra. This doubt is borne out by a second example,
which is similar, but for which no representation of the hull as a union of
elementary sets can give a chain of projections.

Associated with these two examples are many ideals which will need to
be proven either complemented or non-complemented. Such demonstrations
require some new methods, due to the nature of the examples. The next
section develops these, as well as surveying some known results.

2. Construction of splitting maps. We start with a description of the
quotient A(I)/Z(X) for sets X € Ro(I'). Standard Banach algebra theory
(for example, [6, Section 23]) tells us that since X is a hull, we can identify
this quotient with the algebra of functions A(I")| x, which has carrier space
X. We denote this algebra by A(X). With this identification, the quotient
mapping A(I') — A(I')/Z(X) corresponds to the restriction mapping gx :
f = flx and the quotient norm is given by I fllagxy = inf{llgl| : g €
A(T") and g|x = f}. Also, the splitting map we need for complementation
corresponds to a continuous linear right inverse to gx-—that is, a continuous
linear map T' : A(X) — A(I') such that for each f € A(X), T(f) is an
extension of f. The existence of such a map T, which we will also call a
splitting map, is a convenient criterion for complementation that will be
widely used below. : '

To facilitate use of this criterion, we now consider the structure of the
quotient algebras A(X). The above definition of A(X } agrees with the stan-
dard one in the case where X is a closed subgroup of I', by [14, Theo-
rem 2.7.4); and consequently in the case where F is a closed coset in I,
Given this, the description of A(X) for elementary X is particularly simple.
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Throughout this section, if we have functions f: X = Cand g: Y — C
satisfying flxny = g|xnv, then f U g will denote their common extension
to a function on X UY. This corresponds to a union of graphs.

2.1. LEeMMA. If I 45 a closed coset in I and 8§ € R(E), then
A(S) = {f & O(S) : fu OE\S & A(E}},
which is isomorphic, as a Banach algebra, to T (E \ §).

Proof If f € A(S), say f = g|s for some ¢ € A(I"), then fU Om\g =
gle - xs € A(E), as xg € B{E). The remaining statements follow easily. m

2.2, LEMMA. Suppose X,Y € Re(I) and f € A(X), g € A(Y) are such
that [ |xny=9 |xny. Then fUgg A(XUY).

Proof. Let fi,91 € A(I') have fi|x = f and ¢1]y =¢g. Then f1—g; €
(X NY). However, as noted in [4, Section 1], Z(X NY) = I(X) + Z(Y).
Hence there exist fo € Z(X) and go € Z(Y) with f1 — g1 = fa — g2. Then
fi—fa=g1 ~go€ A(T) has (f; — f2)lx = f and (g1 — g2)|y = g, so that
Fug=(fi—follxuy € A(XUY). u

In the following theorem, the notation g¢x is again used to denote a
regtriction mapping, although in this case it occurs as a mapping A(Y) —
A(X), where X,Y € Ro(I") and X C Y. This is clearly a continuous algebra
homomorphism. Also, if X,%1,...,Y, are Banach spaces and for each %,
Ty : X — )y is continuous and linear, then the continuous linear map X —
@®._, Dy given by = > (T1(x),...,T(z)) will be denoted by (T1,...,Tx).

2.3. THEOREM. Supposing X1,..., X, € Re(I) and X = |J}_, Xk, put
n
A = {(_fh o fn) € P AX) ¢ filxinxe = Frlxnx, 1<5<k< n)}-
k=1

Then (x,,-..,0x,) 8 an algebra isomorphism from A(X) onto 2 whose
continuous inverse 18 given by (fi, ..., fa) = fiU.. U fu.

Proof. Clearly (¢x,,.-.,0x,) is a monomorphism into 2. If (f,..., fa)
€9, then by Lemma 2.2, f = fiU...U f, € A(X), so that (f1,...,fu) =
(0xy:. 5 0x,)(f). Hence (0x,,...,0x,) is & continuous isomorphism onto
A, a closed subalgebra of €., 4(Xy). By Banach’s inversion theorem,
(x4, -50x, )" is continuous. m

2.3.1. COROLLARY. For X, Y e R (I}, ex : IA(XUy)(Y)—frIA(X) (XNY)
is a conlinuous algebra isomorphism with inverse f — fU Oy.
Theoremm 2.3 can immediately be combined with the characterization of

R(I") and Lemma 2.1 to give the next corollary, a description of the quotient
algebra with which we are working. It is interesting to compare this with
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(10, Theorem A}, which uses essentially the same method to characterize the
range of homomorphisms between commutative group algebras.

2.3.2. COROLLARY. Suppose X € R.(I"), say X = |Ji_, Xy where for
each 1 <k < n there is a closed coset By in I’ such that X, € R(EL). Then

AX) ={f € C(X): flx, U0gx, € A(Bx) (1 <k <n)}.

The above results do not differ much in content from any of the results
used in [4, Section 2]—they are just stated in a more convenient form.

We now consider some results whereby we can combine splitting maps
for ideals Z(X1),...,I(X5,), to give a splitting map for Z(X, U ... U Xn).
The situation for disjoint X3,..., X, is quite straightforward. Recall from
5] that two sets X, ¥ C I' are called uniformly separated if there exists
U ey with (X +U)NY = 0. We say that X C I" is uniformly discrete
if there exists U € Up with (y+U)NX = {y} for each v € X. By [5,
Theorem 0.2], uniform separation of X,V ¢ Re(I') is equivalent to the
existence of a measure u € M(Q) with E(X) = {0} and F(Y) = {1}. A
significant proportion of the results in this paper rely on this equivalence.
The following proposition is a special case of [l, Theorem 2.2], and the
corollaries are similar to results in [4, Section 2].

2.4. PROPOSITION. If X, Y € Ro(I') are disjoint then I(XUY) is com-
plemented if and only if I(X), T(Y) are complemented and X and Y are
uniformly separated.

24.1. COROLLARY [4, Theorem 2.3]. [f X € R(I") is discrete, then Z{X)
is complemented if and only if X is uniformly discrete.

24.2. COROLLARY. If X, Y € Ro(I') and X is discrete, then Z(XUY) is
complemented if and only if T(Y) is complemented and X \ Y 135 uniformly
discrete and uniformly separated from Y.

Proposition 2.4 and its corollaries lead to a characterization of the com-
plemented ideals in L*(G) in the case where the only closed subgroups of I
are either discrete or open. Here X € Re{I") has complemented kernel if and
only if X, the boundary of X in I', is uniformly discrete. The only such
groups I'" are those with an open subgroup isomorphic to one of {0}, T or R.
The case I' = R is dealt with in this way in (3], and the case I" = R x Z can
also be seen as a consequence of the characterization of the complemented
ideals of L1{R?) in [1].

The situation for non-disjoint sets X 1y Xn € Re(I") is less straightfor-
ward. Considerable progress on this situation was made in Sections 2 and 3
of [4]. We start by considering some of the results therein. The following
result is useful for showing that certain ideals are not complemented.
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2.5. PROPOSITION [4, Proposition 1.9]. If X, Y € Ro(I'") and Z(X), Z(Y)
and Z(X UY') are complemented, then Z(X NY) is complemented.

The positive results of [4] concerning a situation involving intersecting
elementary sets relies on a property of pairs of subgroups. Recall that a pair
(4, Z) of closed subgroups of I satisfies (D) if

(A+E)/(ANE)=A/(ANE)® E/(AN &),

so that we have a fopologicol direct sum, and in particular, A + = is closed.
Note that by [8, Theorem 6.12], if I is o-compact with closed subgroups A
and Z, then (4, Z) satisfies (D) if and only if A+ 5 is closed. We will mostly
be considering hulls in Euclidean groups (those of the form R™), which are
r-compact so that we can use this criterion for (D).

If we denote rational dependence in R by =, then for £, € R, the pair
(€Z,nZ) in R satisfies (D) if and only if £ = 5. Similarly, in R3, (R x £Z x
{0}, {0} x nZ x R) satisfies (D) if and only if £ = . Also, if 4, = are
closed subgroups of a Euclidean group with A = R? and 5 & R? x Z for
some p, ¢ > 0, then (A, &) satisfies (D). A different type of example arises if
we consider any non-discrete locally compact abelian group I" with a dense
subgroup A. Give A its discrete topology and consider Ay = {(A,A) : A € 4}
as a subgroup of I' x A. Clearly ({0} x A) N A4 = {0} and each of {0} x 4
and A, is discrete, but ({0} x A) + Ay = A x A is not discrete, since it is
dense in I' x A. Hence ({0} x A, A,) fails (D). Note that in the case A = I'y,
({0} x A) + Ay = I x Iy, which is closed. Hence (D) in a pair {4, Z) is not
in general equivalent to A + = being closed. The utility of property (D) is
evident in the following result, which follows from Theorems 3.11 and 4.4
of [4].

