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Complex interpolation functors with a family of
quasi-power function parameters

by
MING FAN (Uppsala)

Abstract. For the complex interpolation functors associated with derivatives of an-
alytic functions, the Calderdn fundamentel inequality is formulated in both additive and
multiplicative forms; discretization, reiteration, the Calderdn—Lozanovskil construction for
Banach lattices, and the Aronszajn-Gagliardo construction concerning minimality and
maximality are presented. These more general complex interpolation functors are closely
connected with the real and other intetpolation functors via funetion parameters which
are quasi-powers with a logarithmic factor.

Let 0 < @ < L. The Calderén complex interpolation space Cp (X) for a
Banach couple X is determined by f(8) for f € A®(S,X), where 4A(S,X)
consists of analytic functions from. the strip

S={2e¢C|0<Rez <1}

to X with boundedly continuous boundary values in Xp or X;. The
space C?(X) is defined similarly with some change on the boundary. For
n = =+1,%2,..., the generalized complex interpolation spaces Cy(n)(X)
are described by f(8) for f € AP(S,X) when n > 0; and by f(6) for
f e AP(8,X) with f¢)1(@) = 0 (1 £ k £ |n|) when n < 0. The funda-
mental inequality, originally stated for n = 0 by Calderén and generalized
to arbitrary n, plays an important role in complex interpolation. For in-
stance, it produces the duality relation between the lower #(n)- and the
upper 8(—n)-functors (cf. [Cal] & [FK]).

The present paper is o continuation of [FK]. We formulate the fundamen-
tal inequality in both additive and multiplicative forms, as well as applica-
tions for n s 0. We carry over some classical results (partially sometimes),
such ag discretization, reiteration, the Calderén-Lozanovskil construction
for Banach lattices, and the Aronszajn-Gagliardo construction concerning
minimality and maximality {cf. [Cal], [Cw], [J]), to these more general com-
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plex interpolation functors. The connection of the #(n})-complex functors
with the real and other interpolation functors is also considered.

1. Introduction and preliminaries. For details and any other unex-
plained notations concerning interpolation, we refer to [BK], [BL], [J] and
[FK].

In the pregent paper, we follow the custom of using the letter ¢ to denote
a positive quantity which varies from occurrence to occurrence. Z, R, R,
and C stand for the sets of integers, real numbers, positive real numbers
and complex numbers, respectively. For positive functions f and g on some
set, f Vg = max{f, g}, fAg = min{f g}; f < g means that f < ¢g, and
f =~ g means that both f < g and g < f hold. We use the notations ~,
€, == and = for continuous inclusion, isometric inclusion, isomorphic equiv-
alence and isometric equivalence, respectively, between Banach spaces, Ba-
nach couples as well as interpolation functors on the category BC of Banach
couples.

Here and throughout, we assume that X is a Banach space over A=R
or C with dual space X', and assume that X = (Xy, X1) is a Banach couple
for which AX = XN X1 and £X = Xg + X1. Let X be an intermediate
space for X. The regularization X° of X in X is the closure of AX in X
and the Gagliardo completion X¢ of X for X consists of all limits in £X of
bounded sequences in X with norm

[zl xe = inf{c |z, — 2z in X for (z,) in X with |z,x <c}.

The space X (resp. the couple X) is called regular if X0 = X (resp. X° =
X), and Gegliardo complete if X© = X (resp. X¢ = X). For two Banach
spaces X, Y (resp. Banach couples X,Y), L(X,Y) (resp. £(X,¥)) stands
for the Banach space of all bounded linear operators from X to Y (resp.
from X to V).

Let F be an interpolation functor on BC over A. We define its regular-
ization functor F° and Gagliardo completion functor F© by

FO:X = F(X)® and F°: X~ P(X)* for X ¢ BC.
F is called regulor if F® = F, and Gagliardo complete if F¢ = F.I{ F, Fy,
Fy are three interpolation functors, their superposition functor F(Fg, Fy) is

F(Fy, F)(X) = F(Fy(X), (X)) for X e BC.

We use this notation when reiteration is concerned, For a positive function
eon Ry, I'is called a funcior of type g if

1Tl p ey, 2 < el Tloe(IT /1T o)
for all Banach couples X, ¥ and for all T' € £(X, 7). F is of exact type p if
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the constant is equal to one. The characteristic function pp of F is defined by

F(A,(1/1)A) = (L/er(t)) A,
where {A is the 1-dimensional space A with norm ||A|| = ¢/}| for £ > 0.
Suppose 4 is a Banach couple and A is an intermediate space for A We
define the orbit functor Orba(4, —) by

[s24)
Orba(A,X) = {o = Y Thay € IX | To € L4, X) and 0 € A}

na=l, ‘
with the orbit norm ||z o, =
Corhs(—, 4) by

Corbp (X, A) = {2 € X | Tz € Aforall T € £(X,4) with |T}| <1}
with the coorbit norm ||z| com = sup ||Tz|| 4. Much use is made of the im-
portant fact that Orb4(A,~) is minimal among all functors F* for whicks
A < F(A4), and Corby(—, A) is maximal among all functors H for which
H(A) < A (under the order of contractive inclusion). If in addition A is an
interpolation space with respect to A, then
Orha (4, A) = Corba(4, 4) =~ 4

Here “~” becomes “=" when A ig an exact interpolation space.

