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Speciral decompositions and harmonic analysis on UMD spaces
by

EARL BERKSON (Urbana, TI.) and T. A. GILLESPIE (Edinburgh)

Abstract. We develop a spectral-theoretic harmonic analysis for an arbitrary UMD
space X. Our approach utilizes the spectral decomposability of X and the multiplier
theory for Lg’( to provide on the space X itself analogues of the classical themes embodied
in the Littlewood-Paley Theorem, the Strong Marcinkiewice Multiplier Theorem, and
the M. Riesz Property. In particular, it is shown by spectral integration that classical
Marcinkiewicz multipliers have associated transforms acting on X.

1. Introduction. The aim of this article is to extend to spectral theory
on Banach spaces the themes of classical harmonic analysis embodied in the
M. Riesz Conjugacy Theorem, the Littlewood-Paley Decomposition Theo-
rem, and the Strong Marcinkiewicz Multiplier Theorem, each of which has
versions applying to the p-integrable complex-valued functions on the circle
T, the real line R, and the integers Z, for p in the range 1 < p < oo ([14,
Theorem 6.7.4, Theorem 7.2.1, and Chapter 8]). The Banach spaces which
we consider are those possessing the unconditionality property for martin-
gale differences, the so-called UMD spaces. The UMD spaces form a natural
medium for our considerations because of their Hilbert transform character-
ization: a Banach space X is UMD if and only if for 1 < p < co the classical
Hilbert kernels for T, R, and Z define bounded convolution operators on the
corresponding LP-spaces of X-valued functions (see [10], [12], and [8, §2]).

The basic spectral-theoretic tool for our considerations is the notion of
“spectral family of projections,” together with its allied notion of spectral
integration.

DuriNniTionN.  Let B(%) denote the Banach algebra of all bounded linear
mappings of a. Banach space X into itself, and let I be the identity operator
on X. A spectral family of projections in X is a projection-valued function
E() : R — B(X) satisfying:

1991 Mathematics Subject Classification: 42A45, 47B40.

The work of the first author was supported by a grant from the National Science
Foundation (U.8.A.). The work of the second author was supported by a grant from the
Carnegie Trust for the Universities of Scotland.

[13}



14 E. Berkson and T. A. Gillespie

(3) sup{J|EQ) | : A € B} < oo;

(ii) E(N)E(7) = E(r)E()\) = E()\) whenever A < 73

(iii) E(-) is right-continuous on R with respect to the strong operator
topology of B(%);

(iv) at each A € R, F/(-) has a left-hand limit E(A ™) in the strong operator
topology of B(X);

(v) with respect to the strong operator topology of B(X), E(X) ~ I as
A — oo, and B(A) — 0 ag A — —o0,

If there is a compact interval |a, b} such that E(A) = 0 for A < « and
E(X) = I for A > b, then E(-) is said to be concentrated on [a, bj.

A Riemann-Stieltjes notion of integration with respect to an arbitrary
spectral family E(-) of projections in X can be defined as follows. Given a
bounded, complex-valued function f on a compact interval J = [o, 4] of IR,
for each partition P = (Ag, A1,. .., An) of J put

n
S(PifE) =Y FOWHEMN) — EQy-1)}.
k=1
If the net {S(P; f, E)} converges in the strong operator topology of B(X)
as P increases through the partitions of J directed by refinement, then
we denote the strong limit by f[ 5l fdE, and further define f[ 5] f dE by
writing

[PfaB=fla)B@)+ [ fdE.
_ [a,3] [ee.8]

In the setting of the arbitrary Banach space X, the most general class
of functions known to be integrable with respect to E(-) over the compact
interval J is the algebra BV{J) consisting of all complex-valued functions
¢ on J whose total variation var(¢, J) is finite (see [13, Chapter 17] or the
abbreviated account of spectral integration in {5, §2]). In fact, the inapping
BV(J}3 ¢ — f[ef 5 ¢ 4E is an algebra homomorphism of BV(.J) into B(X)
satisfying

H [P 6dB|| < @llmven sup{l B : A T,
(v, 3]
where || - ||gv(s) denotes the Banach algebra norm on BV(J) specified by

1dllBy sy = [#(8)] + var(s, J)

If ¢ € BV(J) is a continuous function, then for k = 1,...,n, ¢(\;) can be
replaced in the expression for the approximating sum S ('P o, E) by ¢(AL),
where Al € [Ag_1, A] is chosen arbitrarily. The corresponding assertions for
spectral integration with respect to F(-) over R likewise obtain when BV (.J)
is replaced by BV(R) (see [20, Proposition 2.1.11 and Theorem 2.1.14]}. In
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particular, for ¢ € BV(R), the corresponding Riemann-Stieltjes approx-
imating sums S(P; ¢, E) are taken on partitions P of the extended real
number system [—oo, co], and have a limit in the strong operator topology
of B(X) denoted by [, ¢dE. In this situation the functions E(-) and ¢ are
extended from R to [~oc,00] by defining E(—oc) = 0, E(co) = I, and
$(Fco) = limy_,100 ¢(A), while the corresponding algebra homomorphism
BV(R) 2 ¢ — [, #dE € B(X) satisfies

| [ 48] < 1¢]eve suplI B : A € RY,
B

in terms of the Banach algebra norm ||« ||zy(z; on BV(R) specified by
= |#(00)| + supfvar(d, [~ N, N]) : N = 1,2,.. }.

The relationship between spectral integration over compact intervals and
over R is expressed by the fact that for ¢ € BV(R), f[_a o @dE converges

in the strong operator topology of B(X) to fR ¢dE, as a — oco.

Having attended to the preliminaries, we can now describe the frame-
work to be considered. We begin by recalling the following three results
concerning spectral decomposability in UMD spaces. Henceforth the upper
case letter “C” with a (possibly empty) set of subscripts will denote a pos-
itive real constant depending only on its subscripts, and may change from
one occurrence to another.

THEOREM A ([8, Theorem (4.5)]). Let X be a UMD space, and let U -
X — X be an invertible bounded linear operator such that ¢ = sup{||U™| :
n € Z} < oo. Then there is a unique spectral family of projections E(-) in
X such that F(-) is concentrated on [0, 27|, E((27)~) = I, and

llollev )

U= [®erdB().
10,27]
Moreover, sup{||E(A)|: A e R} € ¢*Cx.

THEOREM B ([8, Theorem (5.5), Corollary (5.8), Theorem. (5.12)(i1}]). Let
{U; : t € R} be a strongly continuous one-parameter group of operators on
a UMD space X such that ¢ = sup{|Uy] : t € R} < co. Then there is o
unigue spectral family E(-) of projections in X such that

U= lim [ eMdE(N\
a—o0
[~a.0]

Moreover, sup{|[B(\)| : A € R} < 2Cx.

TuroREM C (4, Theorem (4.2)], [9, Theorem (3.3)]). Let w — R,
be a strongly continuous representation of T in a UMD space X, and let

forallteR, z€ X.
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{P, )52, . be the associated sequence of spectral projections defined by

P,z = f w PRyxdA(w) forellneZ, ze€ X,
T

where dX denotes normalized Haar measure on T. Then for every w € T,

Rw = ZWWP + ZW_H'P—TH

ms=l

where each of the series on the right converges in the strong operator topology
of B(X). Moreover,

e

where ¢ = sup{||Rul : w € T} < .