2.6. ProposITION. If G is o-compact and =, A are closed subgroups of I,
then T(Z U A) is complemented if and only if (2, A) satisfies (D).

As noted in [4, Section 3], it seems likely that Proposition 2.6 will also
hold for non-o-compact groups G. This will not concern us here, as all the
specific hulls considered below occur in metrizable I, so that G is o-compact.
Some generally applicable criteria for (D) are contained in the following
lemma, whose proof is straightforward.

2.7 LeMMa, If A, £ are closed subgroups of I', then the following are
equivalent:

(i) The pair (A, =) satisfies (D). :
(ii) For each U & Up, there exists V € Up with (A+ )NV C (ANT) +
(EnD).
(iii) For each U € Uy, there exists V € Up with (A4+V)N{(ZE+ V) C
(AnE)+U. : -
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It is interesting to compare (iii) with uniform separation—two disjoint
sets X,Y C I' are uniformly separated if and only if there exists V' € U,
such that (X + V)N (Y +V) = 0. This suggests some generalizations of (D)
applicable to pairs of elementary sets. If S7 and Sy are elementary sets, we
say that (S,.52) satisfies

(DY) if for all U € Ur there exists V & Up with (Sy + V)N (Sz + V) C
(51N 8y) +U;

(Do) if either 5 and Sy are uniformly separated or there exists v E SNSGy
and a pair of closed subgroups (41, Ag} which satisfy (D) such that
S1 € R(A1+v)and S € R4z + 7).

It is straightforward to show that (Dg) implies (D) and that (D'} implies
(Do) for pairs of closed cosets. This second implication can also be shown to
hold for any pair of elementary sets, although the technicalities in the proof
render it unsuitable for the present discussion.

The inductive procedure developed in [4, Section 3] gives an elemen-
tary chain of projections for a large class of hulls. The strongest result
explicitly stated therein was Theorem 3.11, and the comment following
this theorem states that a small improvement can be made. With this
improvement, we obtain the follewing theorem. Note that the apparent
reduction in the number of pairs of subgroups requiring a {D)-like con-
dition is merely a result of a re-indexing—the index s in (4] is replaced
by k + 1 below, and the pairs (I3,I3) in [4] appear below in the form
(X5 MMy Xe, Nie, Xi) = (X, X,,). The corollaries follow directly from
the theorem, and are included to facilitate the application of the theorem
in this paper.

2.8. THEOREM. Suppose & is o-compact and X = Usey Xk, where X1, . ..
o1 Xn € Ro(I). If all pairs (X; N Micprr XisNise Xi) (1 €5 < k < n)
satisfy (Do), then T(X) is complemented.

2.8.1. COROLLARY. If Ey,..., E,, are Euclidean cosets in R™, Ej is a

closed coset in R™ affinely homeomorphic to some RP x Z, and S € R(Ep),
then T(Ey U...UE,, US) is complemented.

2.8.2. COROLLARY. Suppose G is ag-compact, and Iy, Ey,..., B, are
closed cosets in I" such that for each 1 Si<jsn ENE = Ey and
the pair (E;, En) satisfies (D). Then T (B1U...UEy) is complemented.

The next theorem develops a technique which was used in [4, Section 4]
and [1, Section 4] to show that certain hulls therein have complemented
kernel. These examples will be discussed below.

2.9. THEOREM. Suppose Ky Xy X1, 0, X! € Re(I) are such that

(i) Xz C X, (1<k<n),
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(i) X;NXe=XiNX, (1<j<k<n),
(iil) Z(Xx) is complemented (1 < k < n),
(iv) Z(Usoy X}) is complemented.

Then Z(Up.y Xk) i5 complemented.

Proof Put Z = (Ji_y Xy, and let Tp : A(Up_, X}) — A(I') and Ty :
A(Xg) — A(T) (1 £ k < n) be splitting maps. If 1 < j < k < n, then
for each f € A(Z) and each v € X] N X], we have v € X; N X, so that
T3(fix;)(v) = F(v) = T(f|x,) (7). Hence, by Theorem 2.3,

T'(f) = lex; 0T o 0x,(f)) U... Ulexy o Tn 0 0x,,(f))

defines a continuous linear mapping 7" : A(Z) — A(l;_; X}). Moreover,
if v € Z, then T'(f}{7) = f{7), so that T = Tpho T' : A(Z) — A(I) is a
splitting map, as required. m

We now apply the above theorem to some examples. These occur in
Euclidean groups, so that some geometric insight is possible. To aid this, we
will adopt the terms line, plane and grille for cosets in a Euclidean group
affinely homeomorphic to the groups R, R? and R x Z respectively. The
terms collinear, coplaner and parellel will be used in this sense. We will
refer to the union of two coplanar non-parallel grilles as a grid.

2.10. Examrre. Let zo,21,29 € R® be linearly independent and let
£1,€2,m1,m2 € R be such that £ Z&H Put 5 = Rxg, B = (flz+771)$0+R$1
and By = (§&Z + n2)zo + Rza. Each of these is a closed coset in R™. (We
have a line = and two planes through = in which there are grilles E; and
E, intersecting Z.) Then I(E; U E;) is not complemented, since (E1, E»)
fails (D). However, with II, = Rz + Rz, (r = 1,2), put X3 = By U 5,
X{ =1I, X5 = E;UE and X! = IT, By Proposition 2.6, each of X1, Xy
and XU X} has complemented kernel, and X{NX} = = = X NX;. Hence,
by Theorem 2.9, T(F; U Ep U &) is complemented. Note that there exists a
chain of projections L'(R®) — (B} — Z(E U E) — I(E; U E; U E) but
none L' (R®) — I(E) — Z(Ey UE;) = I(Ey U By U ),

The previous example occurred as [4, Example 0.1{v)] where it took the
form T((RxZx {01)U({0} xv2ZxR)U({0} xRx{0})) € LY{R3), An instance
of the next example also occurs in the literature, as [1, Example 4.1]. There
will be further discussion of these examples and the issues surrounding them
in Section 5.

2.11. ExampLE. Continuing with the notation of Example 2.10, we let
I3, 4 € R™ be guch that 23 does not lie in either of the planes II,, Iz, and
x4 lies in the plane M3 = 5 -+ Res bub not on either of the lines 5, Rzs.
Let By = (£17Z + m)zo + Rag = (Fy 1 E) + Rag and By = (622 + n2)ao +
Rzy = (By N E) 4+ Rxy. (We have introduced a third plane II3 through =
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and a grid B3 U Eg on Iy such that Bs N2 = By N EZ and B4 NE =
FEs N E.) By Theorem 2.9 with X; = F3 U Ey, X| = IIz and Xy = X} =
Eq, Z(E1 U E3 U Ey) is complemented. Now note that by Corollary 2.8.1,
Z{II; UII3 U Ey) is complemented, so that we can again apply Theorem 2.9,
this time with X; = Fy U By U By, X{ = II1 U fT3 and X3 = Xi = Fy,
Hence Z{Ey U Eq U E3 U Ey) is complemented. It can be shown that neither
Z(Ey U By U E3) nor Z(Ey U By U By) is complemented, This will be left for
Lemma 4.4, where a stronger result is proven. Given this, if there is a chain
of projections L (G) — I(EBry) = oo = T(EpyU... U Er4y) for some
permutation w of {1,2,3,4}, then 7{(4) € {3,4}.

The result [4, Lemma 1.4] (the “if” part of Proposition 2.4) uses cer-
tain Fourier-Stieltjes transforms to combine sets which have complemented
kernel to yield another set with complemented kernel. The following result
is similar, but more general. One useful feature is that it can be used in
two ways. The first of these is to show that under certain conditions, we
can combine hulls, each with complemented kernel, to give a larger hull
with complemented kernel. The second is to show that if a hull has comple-
mented kernel, certain parts of it can also be shown to have complemented
kernel. An example of a construction of the first type will be seen in Propo-
sition 4.3, and an example of the second type is given in Corollary 2.12.1,
which will prove quite useful in subsequent sections.

2.12. THEOREM. Suppose X, X1,..., X, €R(I") and Fy,..., F, e B(IN)
are such that

(i) X U::l X,
(ii) for each k, esther X C Xy, or X C X,
(iii) for each k, Fr =0 on XAX, = (X5 \ X)U (X \ X3),
(iv) Y1 Fe=1on X,
(v) each I(Xy) is complemented in L' (G).
Then I(X) is complemented in LY(G).

Proof. Let T : A(Xy) — A(T) (1 < k < n) be splitting maps and let
f € A(X). For each k such that X; C X, we have flx, € A(X}), so that
we can define T (f) = Fy - (Th o ox,(f)) € A, Clearly T)(f) = Fi - f on
X, and since F, = 0 on X \ X}, we have T{(f)= Fi- f on X. Moreover,
T; : A(X) — A(T) is continuous and linear.