Next let us recall some notations and terminology of [FK]. For a Lebesgue
measurable subset E of A and a Banach space X, we denote by LP{IE, X)
(p=1or oo) the X-valued LP-space with respect to the Lebesgue measure.
We simply write L?(E) = L?(IE, A). For the strip $ = {z € C | 0 < Rez
< 1}, we denote by Hoo(S, X) the space of all analytic functions from int S,
the interior of S, to X such that

sup{||f(z)

Functions in H. (S, X) need not have usual boundary values in X, while

each f in Ho. (8, X) has boundary values in the weak topology, say Ty; in

the space L(L!(R;), X), where B; = {z € C | Rez = j} (j = 0,1) (cf. [KP,
p. 146]). -

Now let X be a Banach couple and let n = 1,2,...
following Banach spaces of analytic functions on S

ANS, X) = {f € Hool$, 5X) | f is boundedly continuous on $
such that f(j+it) € X, for t€R (5 =0,1)},
={f & A"S X)| F8) =0 for k = 1,...,n},
) - ([ € Hoo(8, 5%) | Ty € LI R),X) (4 = 0,1)},
=0fork=1,...,n},

mE 37, 1Tl g 5z llan |4, and the coorbit functor

We consider the

(L A, X
Ho (S,
Hoom($, X) = {f € Hoo(8, X) | f¥(B)
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with norm
[ £lloe = max{sup || £(7 + i)}
for f € AP(S,X) or AR(S,X), and
1£lleo = 1Ts.0ll0 V Tyl
for f € HooS, X) or Hop (8, X). Let
Kony = Koy (A) = {f € A| f™(8) = 0},
a closed subspace of A = A™S, X), AL(8,X), Hx(8,X) or Hoon(8,X),

and let
l 2 ki3
Chm = — ( - -—sinm?) .
n! T

With this background, one can define the complez #(n)-interpolation
spaces by
(1.2)  Cony(X) = 9,0 A°(S, X)/ Ko(my, C™(X) = conHoo(S, X)/Koeny
and
(18)  Co(mny(X) = AL(S, X)/Kpgyy C'™(X) = Hoo (S, X) /Koy

with quotient norm

|z llagny = inf{}i flloo | & = co,n f™ ()}
and

[2llo¢—rny = inf{||fllec | 2 = f(6)}
respectively. To simplify matters we usually set n € Z and write C5 and
CY for Cypy and C%¥). The complex interpolation with derivatives was first
studied by Schechter and then by Carro—Cerda in the distribution sense {cf.
[8] & [Cq)). _ .

In the definition of the Calderdén space Cp(X), the space A"(S, X) can be
replaced with some other analytic function spaces (cf. [BL], [Cw] & [Pee]).
Let A°(S, X) (resp. A%(S, X)) be the subspace of A" (S, X) (resp. AP (8, X))
which consists of all functions f such that im0 f(J + it) = 0. Then we
have an equivalent definition of Uy (X):

= A'(S, XY/ K for n>0
1‘4 C " X . C@,ﬂ. et g(n) L
(14) o) (X) { A8, X) /Ky for n < 0,
and of the regularity:
(15)  Con)(X) = Cony(X)* = Con)(X),  CP™(X) = Cyny(X),

according to [FK, Remark 5.8]. We will investigate further identifications in
the next two sections.
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2. Fundamental inequality and applications. Let us start from a
pair of Banach spaces, say {Mé\)? , XX}, with the contractive inclusion § :
AX — XX, Let 5 : Tx AX — Ry be a meagurable function such that
|- {ls = n(-t) is a norm on AX for ae t € T, the unit circle in C; and
suppose every ¢ € AX satisfies

||y = esssup{||z|. | £ € T},

dt
I13)

5X = inf{ Tf [F61D ;:; } f e LT, AX) with ¢ = Tf £2) —}.

2

Let X {t) be the Banach completion of AX with respect to the norm || -|[;
for a.e. t &€ T. The corresponding regular interpolation family X over T is
given by X = {X(4) | { €T a.c.}. The main advantage of this setting is the
validity of Fourier analysis and the technique of multipliers (cf. [FK, Secs. 1
& 9)). Let A(D) and H'(D) be the disc algebra and H'-space on the unit
disk I respectively. For @ & II1(D), we denote by S,(y) the nth partial sum
of the Fourier series of ¢. Let us restate [FK, Lemnma 2.5] here to make the
paper self-contained.

2.1. LEMMA. Suppose ¢ € H1(ID) with u = Rey.

() If v € A(D), then Snlwt) = Su(Snl@)¥) = Sn(Sn()Sn(¥))- In
particular, if Su() = 1, then S,(py) = Su(4); and hence if p(0) # 0, then
Ga(08,{1/0)) = 1 s0 that S, (Sn(1/0)o) = Su(¥).

(ii) Let B, be the quotient algebra A(D)/z"T'A(D). Then

150 (#)lloe < (n+ BBlam < (n+ Diela @,
|15 (exp )| 3, < expu(0)(1 + ([l aw)™ < expu(0)(L -+ [lulir )™
Let
H®(D,X) = {f : D — IX| f is analytic in int D and || f(e")[s € L= (T)}

with norm || f|ey = esssup,er §f(€)|ls. For f € H*(D, X), &et @ be an
analytic function on intD with u(e®) = Rep(e®) = log|f(¢¥)]; and let
g = exp(—)Sn(exp ). Then Lemma 2.1 tmplies that F =g fe H®(D,X)

-

with P(k) = F{k) for k= 0,1,...,n, and
R
1] oo & 1| 9w (exp @)ool F exp{~) loo < (R-+1) IR HCSIE 5
T

(22)  [Floo < |Sulexp @)l 5,7 exp(=¢)!l

< (4 [ muhsen ) oo ( S 1og||;f(e“)lln-§%>-

T
These inequalities, together with the conformal mapping me <o <l)
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from S onto I given by

explin(z—8)) ~ 1
exp(—ind) — exp(irz)

(2.3) mg(z) = for z € 8,

as well as the estimates

e ([ vogliloon 125 ) < fwwuumew

oo [ oelfar w00 ) s iras «:mmw,t)—,o'-

=00
for f € AP(S,X) imply the following

2.4. THEOREM (Fundamental inequality). Assume f € Ab(S X). Then

there ezists h € A®(S, X) such that K% (8) = f¥)(8) (k=0,1,...,n) and
(i) meyszfwu+WMEWt&
=0,1 —c0
@ e <ea(t+ S [ loglsGiinlsIPsenar)”
J=0,1 —0o

v (Y [ oehsinin e a)

J=0,1 —

() e <21+
i=0,1

oo 1-¢
< 1@lon 15

—00

I og 1565+ 59l (0,1) az) ™

o0 dt é#
< Jirasanaen )
where ¢1 and ez are constants depending on 0 and n only.
A direct consequence is the following duality relation:
(2.5) Copny (X)) = CF=m (XYY,
Let us now turn to further applications of the fundamenta) inequality.