:LEZ,MEZPLSM}gfam

When Theorem C is specialized to the regular representation of T (that
is, representation of T by translation operators) on X = LP(T), where
1 < p < oo, the operator P, projects each f € LP(T) onto the nth term
of its Fourier series, and so the result of Theorem C in this special case is
the version of the M. Riesz Conjugacy Theorermn asserting the convergence
of Fourier series in the norm topology of LP(T). Likewise, when the one-
parameter group {U; : ¢ € R} in Theorem B is specialized to be the trans-
lation group acting on X = LP(R), 1 < p < oo, the projection E{)) is the
multiplier transform corresponding to the characteristic function X (~00,A]>
the existence of which stems from the boundedness of the Hilbert transform
on LP(R). In a similar vein, the classical antecedent of Theorem A concerns
the left shift U on X = LP(Z), 1 < p < oo. Here the projection E()),
0 < A € 2w, is the multiplier transform corresponding to the characteristic
fanction of the arc of T given by {e* : 0 < ¢ < A}. In this case, the existence
and uniform boundedness of F(-) come from the boundedness of the discrete
Hilbert transform on L?(Z).

The preceding comments show that the results of Theorems A, B, and
can be viewed as abstractions to the UMD space setting of the M. Rissz Con-
jugacy Theorem. In the present article we shall discuss related abgtractions
of the Littlewood-Paley and Strong Marcinkiewicz Multiplier Theorems for
T, B, and Z.

To be more precise, we introduce some further notation. Let {8,}52. .
be the dyadic points of R specified by: s, = 2"~ for n > 0; g,, = ~27" for
n < 0. Let {A4,}32_, and {4,122 ___ be the dyadic decompositions of Z
and R, respectively, which are given. by
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P

Ay = [8n,8001) Hn>0, A,

and

= (sn,8n41) 0 <0, Ay = (s0,51);
AnzznﬂZ for n € Z.

Further, let {t,}52_ ., denote the sequence of dyadic points in (0, 27) defined
by

th =2""l7 ifn <0,
For n € Z, we shall write

t,=2r— 2" ifn>0.

= el = {eﬂ tlp <t <tyy}, A, = {e“ Pty St tpyr )

As discussed in [1] and [3], the singleton sets {1} and {w,}, for n € Z,
together with the sets I, for n € Z, generate the dyadic sigma-algebra
Ed('ﬂ“l on T, while the dyadic sigma-algebra X'q(R) is generated on R by the
sets A, for n € Z and the singleton sets {s,} for n € Z.

Let 9M(R) denote the set of all functions ¢ : R — C such that ||¢] mm)
< 00, where

|l ane)y = sup{|é(s)] : s € R} + sup{var(¢, [sn, Sn+1]) : n € Z}.

Elements of M(R) are called Marcinkiewicz multipliers, since the Strong
Marcinkiewicz Multiplier Theorem for R ([14, Theorem 8.3.1]) asserts that,
for 1 < p < oo, each ¢ € M(R) is a Fourier multiplier for L?(R) with
p-multiplier norm not exceeding C ||él|smqw). With pointwise operations on
R, 9M(R) is a unital Banach algebra under the norm || - |lgnem). The unital
Banach algebras M{7Z) and M(T) are defined analogously after writing {for
f:Z—=Candg: T—0C)

| £llangzy = sup | (n)] +sup Z — fG - 1)k
nek i=9p+1

glisnery = sup |g(2)| + supvar(g, A,).
zeT nel

The Strong Marcinkiewicz Multiplier Theorem can be phrased for either of
the groups T, Z in complete analogy with its preceding statement for R
upoun replacing D(R) by PUZ) and D(T), respectively [14, Theorems 8.2.1
and 8.4.2]. In terms of the foregoing notation, our main results are stated
as follows,

(1.1) TueoreM. Let X, U, E(), and ¢ be as in Theorem A above. Then
the following assertions are valid.

(1) There s a (necessarily unique) strongly countably additive spectral
measure E(-) defined on the dyadic sigma-algebra Xa(T) such that £({1}) =
E(0), and, for n € 7,
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E{wa}) = Blta) = Blty),  E(In) = B{t;11) — E(tw)-
Furthermore, sup{||£(a)|| o€ 5a(T)} € *Cx.
(ii) For each ¢ &€ M(T f[o - d(e*) dE(X) ezists in the strong operator
topology, and the mapping
oo [Oo(e) B
[0,27]
is an identity-preserving algebra homomorphism of MM(T) into B(X) satis-
Tying
®© i
H f ple '\)dE()\)H < ECx ¢l
0,2m]
For the analogue of (1.1){ii) in the setting of Theorem B, we define the
Riemann-—Stieltjes sums in the case of ¢ € M{R) to be of the form

S OB — B},
k=1

where n > 1, —00 < Ag < Ay < ... < Ay < 00, and the strictly increasing
finite sequences in R are directed to increase by set inclusion 2.

(1.2) TreEOREM. Let X, {U, : t € R}, E(), and ¢ be as in Theorem B
ahove, Then the following assertions are walid.

(i) There is a (necessarily unique) strongly countably additive spec-
tral measure E(-) defined on the dyadic sigma-algebra Xa(R) such that, for
n e Z,

E({sn}) = E(sa) — E(s;),  E((sn, Snt1)
Furthermore, sup{||€(o)]| : c;r € Za(R)} < *0x.

(i) For each ¢ € M(R), [p #(A)dE(N) ewists as the sirong limit of
Riemann-Stieltjes sums, and the MEPPINg

¢ [ HN)AEN)
R

) = E(sp11) — E(sn)-

is an identity-preserving algebra homomeorphism of IM(R) into B(X) satis-
Tying -

“ f d(N) dE()\)H < PCx || langmy -
R

Remark. In the set-up of (1.2)(ii}, it is easy to see from the existence
of fi #(A)dE(A) that for ¢ € M(R) and ~co < o < < o0,

J 6N AEM) = [ 6(\) dEN{E(8) - E(e)},
[e.3] : R
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and consequently for ¢ € M(R), fi_, , #(X) dE(N) tends to [ &(N) dIE(X)
in the strong operator topology as a — co.

(1.3) THEOREM. Let X, R, {Pn}32._ ., and c be as in Theorem C above.
For n€ 2, let Qn =3 1cq. P Then the following assertions are valid.

(i) For each eequence {en}2 _ . such that g, = %1 for all n € Z,
the partial sums EH_WN enQn Of the series Zn_ oo EnQ@n converge in the
strong operator topology, as N — oo, and || 3.7 e,Qn| < *Cx. Fur-
thermore, I =3 o0 Q.

(i) For each ¢ € TMZ), the series Y oo, d(—n)P_, and the series
Yoo o #(n)P, converge in the strong operator topology, and the mapping
> E;":_w ¢(n)P, is an identity-preserving algebre homomorphism of
IMM(Z)} into B(X) salisfying

(1.4) IS ome

N=—00

Pl < Ox 6]

Part (i) in each of Theorems (1.1), (1.2), and (1.3) can be viewed as an
abstract analogue of the Littlewood-Paley Theorem for LP(G), where 1 <
p < oo, with G = Z in Theorem (1.1), G = R in Theorem (1.2), and G =T
in Theorem {1.3). To be more precise, consider first the result of Theorem
(1.3) in the context of the regular representation of T in X == LF(T), where
1 < p < co. In this situation, for each f € X, @, f is the sum of the terms
in the Fourier series of f corresponding to the dyadic block A, in Z. The
usual version of the Littlewood-Paley Theorem for L?(T) {[14, §7.2]) gives
the existence of a positive constant a,, depending on p, such that

(1.5) o £l < U{ Z @t} < el

for all f € LP(T). However, by making use of Xhinchin’s Inequality [17,
Theorem 2.b.3], it is readily seen that the validity of (1.5) for all f ¢ LP(T)
is equivalent to the unconditional convergence of the series Y oo Qnf t0
f in the L?(T)-norm for all f € LP(T)—a fact which (1.3)(i} asserts for this
context.