For each k such that X 2 X, we have ¥}, = X, \ X € R, by
[7, Theorem 3.2]. Then Fy(Yy) = {0}, s0 Fy|x - F € Zarx)(X NY3). By
Corollary 2.3.1, the mapping f — (Felx - f) U0y, is a continuous linear
mapping A{X) — Tx,)(Ys). Hence Tyt [ Tu((Filx - f) J0y,) defines
a mapping A(X) — T, A(ry(Yy) which is continuous and linear with T f) =
Fy - fon X. :
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Thus T = }:‘E’:l T is continuous and linear and satisfies T () =
F(7) Y=t Fu(v) = f(v) for all ¥ € X. Hence T is a splitting map and
T{X) is complemented. w

2.12.1. COROLLARY. Suppose that Y,Y1,...,Y, € R.(I") are such that
Us=1 Ya © Y and each ideal T(Y), I(Y1),...,T(Y,) 45 complemented. If
there exists U € Uy such that

Yol Jiw+unw+0) %%,
i k
i
then Z(Y1 U...UY,) is complemented.

Proofl Let X = ¥y, U...UY,. By [5 Proposition 0.2], there exist
measures fi,...,4n € M(G) such that for each k, fx(¥y) = {1} and
Bu(C\ (Vi + U)) = {0}. Put

Be=m [[ A-8)
1<7<n
JFEE

(I<k<n)

and

F=1- [ @-8)- Y
1<jgn lsjsn
For each &, Y3 C X, Z(Y}) is complemented and F = Oon |, ¥; 2 X\Y3.
Also X C Y, Z(Y') is complemented and Y\ X C Y\ Ui#j((ﬁ' +U)N(¥; +
U)), so that for each v € ¥ \ X, there is at most one k with fig{v) # 0.
However, if fi;(y) == 0 for all j # k, then 1 - J[(1 ~ Z;(7)) = HEr(y) and
T Fy(7) = Fy(y) = Ba(y), so that P(y) = 0. Thus F(Y \ X) = {0}.
Finally, F' + 3 F; = 1 — [](1 — #;), which takes the value 1 on X. Hence,
by Theorem 2.12, Z(X') is complemented. m

3. A hull in R*. We are now ready to comstruct our first hull. This
will be a union of closed subgroups Ay, ..., Ag in R® such that T (U?=l Aj)
is complemented without there being a permutation = of {1,...,9} and an
elementary chain of projections as in equation (1.2), The idea behind this
construction is quite simple. We saw from Examples 2.10 and 2.11 that there
were hulls which had to he assembled in a specific order 50 as to yield an
elementary chain of projections. In particular, these hulls contained “crucial”
elementary sets which could not be added last. The example we consider
below contains nine instances X7i,..., Xo of Example 2.10, arranged so that
each subgroup Ay is crucial to Xy, and the regions in which there is a failure
of uniform geparation can be isolated from each other by an appropriate
partition of the identity, allowing the application of Theorem 2.12.



134 A, G. Kepert

In order for this construction to work, we need to choose the subgroups
Ay carefully. The situation we want is for each Ay to be a grille whose
component of the identity = plays the réle of & in the kth instance of
Example 2.10. Thus, the relations that we want satisfied are as follows:

(i) For each 1 < k < 9, there are exactly two other indices, ¢ and j say,
for which 5} intersects each of A;, A; nontrivially. (That is, 4; N &% # {0}
and A; N5y # {0}.)

(i) With &, ¢ and j asin (1}, Ag N A; € 5 and Ay N A; © 5.

(i1i) With %, 4 and j as in (i), ZxUA;UA; is an instance of Example 2.10,
so that Z(&), U A, U 4;) is complemented, but I(A; UA;) is not.

(iv) If » and s are such that (A,, A,) fails (D), then for some k €
{1,...,9}\ {r, s}, the line =} intersects each of A, and A, nontrivially.

Each of these properties will be verified in the course of the construc-
tion, and it will then be shown that these properties imply that ZT(X) is
complemented and that no Z(|J,, 4;) is complemented. This latter prop-
erty excludes the possibility of a chain of projections as in equation (1.2).

- To help our arithmetic, we have the following simple lemma, in which
the ratio z/y of two vectors z,y € R" is defined when z € Ry #£ {0} to be
the unique £ € R with x = £y.

3.1. LeMMA. Suppose E CR"™ is a line with0 ¢ E, z,y,2 € E. Then for
meeR,

@+ Q)+ Ry) "Rz = ~—n(Z+ )z

3.2. EXAMPLE. Define points p1,...,ps € R? x {1} € R® as follows:

pl = (0’4’2! 1)1 p4 = (OJ 21: 1)1 pT = (14: 147 1):
(31) P2 = (42: 0, 1): D5 = (21703 1)1 Pg = (O: —14, 1))
D3 = (w42! —42, 1)! Ps = (_21: ~21, 1)7 Py = (-14: 0, 1)1

then the following nine triplets of indices {4, j, k} have {p., p;, pr} collinear:

I = {1:5: 7}1 Iy = {2= 4, 7}a [ = {3:6: 7}7
(32) ]I2 = {2)6: 8}= H5 = {35‘51 8}1 1[8 = {114:8}7
Is = {3,4,9}, Ig= {1,6,9}_, Iy = {2,5,9}.

For each k, let Ej, be the line through {p; : i € It}. The relationships
between these points and lines can be verified algebraically, or by reference
to Figure 3.2.1. (There are many such planar configurations of 9 points with
9 collinear triplets such that each point is in three triplets. See, for instance,
[9, Bection 17].) There are seven extra points q1,...,qr € R? x {1} which
oceur as the intersection of two or more of the lines F1, ..., Fy. These are:
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= (6, 30, 1) E; M By, g5 = (—24, ~30,1) = E5 N Hs,
(33) = (24,-6,1) = By N By, g6 = (—6,24,1) = Eg N Ey,
) = (30, 24 1) EsN Ey, q;rx((),o,].):E'rﬂEsﬂEg.
qq = (30,6,1) = E4 N Ej,

Put gs = qy = ¢7, 50 that each q; € Ey.

Fig. 3.2.1. The points p1,...
and the lines By, ...

s Po (flled circles) and q1,..
, By of Example 3.2. An arrow from py indicates By,

., {7 {open circles)

For1 < k <9, let &, = Ry, and let I be the plane through Fj and
(0,0,0). Clearly

(3.4) EiCyepeEaeicl.

Now take £1,...,& € R such that & = & = &3, £ = & = 6, &7 = &s = Lo,
and £3, £ and &g are pairwise rationally independent. Foreach 1 £k £ 9,
put Ay = £xZqy -+ Rpp. Clearly Ay is a grille contained i in the plane T, and
E), is the component of the identity of Ay, Put X = Uk,_ Ag.

We now verify the above properties (i)-(iv). Note that 53 N A; # {0} if
and only if Z) C II;, which by (3.4) is equivalent to the condition % € 1.
However, since each &k occurs in exactly three of the I;, one of these being
I, we have (i). For (ii), note that B; # E; and p, € E; N Ej, so that
BN E; = {pi}. It follows that JI; N IT; = Rpy = Sy, so that 4;NA; € E.

It is clear from (3.2) that if k € I; ﬂ]l Mg, then each of the sets {1 2,3},
{4,5,6}, and {7,8,9} contain exactly one of 4, j, k. Hence &;, £; and & are
d1bt1nct Now, k € I;, so that py € Ey. Also ps,q; € E;, so that p;, Pk and ¢y
are collinear, b1m11ar1y PirPk: @ € Ej; are collinear. Hence, by Lemma 3.1,
we have

A; 0 By = (67 + Rp;) N Rpy, = g:c :3;: &iipr,

(3.5)

/l:,' N&y = (EjZQj +RP_7') " Rpy, = i ""Pj. §jz‘pk'
Prx — Py
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However, £ # &;, so that & # &;, and since each of ¢, p;, ¢;, p;, pr has
rational co-ordinates, we see that
¢ — P _ %P,

- & and ¢ Po—p; £
are rationally independent. Moreover, A; = {A4; N Z%) + Rp; and 4; =
(/1_;,‘ m E,‘c) -+ Rpj, so that
(3.6) S UA; UA; =Ry, U {(nZpy, + Rp;) U ((Zpy, + Rp;).
Since p;, p; and ps, are not collinear, they are linearly independent so that
Zr UA; U A; is an instance of Example 2.10, satisfying (iii).

Finally, we verify (iv). For r, s such that [I. N If, = Rg (1 < k< 7),
we have § = £;. A comparison of the spacings of A, N Rgy and 4, N Ry
as in (3.5) now gives us that (A4,, A,) satisfies (D). The only other pairs of
subgroups (A, A;) are those for which 1T, N IT, = Ey, for some 1 < k£ < 9.
Here there are three cases: v = k, s = k and I = {k,n, s}. In the first
two cases, (A, 4,) satisfies (D), and in the last, (A, 4,) fails (D), but each
intersects =3 nontrivially.