2.6. LEMMA. Assume f € HooS, X) such that [ flleo < 1 and f(i) €
(R, Xo). Then there is a sequence (f,) in A%(S,X) such that | fulloo <
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[l and
l,f ”()P 9 t) dt — 0

as v — 00.

f I\ (3t)

Furthermore,
(i) if @ = comfM(0) and x =
O{)(n)(x);
(ii) there is a subsequence of (f) (sti dmoied by (ft,)) and @ sequence
(g) in AP(S, A X) such that s )(0 = RORUE n), and (gu)
converges to a function g in AP(8, X). If in a,ddatmﬂ f G An(S X), then
g€ AN(S, X) with f(0) = g(9).
Proof Forv =1,2,...,let
1w
Julz)=» f flz+it)dt forz €S
0

From the proof of the theorem in [Pee, Sec. 4, we readily see that f, €
AP(S, X), [ fullow S N[ flloo and

comfHO) for n > 0, then z, — @ in

[ 17.668) = f(itYoP(B, t)dt — 0 asv — oo
(i) For » > k and j = 0,1, we have
Fold +it) ~ fu(d + it)
=&
[ 70 +is)((v = B)xuaayn (8) = Bxpensueean(s)) ds
This gives

£ (f +it) = fulg +it)]l;
< f (v = k)X a1y (8) — kX1 fupr1 k) (8)] ds

vk oy

A

7
It follows from Theorem 2.4(ji) that

2y — 2kllomy < e (1 -3 T log || £, (7 4 3t) = fu(F + i) F5(8,%) dt) |

j==0,1 —c0

x exp( Y T log (| £, (7 + it) — fu(J +u)l|; 9 t)dt)

j=0,1 =00



200 M. Fan
1 oQ
< chexp (52031 {o log || £ (3 + it) — Juld + it} P5(8,1) dt)
! 1 T - £ (4 ] ;
S Cy CXD <§ f log ”f,,(’.’..ﬁ) e If},-,(%ﬁ)”nl()(@,t) (“,)

oo di‘ {1—6)72
, ,
< [In-ntohnon )
—o
Therefore (z,) isa gauchy sequence in Cyryy (f ), and 80 @, —» & in C(,(J,,,)(X'" )
since z, — x in LX.
(ii) By passing to a subsequence if necessary, one can always assuine that

e"p( > flongu,’i-Hf)hka"}*zb llP5(8,¢) (1/)<1/w)

1=0,1 -0
Thus by using Theorem 2. 4(11) agmn Onc can find h, &
r{(0) = fl““)(a), &6y = £2(0) ~ FEL60) (v > 2, k= 0,1,...,n) and
|Bulloe < 1/v2. Set g, = z; 1 Then (g.) is a C&luch"y sequence, and
hence a convergent sequence in A"(S,X). The function g = lim, g, is as
required. w

A¥ (S, X) such that

The following proposition extends some identification results for the Cy
functors obtained by Peetre (cf. [Pee]) to the case of the Uy, functors, and
its proof is directly obtained from Lemma 2.6. A Banach space X s said
to satisfy the Radon-Nikedym Property (RNP in brief) if L(L'(R),X) =
LR, X).

icm

2.7. PROPOSITION. (i) Let H (S, X) (resp. HX (8, X)) be the subspace of

HooS, X) (resp. Hoon (S, X)) which consists of all functions [ in He(S, X)
(resp. Hoon(S, X)) such that f{7 +it) € X; (7 =0,1). Then

= [ ConH®(S, X)/ Koy forn >0,
Coon (X) = {I‘I""(S X) /Ko Jor mo< 0,

(ii) Jf either Xo or Xy has the RNP, then Cyp(X) = CH(X) for
= 1,42,

It is worth pointing out that if either Xy or X is refloxive, then so is

the interpolation space Cy(y,y (X). This result was first stated by Schechter
in {8, Th. 2.14].

3. Discretization. Now we employ Cwikel’s idea of “periodic” complex
interpolation (cf. [Cw]) to offer equivalent discrete norms for the complex
8(n)-functors defined above. Assume n > 0 for the moment. For v > 0,
we consider the following subspaces of A"(S,X), A4, (8,X), He(S, X) and
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Heon (8, X), respectively, which consist of analytic functions with period -y
in the corresponding spaces. Specifically,
AV(S,, f) = {f € AY(8,X) | f(z-+iv) = f(2) for z € int S},
AL(S,, X) = {f € AL(S, X) | flz+iv) = £(2) for = € intS},
HaolSh, X) € HalS T | {2+ ) = £(2) for = € ntS},
Hoom(8y, X) 1= {f € Haon(8,X) | f(z + 1) = J(2) for 2 € int 8§}

Observe that any f in cach of these spaces has a Fourier series representation

(3.1)

[+ ¥)
(3.2) Hay~ 3 aet™
1 -
where
T, = f fls+ @'t)ze%”(“’"*’”")/”’ — e AX,

~7/2 i

which is independent of g € [0, 1]. By identifying f with its Fourier series, f
can also be considered as an analytic function defined on the annulus
={zeC|1l<|z| <exp(2n/y)}
Replacmg each of the Banach spaces AP(S, X ) Ab (S X), HOO(S X) and
Heo (8, X) with its periodic subspace AP (ST,X (S,,,X) (S,,X)

and Ho (S, X) respectively in (1. 2) or (1.3) gives the periodic interpola-
tion spaces Cogn)y (X X) and C*EMT(X). Tt is clear that