Similar remarks apply to Theorem (1.1) when U is takem to be the
left shift on X = LP(Z), with 1 < p < oo. In this context, £{I",) is the
multiplier transform on LP(Z) corresponding to the characteristic function
xr, 1 T — C, the projections £({w,}) and £({1}) are both 0, and the result
of Theorem (1.1)(i) provides, in particular, the unconditional convergence
of the series 3°°° _  E(I})f to f in LP(Z)-norm for each f € LP(Z). Again,
by use of Khinchin’s Inequality, this amounts to the thtlewood—Pa.ley in-
equalities
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5 < |3 e} < sl

Nt
for every f € LP(Z), where /3, is a positive constant depending only on p.
In much the same way, when it is applied to the regular representation of R
defined by the translations on LP(R), where 1 < p < co, Theorem (1.2)(i)
reduces to the classical Littlewood-Paley Theorem for LP(R).

Similarly, the second parts of Theorems (1.1), (1.2), and (L.3) arc closely
related to the Strong Marcinkiewics Multiplier Theorem for the groups 7,
R, and T, respectively. Indeed, when Thecremn (1.8) is applied to the reg-
ular representation of T in LP(T), 1 < p < oo, the strong convergence
of oo &(n)P, in B{LP(T)) for ¢ € M(Z) and the mequality in (1.4)
amount to the Strong Marcinkiewicz Multiplier Theorem for T ([14, Theo-
rem 8.2.1]). Likewise, when Theorem (1.1)(ii) is specialized to the left shift
U on X = LP(Z), 1 < p < o0, as above, the existence of [, , ) e ) diE(N)
on LP(Z) for ¢ € M(T) shows that ¢ is a p-multiplier with corresponding
multiplier transform f[ga‘%] ¢(e*) dF(A). This, together with the estimate
in (1.1)(ii), provides the Strong Marcinkiewicz Multiplier Theorem for Z.
Similar remarks include the Strong Marcinkiewicz Multiplier Theorem for
R under the result of Theorem (1.2)(ii) taken in the context of the regular
representation of R in LP(R), 1 < p < co.

Theorem (1.3) also specializes to include results established more re-
cently by J. Bourgain [11} which will play an important part in the proofs
of our present results. Let J be a UMD space, suppose that 1 < p < oo,
and let X = LP(T, ¥}, the space of Y-valued functions on T, p-integrable in
Bochner’s sense. Then X is itself a UMD space. When R in Theorem (1.3)
is specialized to be the regular representation of T in L?(T, }), the projec-
tion Py, for n € Z, acts, ag in the scalar case, by taking each function in
L?(T, ) to the nth term of its Fourier series. The result of Theorem (1.3)(i)
in this case reduces to [11, Theorem 3], while Theorem (1.3)(ii) gives [11,
Theorem 4].

Finally, it should be mentioned that versions of Theoven (1.1) and The-
orem (1.2)(i) have already been considered when X is & subspace of LP{u),
where 1 < p < oo and g is an arbitrary measure ([1]-{8]). A number of new

techniques are required when working in the Banach space setting we ghall
treat here.

2. Background results. We now outline several general results which
will be used to establish the main results described above. Firstly, we shall
make substantial use of averages over finite Cantor groups, such averages
playing a role similar to that of square functions in classical Littlewood—
Paley theory. To be more precise, let N belong to the set N of positive
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integers, let de denote Haar measure of total mass 1 on the product D of
N copies of the multiplicative group D = {—1,1}, and let ¢ = (g1,-..,&n)
be a typical element of DY, We shall need the standard results concerning
averages listed in the following two theorems, the first of these being the
statement of the Khinchin—Kahane Inequality.

(2.1) TuroreM ([18, Theorem 1.e.13]). Suppose that 1 < p < co. There
is a constant A, depending only on p such that for any N € W and any
elements x1,...,zn in an arbitrary Banach space, we have

N N v 1/p N
f H Esn:sn de < { f ” anﬁ?n de} < Ap f || Zenmn“ de.
N n=] DY n=1 Dy - n=1
(2.2) THROREM. Suppose that X is an arbitrary compler Banach space.
The following assertions hold.

(1) Let N € N, let z,...
1<p <. Then

(IS emn aef sabof [ | Senff e}
p¥  n=l pN  n=l

where ||alleo = sup{lan] : 1 < n < N}. If {a.}_1 C R, then the constant 2
can be deleted from the majorant in this inequalily.

(i1) Let 2 be o collection of bounded linear operators mapping X into
X, with the property thot, for some p such that 1 < p < x and for some
constant Ky n,

yeny € X, let ay,...,anx € C, and suppose that

N N
(2.3) { f H ZenTn:ﬁn pds}l/p < Kp,g{ f H anmn pda}l/p
DN n=1 p¥ n=1
forall NeN, all Ty,...,Tw € 2, and all zy,...,zy € X. Then
N P 1/r N P 1/p
{ f H Z eEnWntn ds} < 2I§—p'g{ f H Z EnTn ds}
¥ n=1 DN n=1 .

for all N € N, all z1,...,zy € %, and all Wy,..., Wy in aco(£2), where
aco(f2) denotes the absolutely conver hull of 2, defined by

aco(42) = {Zam PN, (i €O, Ty €2, Y lan <1},
k=1
Comments. (a) The result of Theorem (2.1), which is due to J.-P.
Kahane [16], shows that the existence of an inequality of the form (2.3} for
some p in the range 1 < p < oo implies a similar inequality for every p in
this range.
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(b) Theorem (2.2)(i) is also due to J.-P. Kahane (see [19, pp. 45-46]),
while Theorem (2.2)(ii) is proved by a straightforward argument involving
rational convex combinations of the elements of £2 (as observed in [11, proof
of Lemma 7]).

Motivated by the hypothesis in Theorem (2.2)(ii), we make the following
definition.

(2.4) DEFINITION. A collection £2 of bounded linear operators mapping a
Banach space ¥ into X is said to have the R-property if for some (and hence
every) p in the range 1 < p < oo there is a corresponding constant K,,q such
that (2.3) holds for all N e N, all 7%,..., Ty € 2, and all zy,...,zy € X,
(This is an operator-theoretic analogue of the Riesz Property digcussed in
[14, 1.2.12}.)

The second technique on which we shall rely is the following vector-
valued version of the Coifman~Weiss Transference Theorem.

(2.5) THEOREM ([9, Theorem (2.8)]) Let u — Oy be a strongly continuous
representation of a locally compact abelian group G in a Banach space X
such that ¢ = sup{||@ : v € G} < co. Let k € L}@G), and let Hj, denote
the operator defined on X (with the aid of Bochner integration with respect
to Haar measure du on G) by

Hyz = f Ew)@_yxdu for all z € X.
G

Then for 1 < p < oo, || Hill € 2Ny, x(k), where Ny z(k) denotes the norm
of convolution by k on L*(G,X).

We shall also use the following extension of Theorem (2.5), the proof of
which is a simple modification of the proof given in [9] and cited above.