3.3. PROPOSITION, Let Ay,...,Ag be as specified above. Then for any
1<k <9, the ideal Z(;., 4;) is not complemented.

Proof. Suppose T{lJ;; 4;) is complemented for some 1 < & < 9. Let
1,7 be as in (i) above and put

Y=J4, Yi=A4\5, ad Yy=4,\5.
gk

Clearly Y1UY> C'Y. We claim that there exists U € Upe such that (¥; +U)N
(Y24+U)NY C Y1NYa. If this is the case, then we could apply Corollary 2.12.1
to deduce that Z(¥; U Y2) is complemented. However, 5; U = ; is easily
verified to be uniformly separated from ¥y U Y2, so that by Proposition 2.4,
I(V\UYhU EUE;) = I(A;U4;) is complemented. This contradicts property
(iii) above, completing the proof.

We now prove the claim. Let Uy € Lgs have 30/ digjoint from Y UY5. For
each 7 € {1, j}, the pair (5%, Z,) satisfies (D), and for r € {1,..., 91\ {3, 4, k},
the pair (5, Ar) satisfies (D). Each of the above pairs has intersection {0}.
Hence, by Lernma 2.7, there exists Uy € Ligs with U/ C Uy and

(Ex+U)N(E+U) S Uy (re{ig)),
(Ek+U1)ﬂ(Ar+U1)gUO (Te{laag}\{7’9.79k})

Hence, for r € {z, 7},

Er N (S \ Vo) +U1) € ((Br + Ut} N B \ Un) + Uy C (Up \ Ug) + Uy = 0,

and similarly for each r € {1,...,9}\ {4, 4, k}, we have 4, N{{Zx\Un) +U1)
= {}. Hence Y N ((Ek\Uo) + Ul) CYiUYs;.
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Since (I, I1;) satisfies (D) with II; N II; = 5y, there exists U € Ugs
with Us € Uh and (JI; + W) N (IT; + Up) C By + Uy But S5 + U1
((Ek\Ug)+U1)U(U(]+U1) and (Yl +U2)ﬁ(Ug -E-'Ul) C(MinN3Yy)+Us =0,
s0 that

YN(Vi+Ua)N(Yo+ 1) CY O (I 4 Up) N (I + Ua) N (Y1 -+ U)
CYN{(E\Up)+U1) CYIUY,,
as claimed. m
To complete this example, we need to show that I(U,Ll Ar) is com-

plemented. One way to approach this is to apply Theorem 2.12 with X ==
Uizl 'A"l“ ﬂnd

{X1,..., X} = {E]_UAEUAg,E'g UAs U dg, ..., EqU A3 U Ag;

A Udg, A Udy, ., AU ds Udgi da,. . gy | 5

{Note that here the first nine sets are the instances of Fxample 2.10 occurring
in the equations (3.6), and each of the next seven sets consists of those
subgroups A; which intersect one of the lines Rqy nontrivially. These arise
from the relations in (3.3).) The specification of the functions Fi,..., Fy €
B(R?) will not be presented here, as the proposition below shows the ideal
I(X) to be complemented without such a construction. A demonstration of
the construction of such functions will be given for the hull constructed in
the next section, where it seems that there is no alternative.

3.4. PROPOSITION. With notlation as in Frample 3.2, there is an elemen-
tery chain of projections
LYNR?) — T(8y) — ... _
L= (AU UE) = T(AHUEULL UE) — ...
= I{A UL U Ag U Bp) — I(X).
Proof The existence of a chain of projections
LIRY - I(8) = ... = I(5 U...USy)

follows from [4, Corollaty 3.12]. We proceed from here by induction on
k e {1,...,9}, using Theorem 2.9 to show that at each stage, there is a
projection

(AU, UAgq UBU...USp) = I(A; U...UAgU B U...U Sy).

Let Xo=AyU...UAgey UERU...U 5y, and agsume that Z(Xp) is com-
plemented. We show that ZT{Xo U Ay) is complemented, so that it is comple-
mented in Z(Xp).
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Put ¥V = Ax N UZn:l Rgy, and X1 = Xp UY. Since each Ax N Ry is
a proper subgroup of Rgn, Y is discrete. Moreover, if n # m, then A N
Ry \ {0} and Az NRg, \ {0} are uniformly separated. Hence ¥ is uniformly
discrete. Also, due to rational dependence of Ay MRy, and 45 MRy, (1 <
§ < k), Y\ Xg is uniformly separated from Xo. Hence, by Corollary 2.4.2,
T(X1) is complemented. Now put

X{=IU.. UL U U...UZU | (ANRgy),

1€<m<Tt
X2=X£=./1kU U Ej.
JElk
By Corollary 2.8.1, Xy and X{UX} = IT; U,
each has complemented kernel. Moreover,

X1NXa C X) A XY= (XN Xa)U ((111 u...UIIkm])m(AkU U 5]))

cxnx)ul ) Eu | @na).
FE€ly 1<j<k
Clearly Ujeﬂ;, Z; CXiNXy For 1 € j < k, either II; N II, = 5; for some i
or IT; N Iy = Rgy, for some m. In the first case, II; N Ax © Z; € X1 N Xy,
and in the second, IT;NAg = RgmNAr € X1NX5. Hence X{NX) C X3NnX,.
Thus, by Theorem 2.9, X3 U X = X U Ap hag complemented kernel. =

Remark This alternative decomposition of X into elementary sets re-
lies on the subgroups 4y being disconnected. A simple modification of this
example alters this situation. Let I'=R® x T and let Oy  R® — I and
0 : T — T (1 <k <9} be the natural injections. Put Ak {QD(EkT]qk +
Cop) + 0 (€2 i, C € R} (1 < k < 9) and X = |J_, A € Re(I). Note
that for each k, we have A, = R? and A, N 60(R%) = 8y(éxZagy, + Rpy) =
8o(Ar). Two applications of Theorem 2.9 give Z(X)} complemented—firstly
with n = 9, Xy = 6p(R®)U Ay and X} = 0o(R3) + 0, (T) (L < & < 9), to give
T(X U 65(R?)) complemented, and secondly with n = 10, X5 = X, = A
(1<k<9), Xy = 6p(X) and X|; = p(R3). Moreover, each Ay, is con-
nected, so it seems that the only elementary chain of projections we could
consider is that based on a permutation = of {1,...,9}, as in equation
(1.2). However, it can be shown (cf. Proposition 3.3) that for any such ,
I(Ufc:l ffw(k)) is not complemented. Despite this, there is an elementary
chain of eighteen projections onto Z(X):

LHR? % Z%) — Z(8y(51)) — ...
- I{B(51U... U 5y)) - I(A Ubo(Z,

..-—-?I(/llU

UM UAGU S UL Uy

U Aa U bo(Fe)) — T(X),
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similar to that in Proposition 3.4. An unexpected property of this example
is that the 8p(Zx) have empty interior in X, and so they are superfluous to
any elementary decorposition of X.

4. A hull in R*. In this section we will construct a hull X with com-~
plemented kernel that is similar to Example 3.2, but for which there is no
decoraposition of X into elementary sets yielding a chain of projections.
This set X will again be a union of grilles contained within a union of
planes [Ty U. ..U Iy intersecting three-at-a-time in lines 5, ..., Ey. How-
ever, instead of having each threesome of intersecting planes containing an
instance of Example 2.10, we will have an instance of Example 2.11. We use
this “building block” because even when it is decomposed into elementary
sets smaller than its constituent cosets, the same restrictions on the order in
which it is assembled apply. One difficulty with such a construction is that it
requires a grid on each plane ITy. If there are lines = other than =1,..., 5y
which occur as the intersection of some of the planes I7y,..., O (such as
the lines Rgy in Example 3.2), then the behaviour of the grids intersecting
Z needs consideration, to ensure that Z(X) is complemented. This difficulty
is avoided by using an arrangement of planes for which such intersections
do not occur. We construct this in R, instead of R3.