09(:!:71);7(}?) - C@(in) (X) and CQ(:Ln) 7( ) c Cﬁy (=) (X)

To establish the isomorphism between C(py (X) and Co(n) ,(X) (resp.
CHEN) (X)) and CFEMY(X)), we introduce an auxiliary analytic function
defined on C by :

(3.3) w(z) = p(2)Sn(1/p(2)),

where @(2) = (5"3-;_}“-3)"‘"l exp(22%). It follows from Lemma 2.1{i) that w(0)
=1 and w®(0) = 0 for k = 1,...,n. Moreover, w(* (2niy) = 0 for k =
0,1,...,nand ¥ = 21,42, .. also

|w(s -+ it)]

ay [ VA~ cosa) | = B (0
o282 ~1%) (m____(,.,,!gf:ﬂs_i)_) E: st )|(s2

o +19)2 i g0,

k=0

mwz Iso( (0 LB Oy if s =0.
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For v > 0, let

z—0
(3.4) wyy(2) = w 5y )
Then
(3.5) we(8) =1, wgfjl)(@) =0 and w (9 + gpry) = 0
for k=0,1,...,n and v = *1,42,... Moreover,
wa (5 +it)| € crexp(-eat’)  (F=0,1),

where ¢; and cg are positive numbers depending on 4 and ~y only.
Let A = AP(S, X), A2(S, X), Hoo(S, X)) or Hoo (8, X), and let B be the
corresponding periodic space. For f € A, we define F' € A and & € B by

z Flz+ dvy)

V=00

F(z) = wg,(2)f{z) and G(z
on int§,. On the boundary of S, F' and G are defined in the usual way it
fe Ab(S X) or AB(S, X), and in the sense of operators if f € Heao(S,X) or
He, (S, X). Then "Gk (9) FE@Y = fB(0) for k = 0,1,...,n by (3.5).
We can then formulate

)y @nd o)~ GOVONY uhere no€ Z.

It is sometimes convenient for us to use these periodic complex 8(n)-
functors rather than the ordinary ones. An important application comes in
the final section.

3.6. THEOREM. Cliny 2 Copn

4. Connection with real interpolation and other functors. Let us
first look at the following function parameters, which are quasi-powers with
a logarithmic factor, and at the corresponding real and other interpolation
functors, closely related to the complex #(n)-functors. Let

1
(4.1) opn(t) = t0{ 14 St 61— 6) logt for t € R
! Tl

with 0 < 8 < 1, n € R\ {0}. A positive function g on Ry is called quasi-
concave if p(st) < {1V t)p{s) for 8,1 € Ry. It generates three other quasi-
concave functions on R.4.: ¢* (involution), o™ (transposition) and 7, given by

. - 8t

()= 1/0(1/8), () = ta(ife), Bt)=sup L.

a0 0(8)

The induced homogeneous function of two variables, still denoted by g, is
oltn, t1) = top(t1/ts) with involution

o*(to, t1) = 1/ o(1/t0, 1/t1) = to/ ofto/t1).

icm
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A quasi-concave function g is called a quasi-power if g(t) <€ Vt1~¢ on
R.. for some & € (0, 1). It is clear that gg, is a quasi-power such that

t/\ ]- S QI‘),’I}(!:) S ]'; v l IQ(’; 34 = QU i QE,T) = QI—ﬂ,H? Zjﬂm\ = Qﬁ,lfql:

g1 —4 t [\
2o, (to, 1) = t57%%] (H'Lrl“')' 1) = A" 09, (Mo, At).

log —
g P
We write gp0(t) = 0g(4) = #¥ for simplification.
For a positive function ¢ (called a weight) on Ry, we denote by 1% the
real bilateral P-space with welght {1/0(2")) ez when 1 < p < oo and set
19 = (o) € B | o /0(2¥) = 0 s ¢ — oo}
Let l”ﬁ - =1}, For p = 0,1 or oo in particular, we write If = 12, with
2i(t) =t/ (§ = 0,1) and define the Banach couples # by P = (i§,1).
According to [J, Sec. 4], the real and some other interpolation fungtors
currently in use in the sense of Kalugina, Peetre, Peetre~Gustavsson and
Ovchinnikov related to the function parameters g, can be interpreted as
the following orbit and coorbit functors:

Ty = Orbz (I1,=),  Kf ) = Corbg, (~,1%)
(p=0or1<p<oo)
Orb;((:; )( s -—);
= _
s O()rbz%em)( ,I )

(4.2)

G(g ) = Orbw - (iﬁ, --), G(gm

G(Gy'f] Ot‘b;» (l 3 ""),

& m
For the real functors J(H p 20d K f’ﬂm), it is known
(4.3) Tho.m = K (p=0ocrl<p< o),

and

(68,m)

Ty (X)' = (X), K (XY = Tt _ (X))

(p=0orl<p<oo)

(9 —i1}

for any vegular Banach couple X. If m; < n2, then J7, @) = J(p@m) and
K(H,m ~ Ja,m) slnce
. ‘o g~

gﬂ,m(”‘) . (1 + f{1 9) Ilogt])

0., (t) M2 —Mm
and 80 gy, [/ 0p.4, € L N LY. Furthermore, if 0 < 8o, 61,8 < 1 with b # 61,
a= (1= 0)y+ 80, and { = (1 — @)y - #n1, then
(4'4) Qoyti =2 Qﬂ,'n(Qﬂumm 991,"?1)'
This, together with [J, Th. 19], implies the following reiteration result:
(45) K(tv n+¢) (K {fo,m0)? (91 m)) - K-(‘9 ) (1< po,pusp <.00).
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Consequently,
(46) Kl (X)NEG (X)) < I, (X)) for X e BC.