(2.6) THEOREM. Suppose 1 < p < 0. Let G, X, O, and ¢ be as in
Theorem (2.5). Let N € N, and ky,...,ky € LYG). Suppose that K is a
non-negative constant such that : :

N N
{ f ” Z Enkin * fn };"(G.JE) ds}”p < I&'{ f H Z'S“f"
pN n=l PN me=l

forall fi,..., fn € LP{G,X). Then

al P 1/p N
{ f “ ZEnHk:nmn IdE} S 621{{ f H Zgﬂq:,n
npYoon=l DN

n==l
Jorall @1,...,zny € X.

P 1/
ds}
Ir(cx)

st}”p

For convenience, we record here the following result concerning convolu-
tion norms in the vector-valued setting.
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(2.7) LEMMA. Let (N, u) be dn’y measure space containing o set of finite
positive measure. Let G be o locally compact abelian group, let k € L' (@),
and suppose that 1 < p < oo. Then for any Banach space ¥,

Npz(k) = N,y (k),
where Y = LP{y, ¥).

Proof. Let og be a subset of N such that 0 < u(op) < oo, and denote
by Ag, the characteristic function of . Suppose that f is a Haar-integrable
¥-valued simple function on G. Define f € IL*(G,Y) by putting f(g) =
Ane f(8) € Y for all s € G. In fact, it is easy to see by direct calculation that

[ Fllze(e,yy = 1loo) 211 fll o ge,z)-
Fasy direct calculations also show that

k% F s (evy = plo0) /Pllk * fliLae,x).
The inequality Np, x(k) < N,, v (k) follows immediately. The reverse inequal-

ity is readily established by making obvious modifications in the method of
proof for [6, Lemma (4.2)]. w '

3. Harmonic analysis on UMD spaces. Let 7 be a locally compact
abelian group with dual group G, and let £ be a Banach space. Given a
linear space £ of scalar-valued functions on & {or of equivalence classes of
Haar-measurable scalar-valued functions modulo equality almost everywhere
on (3}, a typical element f1 @z +. ..+ fr @, of the algebraic tensor product
£ ® X may be considered as the function f : G — X defined pointwise (or
pointwise almost everywhere) on & by

flu) = ifk(u)mk.
k=1

Let &p(G, X) dencte the space [L*(G) N L=(G)] ® X. Notice that for 1 <
p < 00, Gy(G, X) is dense in LP(G, X). Suppose that ¢ is a complex~valued,
bounded, measurable function on @, and denote the corresponding multi-
plier transform on L*{G) by Sp. Thus S3F = (¢F)V. For f =3 1y fu®zy €
&n(G, %), let Tyf € L?(G, X) be given by
n
(Tsf)() = D _((Ssfie) ()
k=1
It is easy to show that T is a well-defined linear mapping of &o(G, X) into
LA(G,%). For 1 € p < o0, let M, x(G) be the space of all bounded measur-
able ¢ : G — C such that Ty extends from Go{G, %) to a bounded linear
mapping of L? (&, X) into LP (G, %). In this case the continueus extension to



24 B. Berkson and T. A. Gillespie

L?{@, %) is unique, and will also be denoted by T, and we define [|¢ | M, 2 (8)
to be the norm of T on LP(G, EC) The usual space of Fourier mult 1p11(=rs
for L?{G) will be denoted by MP(G) and the norm in M,,( )by || - HM @y
Thus, A jL,,@(G' ) and & in the foregoing notation coincide with M, ()
and | - HMT,(C It is apparent that if X # {0}, then M, x(G) C M,(3),
with qu||MP(G) < Hd)HM,,,I(G) for all ¢ € M, ¢(G). However, ]U[,,x((r) and
M,p(G) need not coincide—in particular, if X is not a UMD space, then for
1 < p < oo, the signum function on R belongs to M, {R} but not to M, ¢(R),
Naotice that if k € L (&), then ke Mpl(@) for 1 € p < oo, the operator T}
being convolution by k on LF(G, %) (consequently HkHM,,,,r(f:') = Ny x (k).

J

-l a, ¢

As in the scalar case, M’p,x(@) is an algebra under pointwise operations,
and the mapping ¢ — T is an identity-preserving algebra homomorphism
of M, x (&) into Q%(LP(G’ %)). Moreover, if X £ {0}, then after we identi['y
elements of JVII,,T(C*) modulo equality locally almost everywhere, M, r((”)
becomes a commutative unital Banach algebra under | - || My (B

For later use, it will be convenient to record here the fo]lowmg two propo-
sitions which draw further parallels between M, ~g(C‘) and M, p(@ ). The proof
of the first proposition is straightforward, and its Bochner integral formula
readily provides the second proposition. For a bounded function 1 : G—C
and y £ G we shall denote by 4, the corresponding translated function

defined on G by 1, (x) = ¥(z + y).

PROPOSITION A. Let G be a locally compact abelian gmup with dual
group G and let 7 be o Haar measure in G. Suppose that X is o Banach
space and 1 < p < oc. If k€ LMG) and » € M, (G), then kx4 €

ps' (G)7 and
S I 1 e I
The multiplier transform Tk.w on L?’(G‘,I) wrmapondmg to kv i given
by
TowgS = [ k(y)Ty_, fdr(y) for all f € LV(G, %),
&
where the integral on the right is an LP(Q, X)-valued Bochner integrol.

PROPOSITION B. Under the hypotheses of Proposition A, suppose thol
NeN, {¢; L, C M, 2(G), and 1 < r < co. Let A be a constant such that

(JI5emal o) <al P15l o}
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for all {f; }

{ f“g;ajnw,j fju;dg}u,.ﬁA“k“Ma){ I.H_isjfju;de}m
py =1 py o i=1

for all {f; 11, € LP(G, %).

We now pass to the setting of an arbitrary UMD space X. The char-
acterization of the UMD property for X in terms of the boundedness of
the Hilbert transform on LP(G,X), where 1 < p < 00, and G = Z, R, or
T, together with a routine argument involving translations, gives, as in the
classical case when X = C, the following scholium. For brevity, an arc on
the circle T will be referred to as an interval.

(3.1) ScHOLIUM. Suppose that 1 < p < oc. Let G =Z, R, or T, and
let X be o UMD space. Then for each interval J in G, the characteristic
function x5 € My x(G). Furthermore,

(3.2) Ixrllag, x (o) < Cpx

Remark. In the setting of Scholimn (3.1), if J is compact, then 17 ; is
convolution on LP(@, X)) by the inverse Fourier transform (xs)¥.

The classical multiplier results of Stechkin for Mp(Z), Mp(R), and M, (T),
1 < p < oo ([14, Theorems 6.2.5, 6.3.5, and 6.4.4]}, also extend to the UMD
setting by adapting their classical proofs. We record this fact in the next the-
orem. Recall that for G = Z (respectively, @ = R, G = T), BV{G) consists of
all complex-valued functions f on G such that var(f,Z) = 5 oo [f(n) —
fln — 1)] < oo (respectively, var(f,R) = supyeyvar(f,[-N,N]) < oo,
var(f, T) = var(f(e??),[0,27]) < o). BV(G) is a unital Banach algebra
under pointwise operations and the norm || - || gv(g) given, respectively, by

IfllBviz = | Jim f(n)f + var(f, Z);
IflBvory =1 im £(£)] + var(f,R);

1 fllsven = [F()] + var(f, T).