4.1. EXAMPLE. Define points py,...,p10 € R3 x {1} C R* as follows:

b= (—2= 2,2, 1)= = (2 -2,2, 1) Py = (1: 1,-2, 1):
(4 1) P2 = (2: 2; '_2: 1)= b = (4 2 4‘ 1): Pa = (2,0301 1),
by = (4‘: 21 ""'4-‘1 1): 7= (—2:0:07 1)1 P = (la '""1: 2: 1)-
Pg = ("'21 _2: _23 1):
6
10
1 5
7 / X9
/
4 ” 2
3

Fig. 4.1.1. The points p1,...,p1o and the lines By, ..., Hyp of Example 4.1,
projected onto the first & third coordinates.
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(Here p1, pa, pa, p5 are the vertices of a regular tetrahedron, and p3,pg, . ..
.., P10 are coplanar points, each occurring on an edge of the tetrahedron.
Such a configuration is discussed in [9, Section 19].) We have ten triplets of
indices {1, j, k} with {p;,p;,px} collinear:
]Il = {11 2}3}1 H4 = {1543 7}: H'? == {6:7: 10}7 I[9 = {2751 g}:
(42) = {2,4,8}, Hﬁ = {1: 57 10}1 HS = {6a8: 9}: ]IlD = {3’9: 10}5
Iy ={3,7,8}, Isg={4,5,6}.
As in Example 3.2 for each index 1 £ & < 10, let Fy be the line containing
{p; : i € I}, put By = Rpy, and let II; be the plane containing ) and
(0,0,0,0). Again,
(4.3) = CI & p e By o iel.
Furthermore, if i #£ j, then
(44) ILNI; £ {0} & EBNE; #0 & 1;N1, = {k}, for some k
& I N I1; = Sy, for some k.
Each plane If; contains the three lines &, =, and =, where Iy =
{k,r, s}. We require two grilles Sy, and S%,, in IT; such that Sy, intersects
Zy and =, but not £,, and su’nﬂarly for Sk,s. Putting Z=7+1 /2, these

will be of the form Sy, = &, +Zpx + Rp. and Sk,s = &k, +Zpx, + Rp,. for some
Ek,r:‘fk,s € R. Then

Sk,r N S = &pr L, Sk,s N By = Ek,sﬁpicg
k— = -
(4.5) Sk; r ﬂ My == i 55 gk,'rzp'r; Sk:,s n S == @7
S

T

B = Pr ‘Ek,sZps-

Dr

Note that we are only defining S - when (k,7) € J = {{k,7) : r € I; \ {k}}.
Note also that the fractions in (4.5), given by Lemma 3.1, are rational.

For each line Z%, there are three planes containing S, say ITy, IT; and
H;, so that if I = {k,r, s}, the four grilles intersecting = are Sik, Sy,
Sk and Sy .. Supposing these comprise an instance of Example 2.11, we
have

Sk,r Nk = Q): Sk,s NE =

g —

Si,k NEy = Sk NEx # S_;.',k- MNEg = SN
or S;pNEy = SpsNER # 86N Sy = SkrNE
Then either & = &rr # §ip = ho o8 Li = Cis 2 &k = &k If we
partition J into sets Jor = {(k,7) € I : &ar = e} (for some nyr € R), then

for each. (4, k) € Jar there exists r with (k,r) € Jy, and if (k, s) € J with
s # r, then (k,s) € Iy

(4.6)
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Consider the following partition of J:

.1]1 = {(1,2),(2,4),
= {(2,8), (8,9),

JLJ——{ 7),(7,6),

(

={(3,7), (7,10},
(4,
(

(4, 1)},
(9,2)},
(10,3},
(6,4)},

Js = {(5,10),(10,9), (9, 5},

uﬂﬁ—{( :3)5( H )’

(8,6),(6,5), (5, 1)}.
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These satisfy the requirements above. Suppose (4, k), (k r) € Jar with, say,
I = {i, 4, k} and Ix = {k,7,3}. Then to have Sk, N Zp = S;x N Tk, as in

(4.6), equation (4.5) gives

Pi— Py
4.8 k| = ik
(4.8) 3% P— 1394
Ag an example, consider the indices in Ji. These require
—P3
(2.l = | 222116 | = 36 o,
P2—Ds
_|p2—ps 1
|€a,1l Pi—1s [€2,4] 3152,4|=
Pa— D7
= [— =1 .
|€1,2] o1 pr [€4,1] = 1|€a,1]
Which is possible with nonzero values £y .., since
Pr—Ps) \P2Ps) \Pa”PT| 4
P2 — P3| |Pa—Dps| |P1—DP7
Similarly, we have
P2—pa| |Ps—Pe| |Po—ps| 4 3 1 .
Pg~pPa| |[Po—DPs| |P2—DPs 3 2 2 ’
Py—ps| |Pr=ps| (Pro=Pel 4 5 L _
pr—p3| |Po—Ps| | P3— Do 2 "
Pa—pi| |Propuo| |PeTPs| _4.q.1
pr—p1| |Pe—Po| |Pa—DPs 2
ps—p | |Pro—ps| |Po-p2| 4 3 1 .
Po—p1| |py—ps| |Ps—~p2| 3 2 2
Po—DPa| (Pa—pr| (P8 Pg| |P6 _P4| |P5 D10
P3—pa| |Pg—pr| |Pe—DPo| |P5—Pa| |P1—DP1o
—9.9 1 3
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so that if we specify that 11, ...,%s € R are pairwise rationally independent,
then we can define all the {& s : (k, s) € J} via the formulae

3m = 3812 = €24 = 34,1,
dny = 4fag = 3€s9 = 20,2,
23 = 2637 = 287,10 = £10,3
2y = 2647 = &rp = L4
dns = 45,10 = 36109 = 20,5,
12ng = 12£, 3 = 6€3,8 = 35,6 = 66,5 = 45,1
Tt is eagily verified that these satisfy all instances of equation (4.8), and

that if I = {k,r,s}, then &, 2 &4 5. To complete the construction, we use
these values {x , to give the cosets Sk, as above. That is, if 1 < k < 10

and Iy = {k,r,s}, then Sg, = £x,Zps -+ Rps and Sk = & Zpx + Rp,.
(Remember that Z = Z -+ 1/2.) Finally, put X = e Sk,r-

We now start proving that this example has the properties claimed.

4.2. LEMMA. With notation as in Ezample 4.1, there exist Uy, Uy € Upa
such that if (1,5) € J and k,r € {1,...,10} are such that k & {4,j} and
T 5 4, then

(i) (e +2U01)N 5 ; = o,
w(") (I, + Uz) NSy € (
Us =1 =g+ Ul):
() X n{E+200)n{E+2U1) =10
Proof Let Uy € Ugs have 3Uy N X = (. For any j, k, the Buclidean

subgroups = and ITy satisfy (D), and so there exists Uj 1, € Ugs with U; €
Ug and

(4.9) (B +2U; ) N (I + 20U ) € (5; N Ig) + Up.

By replacing each Uy, with Uy = [, , Ujk € Ups, we see that (4.9) holds
with a fixed Uy in place of Uj ;. Slmﬂarly, there exists Uy € L+ such that
Uy C Uy and

410)  (ITi+Un) NI +U) C (L NI+ Uy (i3 7).

Equations (4.4) and (4.10) give (ii) inmediately. Part (iii) follows by noting
that we have either v € I; or ¢ & II.. In the first case, (4.9) gives (=, +20U1)N
(Zi+201) € (ErNIL) + Uy = Uy, so that X N{Z, +2U1)N(E; +2Uh) = 0.
The second case follows symmetrically.

O+ Ua) N (I + Us) € (I, N IL) + U C

For (i), there are two cases. If I; = {4, 5, k}, then S; ; = §.;,jzp,:+ Z, and
by (4. 9) (S, §+ ».:Jg) N2, = Sr,;,j N2U; € X N2Uy = {. Hence Sij; N (5}(} +

2U1) =.0. Otherwise I; 5 {4, 7,k}, giving k & I;, so that by equation (4.3),
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IT;N Zy = {0}. Then by (4.9), Zx N (S;,; +201) C Uy. Hence (5} + 2U3) N
8;i €Sy N(Up+2U1)=0. »

4.3. PROPOSITION. The ideal ZT(X) of Ezamnple 4.1 is complemented.

Proof Forl <k < 10, let X}, be the instance of Example 2.11 occwrring
in. the vicinity of the line Zj and let X;.10 be the grid on the plane .
That is,

X;CMU{S,J (4,5) €l, i=kor k= j}

and
Xpt10 = U{Si,j (i) el, i=k}.

We have (i), (i) and (v) of Theorem 2.12. Let U1,Us € Ups be as in
Lemma 4.2. For 1 < k < n, let pg, vx € M{R?) be such that

k=1 on 5+ Uy, Ur=1 on I,

fe=0 off B +2Uh, D=0 off IT,+Us.
(These measures are easily obtained from [14, Theorems 2.6.2 and 2.7.1]—
for instance, as in the proof of [13, Theorem 2.3].) Define Fy = i) and
Fpiio = D [[,2,(1 ~ Br) € B(RY).