Since the characteristic functions of all functors described § 111 (4.2) are equiva-
lent 0 gg., [, Sec. 6], and since Clyypy (10) o 1, ) and O YT fo.m) IFK,
Ex. 6.7], we obtain, by using the minimality/ ma.xunahiy of the orbit/coorbit
functors, the following inclusion diagram for 1 < p < oo

J(l‘g’“) — G[()f),n) - G?é'o,n) - G () (G?E)In) )
L ! !
Copny ——mmr O Oy
(4.7) ! |
(H'(H,n) )U X me)
! !

J(e ny T K?ﬁ,n) K ny

where the arrows denote continuous inclusions. This diagram generalizes the
last result of [J], enriches [CCS, Prop. 5] and will be used in this and the
next section.

There are several equivalent forms of ge, appearing in the literature.
For instance, Carro, Cerdd and Sueiro used the function parameter t°(n -+
[log¢|)™ to study the relationship of the complex interpolation with deriva-
tives and the corresponding real interpolation. One of the motivations for
our choice of g is that the complex §{n})-functor is of interpolation type

el 2sin 7 "
+ |log?| ) ,

while 28278 ~ g1 — §) [FK, Th. 5,6]. Hence g4 ,, preserves all information
about the parameter ¢ and includes the classical case when n = 0. In fact,
all functors in (4.2) are of interpolation type gy, n|- See [Per, Th. 2.2] for the
real functors Jf, ., and K., qy and [GP, Prop. 6.1] for the functors G

and G ny. The type of the functors G"Q
following proposition.

&m)
rmd F8m) i5 deduced from the

4.8. PROPOSITION. Assume o s a quasi-power funclion. Let Gy =

Orbyee (1%, ) and H¢ = Corby (-, ). Then the functors Gy and H? are
of interpolation type 3.

Proof Fet 4 = (I;"; ol / Q), let A be the one-dimensional subspace of
I5° generated by e = (1) and let Ff° = Orby(4, -). According to [J, Th. 3],
we have G3° =~ F°. For all X, Y € BC, and for all T L{X,¥), we intend
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to show that
Il oo 52 1T gomy, oy S 22007 M0 [ T']12)-

Suppose ¢, = ((,y;f,),c:__m with ep =1ifvz2kande,, =0iv =k,
v=0,zk1,%2,...

Irxl(y “THUn HT”

For any S € £L(A,X), we bave Se = (Se,) and

2 )\, ,
=== Se, (1=0,1).

1505 = ¢
|An <L
We define U € L(A) by Ue, = eyq, with
_ NoglIT /1T
log 2 !
s0 2% < |TIi/ITlo < 2% |IU]| = 1 and Ue = e. For any z € F®(X)
with ||z ree < 1, choose § € L({A,X) with z = Se and iS|| < 1. Then
Tz = TSUe. For A = (A,) € I8, put {, = Ap—u0(2”)/0(2""). Then
i¢o] < 3(2%)[A,|. Further, we have

H222 X r5y7, LD

d

2 CV-I“N
21/-|-K‘)Seu+"c g

<27WTMH§:2 e

< 2|Tfoa(2") < 29(||Tilo, HTEI:.)

and bence Tz € FP(Y) with |T||rge < |78V |l 7 < 28T llo, [ T]1)-
For the coorbit functor H¢, we have § € L(X, 1) iff Sz = ({2}, 2))12 — oo
where 2/, € X' with

73:/:
|SHJ = bup{z 1 2p;

For any V € L{Y, 1) with [V € 1, let Vy = ({y,,))v with yi; € Y
We define § € £(X,17) by setting Sz = ({z),2)),, where (z}.2) =
(W~ T'x)0(2¥)/ 4;3(2”“'m ) with & ag before. Observe that

, |{xl, 2| [ty T2 2(27)
lb"ﬂ“[ Z 2”-} Z 2”‘?9 2%—%)

< ‘2“ “g(2%) IIVT-’LHJ' < 28(I1T o, 1T [ ) 1l
Now if & € H¢(X), then
| yu! T"L‘ |<2'V+""’
HVT‘BHH = Z Z 9(2,_,4.&)
= HS’thg S HS|H $||m < 280 T Moo T 11) || e

o(2")

€ X, with |lzfl; < 1} (G =0,1).

(7 =0,1).
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and hence Tz € He(Y) with |T%||ge < 28(|T )]0, [|7]l1)
of the coorbit functor, =

by the construction

5. Reiteration and Calderdn—ILozanovskil construction. Qur first
result concerning reiteration for the complex @(n)-functors is as follows,

5.1. THEOREM (Partial reiteration). Suppose 0 < 6,84,6 < 1, 6y £ 6,
a=(1-0)8 + 08, and kn 2 0. Then

ch(n -+ k) - CB n)(C@n
Catnt) = Comy(Cao )

+Coy (k)
» Coy k)

Proof. Because of the regularity in (1.5), we may assume X to be
a regular Banach couple. It is known from [FK, Remark 5.8] that both
inclusions hold for k£ = 0, so0 we may assume & 3 0. Set ¥; = Co; i) (X) for
j=0,landsetY = Yo, Y1),

(i ) Ifk >0 a,n_d so n > 0, we show Or!(,,,ﬂ,)(f) = Chiny (V). In fact, for
all z € Ug(ntr)(X) and for all £ > 0, there exists f Ah (S, X) such that
2 = Canrrf " (o) and | flao <

9(2) = FRN(1 = 2)8g + 26, ).
Then g € AP(S,Y) since
9(d -+ it) = FR(1 — j)o -+ 561 + k(61 — 6p)) € Coymy (X)) = Y5,
and g™ (0) = (8, — )™ f"+*) (o). This implies that

™(8) € Corny (F)

Jork 20,
Jfor k < 0.

Cntk,ex g(
(61 ~ bo)"
< (1 +e)llz ]| a(n-k); where ¢ = |ea,ntr/(Con (B2 — 60)™)].
< C“milm (k) and so
Cart) (X) < Coin)(Cao iy (X), Cp, 1) (X))
The “superscript” inclusion C 8} (X)) < QM (Cok) (X}, 0910 (X)) can
be obtained with trivial modifications.