(3.3) THEOREM. Assume the hypotheses of Scholium (3.1). Then BV(G)
C My x(G). Furthermore,

(3.4) il 50y € Coxlldllpviey for all ¢ € BV(G).

Proof For & = T or @ = R, the respective methods of proof in parts
(i) and (i) of [6, Theorem (3.4)] show the desired conclusions directly from
the boundedness of the Hilbert transform on L?(B, X). The situation here
when G = R requires slight elaboration, since the method of proof for [6,
Theorem (3.4)(ii)] actually shows that when ¢ € BV(R)NL(R), convolution
by ¢V is a bounded linear mapping of L?(R, X) into L”(R, X) with norm

1 © LP(G,%). Then
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not exceeding Cp, x||¢[lsv(e) . Theorem (3.3) for arbitrary ¢ € BV (R} follows
readily by applying this special case to the functions K,¢, n € N, where &,
is the Feiér kernel of order n for R:
n (sin(2- nz)\”
L) = [ T Ty
o (2) 2m ( 2-Int )

In order to complete the proof of Theorem (3.3) it remains to establish
the desired conclusions when G = Z, and we now suppose that ¢ € BV{Z).
Forn € Z let ¢y : T - C be defined by e,(2) = 2", and let (X)) be
th?v class of all X-valued trigonometric polynomials defined on T, For f =
Y=g @35 € Q(X), we have Tyf = E;J;MN P(j)e; ® ;. For ~N <
n < N, put 5, = E;L_ N ¢ ® x5, and let A, be the characteristic funclion,
defined on Z, of {j € Z : —N < j < n}. Thus, T, f = s,, and so by
Scholivm (3.1),

nllp < Cpxllflly  for cach n.
A summation by parts gives
N-1
Taf = Y (#() = 0 + 1)s; + ¢(W)su,

and we can now infer that [Ty fll, < Cp x| fll5l|¢|lBvzy. The desired con-

clusions for the case when G = Z are now readily obtained, and the proof
of Theorem (3.3) is complete. =

The result of Scholium (3.1) can be strengthened as stated in Lemma
(3.5) below. This was established for G = Z as the first step in the proof
of [11, Lemma 7], but the argument there adapts to the cases G' = R and
T with the aid of Theorem (2.1) and Theorem (2.2)(i} (for each group the
reasoning reduces to the boundedness of an appropriate “Riesz projection,”
in analogy with the scalar-valued treatment in [14, pp. 107, 112, 115-116]).

{3.5) LEMMA. Suppose that 1 < p < co. Let G = Z, R, or T, and lel
X bea UMD space. Then the set {Ty, : J is an interval in G} of bounded
operators on LP{G, X)) has the R-property.

Fix X e UMD and p € (1,00). We now consider the following analogue
of the Littlewood-Paley property for the UMD space L?((, X), where G =
T, R, or Z. For n € Z, let S, (respectively, S,,, Vi) denote the multiplier
transform on LP(T, X) (respectively, LP(R, X), L?{Z, X)) associated with
the characteristic function of the dyadic interval A,, (respectively, Ay, I
considered as an element of My, x (Z) (respectively, M, x (R), M, x (T)).

(3.8) THEOREM. Let' X be o UMD space, and suppose that 1 < p < o0,
The following assertions hold.
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(i) Given f € LP(T, X), the series Y oo . Snf converges uncondition-
ally in LP(T,X) to f, and

< | 3 uSuf], < Coxllfiy

n=-—00 P

for all f e LP(T,X) and for all choices of &, = +1.
{ii) Given f € LF(R, X)), the series 3 - _ __ Snf converges uncondition-
ally in LP(R, X) to f, and

CrLlifl < “ i; sn§anp < Coxllfllp

for all f € LP(R, X) and for all choices of e, = 1.
(iil) Given f € LP(Z,X) the series 3 . _ . Vnf converges uncondition-
ally in LP(Z,X) to f, and

sl < | > Enan“pSC'p,X”f”p

n=--00
for all f € LP(Z, X)) and for all choices of €, = £1.

The conclusions in (3.6)(i) were established by J. Bourgain in {11, The-
orem 3}, where it is indicated that a similar approach may be used in other
situations. Rather than pursue this course in detail, we shall deduce (3.6)(ii)
and (3.6)(iii) from (3.6)(i} by using vector-valued transference. This ap-
proach will be facilitated by the following lemma concerning multipiier ex-
tensions, which adapts and generalizes the reasoning for [7, Theorem (2.1)]
from the scalar to the UMD sefting,.

LEMMA, Let X be a UMD space, and suppose that 1 < p < oo. Given
¢:Z—C, let ¢% : R — C be defined pointwise by

45#: Z qb('"‘)x'm

= —00

where ¥, 18 the characteristic function, defined on R, of the interval
[n,m+1). Then if ¢ € M, x(Z), we have ¢% & My x{IR), and

1% 0ty < Co 16 a6y 2

Proof Let ¥ = LP(R,X), and foreach t € R, let U; : ¥ — Y be
translation by t: (Usf)(s) = f(s+¢t). Thus {U; : ¢ € R} is a strongly con-
tinuous one-parameter group of isometries on the UMD space Y. It follows,
in particular, that Us, has an associated spectral family of projections &(-)
in Y, as described in Theorem A (§1). Putting Q = f[gi%"] AdE(X), we have
Uszr = €9, By [5, Theorem (3.11) and Theorem (3.14)(i)], we see that for
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all fel,
Qf =af i lim
N—o0

Z numlUQn.vr f

O0<|n|<N
Notice that () commutes with U; for all £ € R. For each ¢ € IR, let [t] denote
the largest integer not exceeding . For f € Y, such that f = g @ @, where
g € LMR)NL*(R) and = € X, we infer from the last equation (also applicd
to LP(R)) and [5, Proposition (4.23)(i)] that the function ¢ defined on R by
writing

P(t) = 2m(t ~ [t])
belongs to M, x (R} and its corresponding multiplier transform Ty coincides
with @ on Y.

For each t € R, put V; = Uye /27N Thus {V, : ¢t € R} is a strongly
continuous one-parameter group of operators on ¥ such that V. = I. It fol-
lows that we can unambiguously define a strongly continuous representation
RofTin Y by writing R, = V; for z = e%, It is straightforward to sce from
the foregoing considerations that for z € T, 2! € M, x(R) and R, = T},
onY. Let {F,}52 __, be the sequence of spectral projections associated with
the representation R in accordance with Theorem C. We claim that for each
n €z, P, =T, onY. Inorder to establish this, notice first that, since the
functions in LY(R) with compactly supported Fourier transforms are dense
in LP(R), we can use the uniform boundedness assertion in Scholinm (3.1)
to infer that for every f € LP(R,X), 320 o Ty f — f in LP(R, X), as
N — 00. So it suffices for the claim to show that for n € Z, m € Z, we have
PpTy,, = Ty, Ty, The latter equality is readily obtained, however, since
for z e T,

R.Ty, =TT,
and hence for f € LP(R, X),

X-mf f Z—nR T'\Cmfd/\ z) f z‘“'n rnTmed’\(z) = TXHFITXTrmf'

—_ T
Z[]Xm =z TXm=

To compiete the proof of the lemma, it now clearly suffices to show that
there is a constant Cp x such that if ¢ € M, x(Z) and N € N, then

|1z¢

This can be seen as follows. For N € N, let ¢ : T — C be the trigonometric
polynomial given by

< Cp xl10l 1ty (2)-

¥n(z) = Z ¢(n
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Then for f € LP(R, X) we have

Z ¢(n)Puf = Z B(n) szglfd)\(z [ wn(z)
T

n=—N n=—N

Rz~1f dA(Z).