For each 1 £ k& < 10 and for each (4,§) € J such that k& ¢ {i,7}, by
Lemma 4.2(1) we have fiy = 0 on 5; ;. Hence F,(X \ Xi) = {0}. Similarly,
if (i,4) € J is such that k # 4, then by Lemma 4.2(ii), Ur = 0 on S;; \
Uigl(fr + Uy), so that Fii0 =0 on S; ;. Hence ch_|.10 (X\ Xpt10) = {0}

Finally, if v € X, then by Lemma 4.2(iil), [[ie (L ~ (7)) =
Yooy (), s0 that

20 10 10
1= Ry = (1= 3 0n) T[] - B,
k=1 kel r=1

Clearly, if v € U2, (Z, + U1) then S5 Fy(y) = 1. Otherwise, there is
some (4,7) € [ with v € S; ;. Then ¥;(y) = 1 and if k # 1, then ¥i(y) =0,
by Lemma 4.2(ii). Hence 21&1 Do(y) = Di(7) = 1, again giving 320 | Fi(7)
= 1, Thus, by Theorem 2.12, the ideal Z(X) is complemented. =

Remark., The nwmber of sets X in the above proof gan be halved
by taking Xy,..., X0 as defined but with Fy = [y + U H1 (1—[.). The
proof is given in the above form as a demonstration of a general method of
applying Theorem 2.12. For a hull X = | Ji_, Sk, this involves considering
regions of the form Wy = (N, Si) + Ur, for suitably chosen Uy € Ur.
Then i is a matter of constructing the Fourier-Stieltjes transforms Fy, each
supported within Wi\[Ujo; Wi. The difficulty here is assessing which U'LEH Sz
are complemented,
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4.4. LEMMA. Let Ey,...,Ey be as in Example 2.11, and suppose Y}, ¢
R{Ey) (1 £ k < 4) are such that ENEL\Yy and £ N B\ Y2 are finite.
Then (Y1 U Y, UYsUY)) is complemented if and only if EN E3 \ Ya and
ENE \ Y,y are finite.

Proof Suppose each 5N (E)\ Yz) is finite. By Theorem 2.8 and Corol-
lary 2.4.2, 7 = Y3 UY,U(ENE3\Y3)U(ENE4\Ys) has complemented kernel,
and since Y1 N1II3 € Z and Y3 NIy C Z, we can use an argument similar
to that of Example 2.11 to show that Z(¥; UY, UY3UY}) is complemented.

Conversely, suppose Z(Y; U Yy U Y3 U Yy) is complemented. By Corol-
lary 2.8.1, the hulls IIi Uz and I, Ul UV U, UYa U Y = U UY,
have complemented kernel, so that by Proposition 2.5, Z((11, U IT3) N (Y, U
Y5 UY; UY;,)) is complemented, However,

(H1UH3)H(Y1UY2UY3U1@)
=NUYUY,U((ENTY)\ (YA UY3U Yy)).

Put Yy = (E m Yz) \ (Yl U¥zU Yh) and Bg=5NE; = (ng+ n2)xg. Then
Ey is discrete and Yy € R{Ey), so that ¥5 € R.(R?) is discrete and disjoint
from Y1 UY3 UY;. Hence, by Proposition 2.5, Yy is uniformly separated from
YLUY; UY,.

Suppose Yp is infinite. Since Fy is affinely homeomorphic to Z, we see by
[12, A0] that Eg has an infinite subcoset £ such that Fy = EO \Yg is finite.
Then By NYy = Ey \ Fy is uniformly separated from Yy NS = 5N By \ F,
where Fy = 5NE,y\Y; is finite. Since the addition of finite sets does not alter
uniform separation, E) and 5N E, \ B} are uniformly separated. However,

= (£2(mZ + n) + n2)zo, for some m,n € Zand ENE; = (§1Z + m)=zo.
Then & # méy contradicts the umform separation of Ej and 5N E, \ E}.
Hence Yj is finite.

Finally, Eo N (Y1 UY3) C
point, so that
ENEN\Yy=FEp\ Yy
=-E0\(Y2UY4)UYDU ((EgﬂYg \Yd)m
is also finite. Similarly, £ N E, \ ¥3 is finite. w

4.5. PROPOSITION. With the notation of Example 4.1, suppose Y1, ..., Yu
eR (R4) are such that Y1 U.. . U¥y = X. Then for some 1 < m g M,
Z(Y1U...UY,y) is not complemented

Proof Foreach 1 <m < M, the set Zn, = X \ UL, ¥ € Re(R*) has
no isolated points, and lies within X, so that Z,, consists of a union of lines.
Let m < M be the maximurm index for which Zom+1 consists of only finitely
many lines. Then Z, \ Zpnt1 C ¥y, 50 that Y1 consists of infinitely
many lines. Since ¥,,4y is an elementary set, these lines are parallel, and

(€2Z+ m2) N (&17Z + 1) consists of at most one

(Y1 UY3))
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it follows that Yy, 1 © S;4, for some (4,7) € J. Thus, there are an infinite
number of lines from Z,, in the coset S;; and if (r,s) € J\ {{4,1)}, then
there are only a finite number of lines from Z,, contained in S, ,.

For each (7, s} € JJ, put Woy = S, 5\ Zp, and W = Utr.sye0 Wrs- Then
Wps € Re(Srs) has no isolated points, and since S, ; is affinely homeomor-
phic to R x Z, we have W, , € R(S,,). Moreover,

W= X\ Zy = U{Y’* 11 <k <mand Yy is not discrete}.

Let k,7, 8 be such that (f,k),(r,5),(s,5) € J, k # 4, and v # s. Then
$i,i\W;.i © Zy, consists of an infinite number of lines, so that 5;M.S; ;\W, ; is
infinite. Similarly ZyN8;  \W; g, Z3NS5; \Whj and Z;Nn8, ;\ W, ; are finite.
Hence, by Lemma 4.4, T(W;; U Wj w UW s UW, J) is not complemented.
Clearly each of W = W, W,, = W, and W:, = W;; UW; b has
complemented kernel. Let Uy, Uy € U4 be as in Lemma 4.2, then since W, C
II, and W, C II,, we see by Lemma 4.2(ii) that (W, + U3) N (W, + U2)
uj+U1 Then hy Lemma 4.2(i), Wn(_,:,+U1) - WNUWE j UVVj 1UVVJ k
W, U Wg U W, Slmllarly Wn (W -+ Ug) (Wy +0U3) C W, UW,u W;, and
W (W, + Us) 0 (W, + Ug) © W, UW, U W Hence, by Corollary 2.12.1,
Z(W) is not complemented. However, W C UZLI Yy, and (Uje, Yi) \ W s
discrete, so that by Corollary 2.4.2, Z(|i-, Y4) is not complemented. u

il Iﬂl

5. Hulls containing sets failing (D'). To have a characterization of
complementation and a general algorithm for constructing projections or
splitting maps, we need to address the cases which Theorem 2.8 cannot
deal with-——those where there are pairs of elementary sets in the hull failing
(Dg). Our main technique here is Theorem 2.9, for which we are required
to decompose X, the hull in question, into subsets Xy € Ro(I"), and then
construct appropriate supersets X € R.(I"). We would obviously like a
systematic method of specifying these sets Xy, Xj. The examples in this
section demongirate some of the difficulties that have to be overcome.

We begin by considering Questions 4.1-4.3 of [4], which were aimed at
addressing this issue. These questions were an attempt to generalize the
phenomenon occurring in (4, Example 0.1(v)] (and consequently in Exam-
ple 2.10), where the addition of the subgroup {0} x R x {0} to the set
(Rx Z x {0}1) U ({0} x v2Z x R) converted a hull with noncomplemented
kernel intc one with complemented kernel, and the subgroup Rx R x {0} was
instrumental in demonstrating this fact, The obvious question, generalized
in [4, Question 4.3], is whether every complemented ideal Z(X) for which
(RxZx {0} U ({0} x v2Z x R) C X has {0} x R x {0} € X. This is
answered in the negative by [1, Example 4.1}, on which Example 2.11 of the
current paper is hased.
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However, the other two questions are still of interest. These relate to the
existence of a groups analogous to {0} x R x {0} and R x R x {0} in a more
general situation. For these, suppose (I'1,[32) is a pair of closed subgroups
failing (D). Question 4.1 asked for the existence of a (unique) minimal closed
subgroup amongst those Iy for which I3 C I} and (I7,77}) satisfies (D).
Question 4.2 asked for the existence of a (unique) minimal closed subgroup
amongst those I for which each of the pairs (H, I'), (H, 1), (H + I'l, Iy)
and (H + I3, I) satisfies (D).

The example providing a negative answer to Question 4.3 does not ren-
der such subgroups I'y, H redundant—they were used in the application of
Theorem 2.9 in Example 2.11. These subgroups I} and H are also useful
for the construction of the Fourier-Stieltjes transforms to be used in Theo-~
rem 2.12. Examples of this occurred in Proposition 4.3, where each line 5y,
was used in the definition of iy, and each plane Ii), was used in the definition
of V. In this case, none of the subgroups =y, I, were contained in the hull
in question. ' ‘

Unfortunately, we will see that each of Questions 4.1 and 4.2 of [4] has a
negative angwer. For the “unique” aspect of each question, we need look no
further than the example given as an illustration. Put [ = R x Z x {0} and
Iy = {0} x V2Z x R, and let H be any linear subgroup of R3 not lying in
the plane R x {0} x R. Then H is minimal with respect to the conditions in
[4, Question 4.2], but H can differ from {0} x R x {0}, the subgroup stated
as being the unique such subgroup. This also provides a negative answer to
[4, Question 4.1], in that for any such H, the subgroup I'; + H is minimal
amongst those [ for which (I, I') satisfies (D), and so there is no unique
minimal such subgroup.