(i) If k < 0 and so n < 0, we invoke (i) and the duality argument to

show that Conysy(X) > Cormy(F). By using (4.6), (4.7) and [FK, Sec. 3],
we obtain the following inclusion chain:

AX < Gﬁo(k ( )00.91 ( )"< K(o.gmm(.}_(—)ﬂfff’;l,k)(y)
- j(a J«-)(*X) - Ccv(k)(X) = Ca n+k)(5€—)

and hence AY = C@g(k; (X)n Coy (k) (X) is dense in both Comy (Y ) and
Cantr)(X). For every y € AY < Cory 10y (X), there exists 2 € Coapnk)(X)'

T =

and hence ||z||a(n)
This gives [|2]g(n)
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ro o=k (X with (2',y) = ylamery and [2/]]a-
Hahn-Banach theorem. Since

ool =) (R ¢ ¢-m (Pl k) (XN 08 (—R) (X)) o2 0O-mH(T)

from (i), this gives Hy“r.\e('rﬂ--k) = (m’,y) < ”33’||B(—n)||y‘|9(n) < C“yna(n) as
requirec. =

(n+k)) = ¢ by the

Assume X = (Xg,X1) is a couple of function Banach lattices on a
complete o-finite measure space (12,4, p). Let us recall that the Calderén—
Lozanovskil construction g, (X) for the function parameter s ,, is the space
of all A-meagurable functions & such that |@| £ cga (o), |:n]_|) p-a.e. for
some x; € X; with [|z;]; £ 1 (5 = 0,1), and put |zfl,, 5 = infe In
terms of [N, Th. 8.1] and [KMP, Th. 5], we have ‘

G(()(-),'n,)(f) = Q@,n(jf) ~ -H(a " (X“)
Gy (X)° 2 00.n(X)° = HEOD(XO
This, together with (4.7), implies

)

5.2. THEOREM (Calderén-Lozanovskil construction).
Comy(X) = 00a(X)° and  Cogny(X)" = 20, (X)".

This construction may be regarded as a “real version” of the complex
§{n)-functors and it extends the classical result of Calderén. As a conse-
quence, the preceding partial reiteration for complex functors becomes reit-
eration when restricted to couples of Banach lattices in view of [N, Th. 3.5].

Now we can modify [N, Ex. 5.3] and deal with interpolation of weighted
LP-spaces, which extends [FK, Ex. 6.8], in the following way:

5.3. ExampL. let @ = (wo,w;) be a pair of weights on the complete
o-finite measure space (12,4, p), and let 1 < po,p1 = 00 with po # P1,
1/p = (1=8)/py+0/p1 and 1/q = 1/po—1/py. Let LP (w;) be the welghted
LPi-space on (2,4, ) with weight w; (f = 0,1). By [N, Ex. 53], =
Gy (L (wo), LP (w1 ) iff

f ¥({w J/p“/w”m Nao|/e)(wofuwn)? dpp <1 for some ¢ > 0,
Q
where

‘ ‘ . ” (1~ 0 "
70y = g a7410) = 0 (3 + S poge )

Let &y, be the normalized Young function given by

t ~np
. / |log 7|
Py (t) = f h/P (1-?—-—“;"“"2““ dr
: p(p")?(n)
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and let

~ 1o [log#| \ "
0= 5 (4 550)

It is known that @,,, is strictly increasing and equivalent to Dy (cf. [FK
Sec. 6]). Observe that

T (B, )(E)

¢ [logt| )“"’
/P ( p(e')?|n]
pp(1—6)|1 1 K
X (1 -+ £—£—-—~)-|- log ~ <+ logt —~nlog (Jj e Jl&gﬂ— 2t
gl lp p p(#' )% ||
This shows ¥~ 0 &, , (£) ~ t and hence ¥ = By @y, Therefore
0 P
Gl (2P w0), TP (00)) % Ly e grmn (o) = 8,

where @ is the weighted Orlicz space over (£2,.4, ) with the Luxemburg
norm

lallo = int {e> 0| [ @op((w}/™ uog/ Yo/} (wofuwn)? dn < B,.,(1)).
£

H

In particular,
» » ~ 4

Gﬂ(n)(L u(wD)s L l(wl)) —~ Lq;pyn(w:‘f/-’i’tl/wgh’i](wg/‘w]?)'

Furthermore, we have
(Ta2"), e G[(Jg‘n) (LP0(wp), LP (wy)) = &

a,-nd hence the Banach lattice ¢ determines a real interpolation functor Kg
given by |

Ko(X)={z € ZX | ||z xp = | K(-,2; X) |0 < 0}
in the sense of [BK, 2.6.4]. m

The proof of the following mixed reiteration result combines the general

resulits (cf. [J, Th. 19] and [BK, Th. 4.3.1]) with direct calculations on the
crucial couples [,

5.4. THEOREM (Mixed reiteration). Let X ¢ B w :
with Oy # 6, ) Let X € B and let 0 < 64,0,,0 < |

DIFfl1<p<oworp=0 a = (1— )0y +06;, & = (1
) = ) ; ) i " y o= L '—'0 3 "’"0
and ¢ (1 =ty b )6a 1 ( ng + ny

p b [
K(O‘»TF’F"-) (X) - Kfﬁ,n)(cﬁu(nn)(

X
p xr g
'K-(a,n+(;)(X) & Oﬂ(n) (fff;mﬂ)(X

icm
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i) If 1 < po,pr £ o0 with po % p1, 1/p = (L—60)/po+ 8/p1 and
1/g=1/po— 1/p1, then

I(@(X) = Oﬂ('ﬂ-)(ﬂ.ﬁ;)u,‘f?o)