Hence by the vector-valued transference result in Theorem (2.5), we see that

< Cp.x Npy (¥n)-

However, by Lemma {2.7),

Ny x(n) = Npy (¥n), and consequently
| 3> o

Moreover, after denoting by «uw the characteristic function, defined on Z, of
{k€Z:—-N <k <N}, we have

PXNPXWN)

Ny x (¥8) = [nllaty 02y = 1670 sty 2z < Coox | 6ling, iz

the last step by virtue of Scholium (3.1). Combining the last two inequalities
completes the proof of the lernma. =

Proof of Theorem (3.6). As noted earlier, (3.6)(i} has been estab-
lished previously by J. Bourgain in [11, Theorem 3], and we shall demon-
strate (3.6)(il) and (3.6)(iil) with the aid of (3.6)(i) and vector-valued trans-
ference. For the proof of {3.6)}(ii) notice first that standard considerations
based on Scholium (3.1) give

N o~
Z S f — f
n=—N

for all f € LP(R, X). Consequently, it suffices for (3.6)(ii) to show the ex-
istence of a constant Cp x such that the sequence of disjoint projections

{gn}f,f;_m satisfies

in IP(R, X), as N -— 0o,

for aJl N € N and all &, = +1, for ~N < n < N. Since A_,, = (—1)A,
for n > 0, we need only show that there is a constant Cj x such that the
characteristic functions x 7 of the dyadic intervals A, in R satisfy

N
|2 s,
n=1

CP,X

<
Mp,x (R) -
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forall N e Nand all e, = &1, for 1 <n < N. Let ¢ € M, x(Z) be defined
by writing ¢ = Ef_ €5,774, , Where 74, denotes the characteristic function,
defined on Z, of A,. By (3.6)(1), {|¢lls, x@ < Cpx. Using the ]_’)ICCLdlIlg
lemma on multiplier extensions, we see that |[¢#|| Mpx®) S COpx. Since it

is evident that ¢# = Z 1 EnX i, » the proof of (3.6)(ii) is complete.
To prove (3.6)(ili) it aufﬁceb to obtain inequalities of the form

(3.7) H anv H < Cpx

(=N

and

(3.8) H z enV;

valid for all N € N, and all cho1ces of &, = x1. However, since, for n > 0, the
arc Iy, is (I'_,)7t, it is clear that the general validity of (3.7) is equivalent
to that of (3.8). So it suflices to establish (3.8).

For 0 < A < 27, let E(A) denote the operator on W = LP(Z, X)) asso-
ciated with the characteristic function of the arc {e* : 0 < ¢ < A}, con-
sidered as an element of M, x (T}, and define B(A) = 0 for ~o0 < A < 0,
E(A) = I for 2n < X < oo. It I8 easy to see from Scholium (3.1) that E{-) is
a spectral family in W, concentrated on [0,27], and continuous on R in the
strong operator topology of B(W). Direct calculation with Fourier trans-

forms shows that the operator I/ = f[gizw] e dE(}) on W is the left shift
(UN)n) = f(n+1). Let B= [0, - AdE()).
Now fix N € N, and, for t € R, let

Q; = exp(ir 2Nt B) = fe exp(im~ 2N TN dE().
[0,2]

.o

Then {Q: : t € R} is a one-parameter group in W, continuous in the uniform
operator topology of B(W), and sup{||Q:|=w) : t € R} is a finite constant

depending only on X and p. Indeed, since ¢* 5 is the invertible isometry U
on W, we have

sup{||Q:[lmwy : ¢ € R} = SUP{HEHBHB(W) ite R}
= sup{||e"®|lpw) : 0Lt < 1} < e
For u € R, let F{u) = E(x2~~N~1y). Then F( ) is a spectral family in
W, concentrated on [0, 2¥+2], continuous in the strong operator topology of
B(W), and satisfying

(3.9) Q= f gl dF( ) forallteR

(0,277
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For m ¢ N, let k,, be the Fejér kernel of order m for R. Tf feW, mel,
and 1 <n < N, we have from (3.9),

S R (1) Qo db
R .
= f Em(t)(xjin)v(t)[ f@ ity dF(I—")f:I dt

{—m,m] ig,gN-P?]

Using an integration by parts in the inner integral on the right, and changing
the order of integration, we see that

~ )
(310) [ RalWxg)V0@—fdt= [T (kmxxq, )0 dP(0)F.
* [0,257+2]
Standard considerations show that
Var(fop, * Xﬂn’R) < var(x&n,R) =2,

and that for each p € R,
lim (A * x 7, ) (1)

TH—F O3

e o=17 1 i o
=2 {,\lfii X, (A) + Ali,n,} X, (A

Applying these two facts, together with the limit theorem for spectral in-

tegrals described in [5, Propesition (2.10)], to the right-hand side of (3.10),

we see that as m — oo,
[ B8 (x4
R

in the norm topology of W. In view of the deﬁmtlons of F(-) and E(-), this

can be rewritten

(311) [ Be®(xz)' (HQ
R

n)v(t)Q—if at — {F(S‘!N'l) - F(Sn)}fa

_efdt = Vo N 1f, In W, asm — co.
Now let €, = &1 for 1 < n £ N, and put ¥ = Zf:;lan(xﬁn)v and

¥, = ¥ € LY (R) for m € N. Applying the vector-valued transference

result in Theorem (2.5) to ¥,,, and the uniformly bounded one-parameter

group {(: : t € R}, and then invoking Lemma (2.7), we have, in the notation
of Theorem (2.5),

(3.12) I, | < Cp,xx N, (Fn)

Next observe that Efm =2 gy % Eﬂ =1 EnX A, and so, with the aid of Pmpo—
sition A (§3), we can infer that

for m & N.

N
Nyt (P} = [ nllagy ey < || e
n==]

It now follows by (3.6)(ii) that Np x(¥,.) < Cp x for all m € N.

e (R)
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Applying this fact to (3.12), we get
(3.13) 1Hw, || < Cpx foralmeN

By (3.11), Hy, Z 1EnVa—N—1 in the strong operator topology of
B(W) as m — oo This fact together with (3.13), gives (3.8), and the
proof of Theorem (3.6) is now complete. ®

4. The spectral integration of Marcinkiewicz multipliers. We
now establish several operator-theoretic results which underpin the proofs
of the main results described in §1.

(4.1) TueoREM. Let E(-) be a spectral family of projections in Banach
space X such that {E{A ) M\ € R} has the R-property, ond suppose that

sup H Z en{E{snt1) —
n=N

where {8, Y55 _ o 15 the sequence of dyadic points of R, and the supremuin is
taken over all N € Z, M € 7 such that N < M, and all choices of e, = %1
for N <n < M. Then, given ¢ € (IR}, the integral [, ¢(A) dE(N) exists in
the strong operator topology (in the sense indicated zmmedmiely before the
statement of Theorem (1.2)), and satisfies

(4.2) | [ 600 aBW)|| < Calidlmay-
R

E(aﬂ)}” < 00,

The proof of Theorem (4.1) will be facilitated by the following lemma.
(4.3) LEMMA. Suppose that E(-) satisfies the hypotheses of Theorem

(4.1), and that ¢ ¢ TUR). Let P = (Ao, A1,... ), where —c0 < Ag <
A <. <A <o, and let

Pi6, 1) = 3" OMMEO) — B(y-1)}

h=al
be the Riemann-Stieltjes sum corresponding to P, ¢, and E(.). Then

IS(P; 6, B)| < Crlidllamm

Proof. It is easy to see that if P’ arises by adjoining a new point to P,

then
IS(P'; . E) - S(P; ¢, E)l < Crsup{|op(y)| : v € R}

It follows that we can assume without loss of generality that Ay = sy,
Ar = Spr, Where N € Z, M €7, and N < M, and that r > 3.