This also provides a different type of hull providing a negative answer to
[4, Question 4.3]. If we take any H as above and put A = (I -+H)N(NR+H),
then Z(I U I3 U A) is complemented. There are three cases here—the frst
where A = H = {0} x R x {0}, the second where H is contained in either
R xR x {0} or {0} x R x R, in which case A @ R x Z, and the third where
H does not lie in (R x R x {0}) U ({0} x R x R}, in which case 4 = R x Z2.

"The following example shows that the “minimal” aspects of Questions 4.1
and 4.? of [4] have negative answers. As in Section 2, Ax is the set {{z,z):
ze X}

5.1. EXAMPLE. Let 4 be an infinite totally disconnected compact abelian
group (for instance, [[yZs), and put I' = Ax Ag, I = Ay, and I = {0} x
Aq. Suppose I'; is a closed subgroup of I” containing Iy, Then I = 5 x Ay
for some closed subgroup & of 4, so that NIy = Az, Now, Il is discrete,
so that if (I, I';) satisfies (D), then I'} /A is open in (+IY)/Ag = I'/ Ag.
Hence I'; is open in I" and &' is open in A. Since A is compact, = is of finite
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index in A. Conversely, if 5 is of finite index in A then Iy /Agz is finite, so that
(I, Iy) satisfles (D). Hence (I, I'}) satisfies (D) if and only if & is of finite
index in A. However, an infinite totally disconnected compact abelian group
has no minimal finite-index subgroup. Hence there is no minimal closed
subgroup amongst those I for which Iy € I} and (I, IY) satisfies (D).

It can be similarly shown that for a closed subgroup H of I', all four
pairs (H, I}, (H, '), (H - I'\,I') and (H + Iy, I') satisfy (D) if and only
if H is of finite index in I, so that there is no minimal such H. Note that in
this case, (¢ is o-compact precisely when 4 is countable, whereas I' is never
g-compact.

Thus, if we are to apply Theorems 2,9 and 2.12 to construct projections
onto a specific ideal Z(Z), we will need some alternative way of specifying
the sets Xy, X}, required in Theorem 2.9 and the Fourier—Stieltjes transforms
required in Theorem 2.12. Each of these will have to rely on the elementary
sets which make up the hull in question.

A possibility for finding the regions and Fourier-Stieltjes transforms was
suggested by the remark following Proposition 4.3. Here we try to find re-
gions of the form Wy = ([, 8;) + Ur, where Uy € Up. and the S; are
some elementary sets comprising X such that Z({J;¢;S;) is complemented.
A method based on that of Proposition 4.3 that may work in general is to
specify the sets Uy for “large” T first. Then for J, K with JU K = I, choose
Uy, Ug such that (((7;¢; 55) +UnDN{(NMyex Sx)+Uk) € (MNigr Si) + Ui These
lagt choices are intended to rely on (D’) in the pair {(\;c; 57, Nick Sk)-

The situation for the general application of Theorem 2.9 seems less
straightforward. For this we require X to he represented as a union of sets
X1, X € Re(I') such that there exist sets {X}}F_,, each larger than
the corresponding X3. In previous applications of Theorem 2.9 (for instance,
in 2.10, 2.11, 3.4 and 4.4), these supersets were constructed from sets of the
form Ay + Ag, where (A4, A2) was a pair of closed subgroups satisfying (D)
which were in some way extracted from the hull X, Obviously, a similar
method can be applied for pairs of closed cosets (Eq, Ez) satisfying (D'),
using By + By ~ (EyNUEy) in place of Ay + Ay, The following example demon-
strates that we may have to build the supersets from other pieces. It consists
of a union of 5 subgroups such that if we want to prove complementation,
we are forced to build the supersets using pairs of subgroups failing (D).

5.2, ExAMPLE. Let I be a countable dense subgroup of R, given its
discrete topology, and put I" == R? x I'y, a o-compact and metrizable group.
Define closed subgroups Ay, ..., g of I" ag follows: -

Al = {(:E, —E':4(€“m):€) HECAS ]R: 561—’0},
Ay = {(0,y,3 -y, &)1y eR, £€ I},
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A3={(O&y:0a£):y ER’ gepﬂ}:
A= {(B¢+1,1,0,6):y €R, £ € I},
As = {(4(£ - 2),&,2,8) 1 2€R, £ € Io})-

Put X == Ui:l Ap. A straightforward application of some arithmetic and
the results in this paper verify the following:

(i) If 1 < i < j <5, then (4;, A;) satisfies (D) if and only if Ay N A; #
{0}, which occurs if and only if j = ¢+ 1.

(i) If 1 < i < j < 4, then the pairs (4; N Agpr, Ay )y (As, Ay N Aga)
and (/L,, n A’H-l’ Aj N Aj-i—l) all fail (D)

(iii) If 2 < n £ 5, then I(U?’;ll Ai + (41N Ay)) is complemented.
(This uses Corollary 2.8.2.)

(iv) If 2 < n < B, then (U?:_ll A+ (Ap_1 AN Ay = A1 N A, and
since A,_1NA, = (U;:ll A;)NAy,, we can apply a simple induction argument,
involving Theorem 2.9, to show that each ideal Z(|Ji_, 4;) is complemented.

(v) For any nonempty I C {1,...,4}, the ideal Z(X U|J; ¢y (As+ Agy1)) is
not complemented. This requires the assessment of a number of cases using
Proposition 2.5, but is essentially routine. The problem here is actually
caused by intersections such as (A3 + Az) N As.

Thus, although I(X) is complemented, we see from (v) that it is not
possible to apply Theorem 2.9 in the way we might have expected——that is,
with the supersets constructed by extracting from the hull pairg of subgroups
(24, 52) satisfying (D), and using sums &1 + = as the constituents of these
supersets. Moreover, it can be shown that we cannot avoid using sets such
as Ay + (Ap1 N A,) by using either of Theorems 2.8 or 2.12.

Hence, we have to accept that in a general algoritbm for constructing
projections, we may have to use sums of pairs of subgroups failing (D). This,
unfortunately, causes other problems. For instance, suppose each subgroup
Ay, in the previous example was replaced by an elementary set X, € R(Ag)-
Then we could again consider subgroups such as A; + (Ay—1 N 4y), but we
could not guarantee the existence of a suitable set Z € R(A; + (Ap—1 N 4y))
that adequately reflects the structure of the X;. This could occur, since
the topology on A; + (An-1 N A,) is “more connected” than the product
topology on A; & (A,—1 N A,), resulting in a smaller coset ring.

6. Uniformities on hulls. This final section deals with a topological
property of certain sets X € R.(I") that seems promising as a component
in a characterization of when Z{X) is complemented. Since this discussion
is mostly speculative, much of the technical detail will be omitted.

By a uniformity (or uniform structure) on a set X, we will mean a filter
W of subsets of X x X such that each W € W contains Ax and for each

icm

Complemented ideals of group algebras 149

W € W, there exists Wy € W with WooWy C W, where Wyo W, = {(z,2) €
X x X : there exists y € X with (z,¥), (¥, 2) € Wy} is the usual composition
of relations. The discrete uniyformity on X is {(W C X x X : Ax C W}.
Unless stated to the contrary, a subset ¥ of a uniform space X will be
assumed to be endowed with the relative uniformity Wiy = {Wn (Y x¥) :
WeWLIEWeWandaze X, put Wiz)={ye X:(z,y) € W}, then
W(z) = {W(z): W € W} is a filter of subsets of X. The unique topology
on X such that the {ilter of neighbourhoods at each z € X is W{z) we call
the topology induced by W.

For U € Uy, define Wy = {(z,y) e 'k "o~y € U}. Then {Wy : U €
Ur} forms a base for the standard uniformity on I', which we denote by
Wr. Suppose X € R.(I"), and let X = [J;_; X) be a fixed decomposition
of X into elementary sets. Then define

Wx.v = {(zg,zn) € X x X :there exist z1,...,Tn_1 € X, 51,...,Jn < N,
with {zr-1,xr) € Wy N (Xjk X X1 < k<n)}

=(won | xxxp)",

1gign
where (...)°™ denotes n-fold cornposition. It is easily verified that:

(i) {Wx v : U € Up} forms the base for a uniformity Wx on X.

(i) The topology induced by this uniformity coincides with the relative
topology on X as a subspace of I

(iii) For any elementary Z C X, Wx|z = Wr|z.