(X)’ 'K(pf’li:m } (X:))’
with ‘ . )
® = ld’,,,u(agéf',}“/egff'.,?l)(991,711/96(“%)'
Proof. (i) The first identity follows from the diagram (4.7) and the real
reiteration {4.5). For the other identity, observe that
93‘-11(1/Q9111'T11H ;I/Q()L;ﬂl) = 1/90.71(90(;.?‘1(,)3 Qﬂl,m) = l/@tx,n-}-c
Mt orheren ) ~ : ~
by (44) This gives Oﬂ("l)(lfglhﬁtj)’vl?ﬁlam)) - G(H*"")(p(Jﬁ}u,?‘,'(l)’Z?Bl,m)) - lfn,r;+(,‘
by Theorem 5.2 and [G, Th. 2.3]. Recalling the equivalence of the JE”H " and
K Fﬂm functors (see (4.3)) and adapting an argument of [BK, Th. 4.3.1], we
get the assertion.
(11) Since Cﬂ(n) (I{{g:lﬁ'ﬂ)) y }&'éng‘l »'TII)) jo] Ifascﬂ) (ro 172

: ! (Bgamg) " (81m1)
Th. 4.3.1], and Con) (lfgmu),lf(jw]‘)) oz ¢ by Example 5.3, the assertion
follows. m

y» again by [BK,

6. Minimality /maximality. In this final section, we study the min-
imality /maximality of the complex §(n)-functors within the framework of
the Aronszajn-Gagliardo construction.

Let L'(T), L*=(T), K(T) and M(T) (L', L*, K and M in brief) be
Banach spaces of all integrable functions, essentially bounded functions,
continuous functions and finite measures on the unit circle T respectively.
For X = I, L® K or M and j = 0,1, we define the sequence Banach
spaces FX; related to the Fourier transforms by

—vi dt —vj
FX; = {)\ = (Au)vez | 3¢; € X, Foy(v) ={Ff di(t)e 6-57; = e ]}

with norm {|A||#x, == ||¢;|x; and consider the corresponding Banach couples
F=(FXy, FX,). For n € Z and X given above, let

il fon iy
‘TX(Q,n) e {A = ()\Lz)ueiﬁ Zipo,n € X, Fgnlv) = { 3,,6 /V v O}

fv=0
with norm [|A||lxx, ., = |0
FMY =FLT, (FIVY =FL®, (FK) =FM;
(Fligm) = FLG ay  (FEom)' =FMo,-n).
The first formula goes back to an argument in [J, Th. 2.1}, while the others

come from the duality relations L' (T)" = L*(T) and K(T)' = M(T). Now
we compute the 8(n)-interpolation spaces for these couples.

x + |Aa]. Observe that

(6.1)
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6.2. PROPOSITION. If n # 0, then
Copry (FLT) = Cogny (FM) 2= FLip 1y
CUNFLY) = CF ™ (FM) = F Mo m),
Proof. The proof proceeds in three steps:
(i) 'FL%G,n.) ~< Corn) (-}-_LT) and F Ky < G@(,,,)(?F) forn >0,
(i) FL%Q,R) ~ Cyiny (FL) and F&g py < Cg(n)(ﬁ) for n < 0,
(i) FLE ) < C¥n) (FL®) and F Mgy < COWFM) for n # 0;
and the required identities are obtained by (6.1) together with the standard
duality argument.

Let n > 0 and let X = L'(T) or K(T) for the moment. By density,
it suffices to estimate the norms for finite scalar sequences in FXg y. For

guch a A = (\,), set
(iv) bo,n( Z Ay e lit=ai
gt ()

Then ¢o,n € X with [|A[ .., = [[¢6,]x +[Aal.
For the inclusion F X5y < Cyen)(FX), we consider the analytic func-
tion f(z) = (fu(2))vez, where

A
v viz—0) e
fulz) = {-————e O itw o,

C(i (n) (fh) JTKH”):
GO (FI®) = FLY ).

V™
Aoma(z) e*? if v =0.

Then X = cg, f™(8) and

1FG+is) e, = || 3 (5 + ds)e = p
U#O

|H¢’9 nllx + Pole’™? < el Mlrx, .

+|ft (7 -+ is)]

L ,Tl-

for j =0, 1, where the constant ¢ only depends on @ and n. This gives (i).
We verify (ii) by using induction and partial reiteration. First recall
Co{FX) = FXy [J, Sec. 7], and assume FX @90y < Coln) (fjf) Then we

C{IOOSB 0 < 0g,0, 0 <1 with g < 8 <0 and 6 = (1 — «)0y + cefly, and we
claim

(v) FX(9,~(n.+1)) = Cotm 1) (F X (89, -n)» FX (0, -0 )-

To prove the claim, set ¥ = (FX (Bg,~n)r F X (6,,~n))- For a finite scalar
sequence A = (), we need an analytic function g € AP(8,Y) such that
A=g{o), and ¢'(a) = 0. In fact, we define g(z) = (g,(2)) ez by

g,(2) = A (1~ Co1(f1 — 90)me(Z))e”(a"—gn)(z—”‘),

Clomplex interpolation functors an

where my, is the standard conformal mapping from the strip S to the unit
disc I in the form (2.3), and hence ¢, = 1/m/ (a). Let ¥(t) = i(m — £) for

€ (0,2). Then ¢ € L'(T) with 9|11 = 7/2, Fy(v) = 1/v il v # 0 and
Fip(r) = 0 if v = 0. Now we have

”g(j _l" ?:S)H‘FX(N}.-- W HZVI"JE JJJJ +?:H)fj"':if! + &Q(]( "I“’n';?)'

| w0

= H Z VeI (1L e (61 = Op)vma (5 -+ is))e":”' ‘ + | Aol
w3() A

(where ¢’ =t + (6 — 6p)s)
e R ot

< ZE‘U”’HC‘- 1())\”5‘,“# ,

() X

+ (01 - H(J ‘L(\: J‘H n.—{u.le—y(ﬂ)\yei;;c’
k0

= ||4h % B, — (1)l x + (01 — Bo)lea1|/|f6, -1yl x + | Aol

< (|1 + (0100} e M| o, ~ a1y |+ 2ol < FNAMFX05 - nrayy

and 80 |Mljag-1y € |9llee < 7lAlEx (5 o inay - Therefore,
FXtg,~tm+1)) < Ca(1)(FXgy,-nys FX(0,,-n)) (by (¥))
- C'”(... 1) (Oﬂ(,(_vm) (—f}?), Ggl(m.n) (ﬁ)) (by induction)
< Co(m (1)) (FX) (by Theorem 5.1).