Now fix z € X, and put z,, = {F(sn41) —~ E(sn)}xfor N<n <M~ 1L
Consider such an n. If there is a (necessarily unique) k,, such that 1 < &, <,
and [Sn, Sni1] © [)\1%_1, )\kﬂ] then
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S('P, &, E)mn = ¢(Akn)xn~
Otherwise,

{k eN:kE<rand A, € (Sn, Sn+1)}
is not empty. In this case we choose k,, and m.,, in N with k, < m, <r-—1,
and P N (sg, 8np1) = {; : kn < j <m,}. In this case, we further see, with
the aid of a summation by parts, that

My

S(P;¢ E)en = {d(Nj) ~ ¢

j:kn
It now follows by Theorem (2.2)(ii) that

( 3+1)}E( )Tn + Qb()\mn—kl)mn

I Z enS(P3 6, E)onin- | de

DMN [2=S

< C'E|qb|[m(m f “ Z EnntN— 1“ de.

DM»-*N

Since, from our hypotheses,

M-N M-N
| X emnevaa| = [ X entBlone) = Blonsr-n)}a| < Oplll
n= n=1

we see that

M-N
J || 3 enS(Pioy Bansn—s de < Colldllmen .
pM-N n=]

Moreover,
S(P;¢, BNz
M-N
={ 3" Blsnin) ~ Blsnan-1)}S(Pi ¢, B)a
el
M-N M-N
= [ > En{E(5n+N)—E(Sn+N—1)}] > enS(P; 4, B)tnin-1,

n=1 m=1

and consequently we have

1S(P; 6, BYal < Cs| Z enS(P; 6, Bonsn|
n=1
Combining this with the preceding inequality, we obtain
18(P; 6, E)zl| < Crllpllonmll]-
This completes the proof of Lemma (4.3). =
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Proof of Theorem (4.1). Let ¢ € M(R), z € X, and suppose
§ > 0 is given. Since E(sy)z — 2 as n — oo, and E(s, )z — 0 as n —
—0, we can choose N € N so that ||E(sy)z — Es—n)z — || < §. Put
oy = {E(sy) ~ E(s_n)}z, and let z = oy + yn. In particular, [jyy| < 6.
Since ¢ € BV([s_n, sn]), we can pick a partition Wy of [s_n, sx] such that
whenever W, and W, are partitions of [s..y, sn] refining Wy, then
|SWh; 0, Edeny — S(Was o, Edan|| < 6.

It 8{P1; ¢, E) and S(Pay; ¢, E) are Riemann-Stieltjes approximating sums
for [ #(A) dE(X) such that Py 2 Wy and Py 2 Wy, we sce that

S(Pl; qb: E)ZL' - ‘S(P2J ¢7 E).T
= {S(P1;0, F)zy — S(Pa2; ¢, EYen} + {S(P1; ¢, BE)yn — S(Pas b, E)yn'}
=S8Wr; ¢, B)zn — S(Wa; ¢, E)an + S(P1; ¢, B)yny — S(Pa; b, B)yn,

where Wy and Ws are partitions of [s_y, sy] refining Wy. It now follows
with the aid of Lemma (4.3) that

|8{(P1; ¢, By — S(Pa; ¢, E)z|| < (1 + Crl|d|longwy )6

From this we readily infer that limp §(P; @, F)2 exists in the norm topology
of X. Another application of Lemma (4.3) completes the proof of Theorem
(4.1). m

Comment. It is worth noting that the results of Theorem (4.1) will be
valid if the dyadic points {s,}3% .. are replaced by any bilateral strictly
increasing sequence £ = {£,}2° _ . such that £, — oo as n — oo, and
the space M(R) is replaced by the space of functions ¢ : R — C satisfying

HngE = Sup{|¢(5); S R} + sup{var(qﬁ, [57Ls£7¢,+1]) e Z} < 00.
In this case, Cp|¢|lmmy in (4.2) is replaced by Cg gl|é||¢.

The periodic and the discrete analogues of Theorem (4.1) take the fol-
lowing forms and are proved in much the same way.

{4.4) THROREM. Let E(-) be a spectral family of projections in o Banach
space X. Suppose that E(-) s concentrated on [0,27], that {E(A):0 € X
27} has the R-property, and that

sup H i en{E(tnt1) — E(t.n)}H < 00,
n=N

where {, )32 _ . is the sequence of dyadic points in (0,27), and the supre-
mum 1s taken over all N € Z, M € Z such that N < M, and all choices of
&n = *1 for N < n < M. Then, given ¢ € MM(T), the integral
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f[o,zw] p{eP)dE(X) evists in the strong operator topology and satisfies

| 1o B < Caliglngm.
10,27]

(4.4) THEOREM. Let X be a Banach space, and suppose that P =
{ P} _ o € B(X) is o sequence of projections such that: PP, = 0 for
m# n; Zﬁ;_N F,, — Iin the strong operator topology of B(X) as N — oo;
and

{%PR:N,MEZ,NS“M}
n=N

has the R-property. For ench n € Z, define Q by writing Qn = 3¢ 4, s
and suppose further that

M
wn{] 3" 0
n=N

Then, given ¢ € DUZ), each of the series > .o, d(—n)P_, and
Y omep @(n) P converges in the strong operator topology of B(X), and

| S o,

Comment. As with the comment following the proof of Theorem (4.1),
there is a variant of Theorem (4.4) in which the dyadic points {¢,}52 _, of
(0,27) are replaced by a bilateral strictly increasing sequence {7, }52 _ . in
(0,27) such that n, — 27 (respectively, n, — 0} as n — oo (respectively,
n — —00). In this framework, IM(T) and || - ||ger) must be replaced by the
analogous space and norm corresponding to the sequence n = {nn}7% o,
and the constant Cg in the conclusion of Theorem (4.4) must be replaced
by Cg,y-

The results of Theorems (4.1), (4.4}, and (4.4)" include the Strong Mar-
cinkiewicz Multiplier Theorem for the spaces M, x(R), M, x(T), and
M, x(Z), respectively, where X is an arbitrary UMD space and 1 < p < oc.
This generalization of the classical Strong Marcinkiewicz Multiplier The-
orem was established by J. Bourgain in [11, Theorem 4] (which treats
My, x{Z) explicitly}, and is stated as follows.

NMcZ N<M, an=:I:1forN§nSM}<oo.

< Crlidllm-

(4.5) THEOREM. Let X be a UMD space, suppose that 1 < p < oo, and
let G=R, T, or Z. If $ € M(G), then ¢ € M, x(G) and

[0l x (@) < Cp,x|[@llan(a)-
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Proof. Consider the case when G = R. For each A € R, let E(A) be the
multiplier transform on LP(R, X) corresponding to the characteristic func-
tlon of the interval (—oo, ] in R. Tt is easy to see that F(-) is a spectral
family of projections in LP(R, X). By Lemma (3.5} and Theorem (3.6)(ii),
E(.) satisfies the hypotheses of Theorem (4.1), and so for each ¢ € M(R),
Jo #(X) dE(X) exists and satisfies (4.2). Straightforward calculations with
Fourier transforms now show that ¢ € M, x(R) with corresponding multi-
plier transform [, #(A) dE(A).