(iv) Wx is the strongest (finest, largest) uniformity such that each in-
jection Xy - X is uniformly continuous.

{(v) Wx is independent of the chosen decomposition of X into elementary
sets.

If X € Ro(IM), we say X satisfies (U) if Wx = Wr|x. This means that
for each U & Uy, there exist V € Up such that for any x,y € X with
z -y € U, there exist zo,...,2, € X such that zp = z, ¢, = ¥, and for
each k, &) — 21 € V and @1, €, both lie in some X;.

It follows by [4, Lemma 2.2] that if X € Ro(I") is discrete, then Ax €
Wx, so that Wy is the discrete uniformity on X, whereas Wp|x is the
discrete uniformity if and only if X is uniformly discrete. Hence a discrete
set X € R (I} satisfies (U) if and only if X is uniformly discrete, which
oceurs if and only if Z(X) is complemented.

Another instructive example is X = A; U Ag, where Ay, Ay are closed
subgroups of I'. In this case, X satisfles (U) if and only if for each U € U,
there exists V' € Up such that for any 2 € A; and 2 € Ay withz —~z € V,
there exists y € A3 N Ag with & —vy,y~ z € U. Equivalently, (A1 + A2)NV C
(A1 NU) + (A2 N U). Hence, by Lemma 2.7, A1 1) Az satisfies (U) if and only
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if (A1, A2) satisfies (D). Similarly, if 81,89 € Re(I') then S U S; satisfies
(U) if and only if (S1, ) satisfies (D'). Thus, in the case of o-compact G
(and possibly for all G}, if X is the union of a pair of elementary sets, then
T(X) is complemented if and only if X satisfies (U).

This equivalence does not always hold. The hull Z x RUR x Z U gR of
[4, 0.1(iii)] satisfies (U), but has noncomplemented kernel, due to Proposi-
tion 2.5. (A more intricately constructed criterion that takes Proposition 2.5
into consideration is considered below.) It seems likely that we will have a
one~way implication.

6.1. CONJECTURE. If X € R {I") has Z(X) complemented, then X sat-
isfles (U).

It seems likely that this will yield to an argument involving weak com-
pactness as in [4, Proposition 2.1 and Theorem 4.4]. In each of these two
cases, the argument relied on the fact that failure of either uniform separa-
tion or (D) results in nets of points {4}, {¥a} in X such that yo — 2o — 0
but for which there were functions fo € A(X) with fo(2) =0 and fo(y) =1
such that {f,} is relatively weakly compact. Then it was shown that if
T : A(X) — A(I") is a splitting map, then T({f.}) cannot be relatively
weakly compact, since weak compactness in a group algebra relies on uni-
form integrability, which conflicts with the separation properties required
of the functions T(f,). The difficulty in the more general case here is to
construct the required functions f, € A{X).

6.2. CoNJECTURE. If X,V € R (I") are such that Z(X), Z(Y) and
I(X NY) are complemented and X UY satisfies (U}, then Z(X UY) is
complemented.

Finally, we consider a criterion that, in the author’s judgement, could
provide a characterization of the complemented ideals of a group algebra.
The examples we have seen so far seem to indicate that to determine whether
Z(\Jr_; X&) is complemented, we need to examine not only the relationships
between the elementary sets Xy,. .., X, but also between elementary sets
of the form [;zy X;. A convenient way of viewing this might be to consider
the lattice of sets generated by Xy, ..., Xa.

Supposing X1,...,Xn € Re(I) and X = | J;_; X4, let £ be the lattice of
sets generated by X1,...,X,. Foreach Ze L, let Lz ={Y € L:Y C Z}.
We define the property (U’) on sets Z € £ to be satisfied when

(i) Z satisfies (U), and
(il) for any maximal Yy € {Y € Lz : Y fails (U)}, there is a unique
minimal V1 € {Z}U{Y € Lz : Y satisfies (U) and Yy C ¥}

Since £ is finite and the definition of (U') in Z € £ depends only on
(U} in Z and (U’) in the sets ¥ € £ for which ¥ C Z, this property is well
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defined throughout £. Moreover, it can be shown that (U’) is independent of
the decomposition into elementary sets. In particular, if Z € £ as above, and
£! is the lattice generated by a set of elementary sets comprising Z, then we
can suppose L' C L, so that Z having (U") as a member of £ coincides with
property of having (U’) in its own right. In the case G = R2, (U') can be
shown to be equivalent to the criterion involving the dependent intersection
property of [1, Theorem 3.1], so that (U’) characterizes complementation in
this case. It is hoped that this will hold for general G.

6.3. CoNnarcTURE. If X € R, (") then T(X) is complemented if and only
if X satisfies (U').

These lagt two conjectures are based partially on the author’s ex-
perience with examples and partially on the awvailable techniques for
constructing projections and proving that projections do not exist. To see
why the latter conjecture is plausible, suppose X is such that the conjec-
ture holds for all Z € £\ {X}. Suppose also that Conjectures 6.1 and 6.2
hold throughout £.

If X fails (U"), then either X fails {U) or there exists a maximal ¥ €
{Y € Lx @ Y fails (U")} and distinct minimal ¥1,Y, e {X}U{Y € Lx: Y
satisfies (U") and Yy C Y'}. In the first case, Z(X) is not complemented, by
Conjecture 6.1. In the second case, ¥3 MYy is smaller than each of Yy, Yo,
so Y1 NY, fails (U'). However, Yy C Y1 N Y3, so that Yy = Y1 N Y2, Now,
each of ¥y, Y1, Y2 is properly contained in X, so that Z(¥1) and Z(Y5) are
complemented and Z(Yp) is not complemented. Thus, by Proposition 2.5,
Z(Y1 U'Y2) is not complemented. If ¥4 UY, C X, then Y; UY; fails (U).
However, Yy C ¥; U Y5, which contradicts the maximality of ¥j. Hence
X =Y, UY; has noncomplemented kernel.

On the other hand, if X satisfies (U’), then properties (1) and (ii) ensure
that there is' no way of using results such as Propositions 2.4 and 2.5 to prove
that Z{X) is not complemented. A more positive result seems possible, but
more diffieult, The presence of (U) in many of the subsets of X results in
relations such as (V1 V)N (Ya+V) C (inYy) +U for U,V € Uy which in
turn can aid the coustruction of the Fourier-Stieltjes transforms required in
Theorem 2.12. Many of the problems outlined in the previous section come
into play here. One of tlie main obstacles to the development of a general
procedure for constructing projections is the structural complexity that can
occur in a set X € Re(I).

Note. The author has recently proven Conjecture 6.1. This result, along
with complete arguments concerning the material in this section, will ap-
pear in a forthcoming paper Uniformitics and complemented group algebra
ideals. :
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Topologies and bornologies
determined by operator ideals, IT

by
NGAI-CHING WONG (Kao-hsiung)

Ahstract. Let 9 be an operator ideal on LOS's. A continuous seminorm p of a LCS
X i3 said to be Ql—cammuous if Qp € A(X, X)), where Xy is the completion of the

normed space Xp = X/p~ (0} and Qp is the canonical map. p is said to be a Groth{2()-
seminorm if there is a continuous seminorm ¢ of A such that p < ¢ and the canonical
map épq : Xq ~+ Xy belongs to A( Xy, Xp). Tt is well known that when % is the ideal of
absolutely summing (resp. precompact, weakly compact) operators, a LCS X is a nuclear
(resp. Schwartz, infra-Schwartz) space if and only if every continuous seminorm p of X is
A~continuous if and only if every continuous seminorm p of X is a Groth{%)-seminorm. In
this paper, we extend this equivalence to arbitrary operator ideals 2 and discuss several
aspects of these constructions which were initiated by A. Grothendieck and D. Randtke,
respectively, A bornological version of the theory is also obtained.

1. Introduction. Let X be a LCS (locally convex space) and p a contin-
uous seminorm of X. Denote by X, the quotient space X/p~*(0) equipped
with the quotient seminorm (in fact norm) |+ ||+ @, denotes the canonical
map froma X onto X, and @p denotes the unigue map induced by @, from
X into the completion f,, of X,. If ¢ is a continuous seminorm of X such
that p < ¢ (i.e. p(z) < ¢(z), Vo € X), the canonical maps QQpg : Xy — Xp
and ém : )?q — .52",, are continuous,

Let 2 be an operator ideal on Banach spaces. Following A. Pietsch. [10],
we call & LOS X a Groth(®)-space if for each continuous seminorm p of X
there is a continuous seminorm g of X such that p < g and Qpg € A(X,, Xp).
This amounts to saying that the completion X of X is a topological projec-
tive limit ll_@QWXq of Banach spaces of type 2 (cf. [7]). A. Grothendieck’s
construction of nuclear spaces is a model of Groth(2)-spaces. In fact, a LCS
X is a nuclear (resp. Schwartz, infra-Schwartz) space if it is a Groth(91)-
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