That is, the inclusions in (il) also hold true.
Now we come to the proof of the inclusion FLF ,
n € Z. For any A = (\,) € FL ), let ¢ € L*(T) with

Ave~¥ w40

F == v )

o) {o iy =0
Assume Ky is the Nth Fejér kernel and set ¢y = Ky * ¢ for N =1,2,. ..
Then g € JC(T) with oo < Iéllec S I8lloo + ol = [N £z, » and

ot [Acl

- (Fff(gm) )c for

(W, dn) =+ (1, 9) for any o & LN(T). This ylelds A € (FEg,,,))° with
Ak npe S 5up 65 [0 + Aol £ IAlFes -
N
The proof for the inclusion FMg,n) =
Combining this with the inclusions
FK (gmy ~ Copny(FR) = CP0(FLF) = C"™ (FL=Y,
FLYy ) = Copny(FLT) < ¥ (FM) = C° (FH )",

we obtain the inclusious in (i) and hence complete the proof. =

< (FL{5 )" 18 essentially the same.
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The following minimality /maximality theorem generalizes results of Jan
son as well as Nilsson for n = 0 (cf. [J, Th. 22] & [N, Th. 4.1]). The first par
can be reduced to the case of regular Banach couples and can be proved vi:
the discretization stated in Section 3 and a fairly straightforward adaptatior
of arguments used in [J, Th. 22].

6.3. THEOREM. For n > 0, we have

(i) Corn) = Orbry  (FLY, ~) o= Orbeyy  (FM, —),
(it) C*™) o= Orbzay, ,, (FLE, ) = Orbeu,, ., (FM, ),
(iii) C§(ony = Corbrrge (=, FL®).

Proof. Let I} = Orb}—Lgam)(}‘Ll,—), Fy = Orbgny, ., (FLL, —) anc
H = Corbjr_-L%‘g ~ )(——,J“TL"O}.
(i) By the minimality of the orbit functors and by Proposition 6.2, we
only need to examine the inclusions
Comy(X) < F1(X) and C*™(X) < Fyp(X)

for any regular Banach couple X.
In fact, let 2 € Co(n)(X) with & = cp, f(*)(8) for some f € AP (Sor, X

with || f ||Do < ¢||2] g(n). For all scalar sequences A = (X,) with finite support
we define T') by

S-pim

f Z/\ e f(z) = = fZ/\e vls+it) s+1t)d

S—iw v

where the value of the integral is independent of s € [0, 1), Observe that

I 3o aemr+m (i 1 i) gﬂ

- v

“TAHX;' <

< flloolIM 52
X;

for j = 0,1, hence T can be uniquely extended to an operator in L(FL', X},
still denoted by T', with ||T|| < | #]lce.

For N=1,2,..., set AN = ()\N,,) with

J‘U| n vl e
ANV:{CQ,TL(1*N+1 e if I <|v] <N,
0

otherwise.

and further put

ey =TAn =co, f v (1 - ————N[:_l 1) e’ =) £ (it) 2d_t

-7 1Z(YEN
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Since

f PO~ it) dt = (0 — i) — FU (0 4 4m)) = 0,

-

we use integration by parts to obtain

I ; N
wN""‘('F).rLf Z ( Nlﬂl) M.f(”)(é’—zt)i;r

e N

= tan fw KN(t)f(“)( ﬁ) —(?j‘-

-

Thus oy € F(X) with |lzn|r, < ||TH[|)\N||_;~L(LM) < cfjznlony. Replace
zy with 2y — s and notice that xy — z in Corn (J_() as N — oo, We
readily see that (zx) is a Cauchy sequence in 7 (X) and so z € F1(X) with
izl 7 < c|z|lpn) by passing to the limit.

(ii) If z € G (X)), then x = ca,nf( (6) for some f € Heo(Sgx, X ) with
(fllec < cllzllogn). For A = (\,) € ZFLL, define T as before. If ) € FL,
assume ¢; € L'(T) with F¢;(v) = A\, e"*7. Then

TA—f¢; H—zt)g—e}(
since f(j + #) € L(LY(T),X,) and hence ||TA|x, < ”f”ooH/\“f'L}- Thus
T € L(FLY, X) with |T|| < ||fllco- Take now
A, = {cg,ﬂu“evﬂ if v 0,
0 if =0
Then ) = (A,) € FMpy ) with

T
TA=con [ F(0—it) dbo = 05, f™(0) = o,
=
where &y is the Dirac measure on T concentrated at t = 0. Therefore, the
inclugion G901 (X)) < Fy(X) follows.

(iii) It is easy to see that FL! is a regular Banach couple with [eoll yz 7=
= |leol s = 1; AFLT is dense in FLipyy With (") € FL{; )\ (FL§U
FILY); FL' satisfies the metric approximation property in the sense that for
every pair {Cy, Cy} of compact subsets of {Xg, X1} and every £ > 0, there
exists P € L(FLY) of finite rank with ||P| < 1 such that ||Pjz —z|); < ¢
for all z € C; (j = 0,1); and FLE (j = 0,1) are projective with respect
to quotient maps. According to [KP, VIL.5.6, VIL5.8 & VIIL.2.5], we have
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H(X) = H(X"), F{(X) = H((X")) and hence H is the maximal functc
with this property. Combining the preceding statement with [BK, 2.4.31 .
2.4.12], we obtain

HX)= HXY) =Z2X'nF(XY ~2X%n Comy (X))
= £X0 N CHE((((X0))0)) Chey(X). m
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