In the case when G = T, we use Lernma (3.5) together with Theorems
(3.6)(iii) and {4.4) to reason analogously with the spoctral family F(:) in
LP(Z, X)) which was defined in the proof of Theorem (3.6)(iil). In the case
when G = Z, we define P, f to be the nith term of the Fourier series of f, for
fe LP(T, X), and n € Z. Thus P, is the multiplier transform corresponding
to the characteristic function of the singleton set consisting of n. In this
situation we obtain the desired conclusions by applying Scholium (3.1) and
Lemma (3.5), together with Theorems (3.6)(1) and (4.4)". =

5. Proofs of the main results. We now turn our attention towards
establishing the main results, which are stated in Theorems (1.1), (1.2), and
(1.3). Throughout the ensuing discussion, X will be a fixed UMD space, and
p will be a fixed real number such that 1 < p < oo. We shall take up Theorem
(1.3) first, since its focus on sums in place of spectral integrals specializes and
simplifies its treatment. In fact, the following somewhat stronger assertion
than (1.3)(ii) holds (compare [7, Theorem (1.1)]).

(5.1) THEOREM. Assume the context and notation of Theorem C, and
suppose 1 < p < oco. Let ¢ € M, x(Z). Then each of the series
Yo B(—n) P and Yoo, &(n) P converges in the strong operator topol-
ogy of B(X). Furthermore, the mapping ¢ — > oo d(n)P, is an identi-
y-preserving algebra homomorphism of M, x(Z) tnto B(X) such that for
all p e Mp,x (Z),

< P Cp x18ll s, x 23

| 5 s,

Proof. Since the ranges of the projections I, n € Z, span a dense lincar
manifold in X, while P, P, = 0 for m # n, and the two series 3 o, Py
and "7 . P, converge separately in the strong operator topology, it suffices
to show that for ¢ € My x(Z) and N € N we have

| S 6P| < 20,6l e
n=—N
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This follows readily from Theorem (2.5), Scholium (3.1), and the definition
of the sequence {P,}52 __ by observing that .

N
Z qS(n)P” - -HqNa

n=—N

where gy(z) = Zf:;_N ¢(n)z" for all z € T, and consequently

| S stmm,

< Ny x(aw) = Alldx- vl ag, x (2)

< EPCp x|0ling, e (z)- @

In view of Theorem (4.5), Theorem (1.3)(ii) is an immediate consequence
of Theorem (5.1). Moreover, Theorem (1.3)(i) becomes apparent upon ap-
plying (1.3)(i) to functions ¢ € IM(Z) having the form ¢ = Ei:;_N EnXAnn
where ¥ ¢ Nand e, = £l for —-N <n< N,

The stage is now set for consideration of Theorems (1.1) and (1.2). In
essence, the strategy we shall follow consists of transferring the R-property
for the family of multiplier transforms defined by intervals (Lemma (3.5))
and the Littlewood-Paley property for L% in Theorem (3.6} to the spectral
decompositions occurring in Theorems (1.1) and (1.2). In view of Theorems
(4.1) and (4.4), it will then remain only to establish a bound of the form
¢*Cyx for the homomorphism which assigns each Marcinkiewicz multiplier
its spectral integral.

The transferred R-property just mentioned will be deduced by estab-
lishing more general facts concerning transferred bounds for the averages
of multiplier transforms on L?{&, X), where &' = Z or R, and the relevant
multiplier transforms correspond (by Theorem (3.3)) to arbitrary functions
in BV(G). In order to describe the latter type of transference phenomena,
we begin with some additional items of notation. Suppose that ¢ € BV(T).
Define @ : R — C by writing

(5.2) Bty =274 “’ﬁ P(e™) + lin{n. #(e)}.
a—+{ §—1
Ohserve that @ is 2m-periodic, and that var(®, [0, 27]) < var(¢, T). We shalil
also write
(5.3) Ty= [CBN) B,
0,2%]

where E{.) is the spectral family in X corresponding to the power-bounded
operator U in accordance with Theorem A. Similarly, if 1 € BV(R), define
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¥: R — C by putting
_ _1 N .
(5.4) w(r) = 27 tim w(s) + im ().
In particular, var(¥,R) < var(i, R), and we shall also write

(5.5) Ty = [ PN AE(),
R

where F(-) is the spectral family in X corresponding to the uniformly
bounded, strongly continuous one-parameter group {U; : t € R} in ac-
cordance with Theorem B. In terms of the foregoing notation, our result for
transferring averages of multiplier transforms on LP(Z, X) takes the follow-
ing form.

(5.6) THEOREM. Assume the hypotheses and notation of Theorem A,
and suppose that 1 < p < co. Let N € N, and suppose that {¢;}}_, C
BV(T). Let K be a constant such that the multiplier {ransforms {Ty, }ii,
on LP(Z, X)) sotisfy

on IS emal e <k [ Se
pN o g=I pN¥N o J=

Jor all {f;}}Ly C L¥(Z, X). Then, in the notation of (5.2) and (5.3), we
have

1; ds}” ’

N P 1/p il P 1fp
{ [ X ema e} ™ < on{ [ | Xesmif, oo}
pN g+l pN J=1

for ol {z;}1, € X.
Proof Forn > 0and 1 <j < N, define 0, ; € L*(Z) by putting
T 3{m) = Bp(m)d;(—m) for all m € Z,
where Kp is the Fejér kernel of order n for T. In particular, 7, ,; = K, * ¢;.
Using (5.7) and Proposition B (in §3), we see that for all {f;}1, € L?(Z, X),

N 1/ N ) .
{ e sl ={ [ 1ot e}
<x{ Hiaﬁ“jds}w.
LA L

Specializing the representation R in Theorem (2.8) to be the mapping Z 3
m — U™, and applying Theorem (2.6) to the last inequality, we see that
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N r i/p o
1
(5.8) { f HZEJ‘H’MJ%H de:} < ch{ f HZETHP d,'a} &
N =1 X ; T
D 2 DN I=1
for all {z;}2, € X. Since

T

Hyy= 3 Ralm)gs(m)U™ = [, % 9,)(e™) dB(),

m=—1 Io,gﬂ-]
while var(k,, * ¢4, T) < var(¢;,T), and, in the notation of (5.2),
Jm (k% ¢5)(€™) = #;(N)  forall A € R,

we see from t‘he limit theorem for spectral integrals [5, Proposition (2.10)]
that, for 1 < j S N, J.H”“d —+ %4, in the strong operator topology of B(X) as
n — 0. Applying this fact to (5.8) completes the proof of Theorem (5.6). w

(5.9) COROLLARY. Assume the hypotheses and notation of Theorem A.
If ¢ € BV(T) and 1 < p < oo, then, in the notation of {5.3), we have

[Tall < Plidllae, xm)-

Proof. The assertion is an immediate consequence of taking N = 1 in
Theorem {5.6). =

(5.10) COROLLARY. Assume the hypotheses and notation of Theorem A.
Then {E(A) : 0 £ X < 2r} has the R-property. In fact, if 1 < p < oo, then
for N e N, {)\j}:;\;l € [0,27], and {z;}L; € X, we have

{1 Sesmn )™ <20l [ 3 ems, e}
Jl FE A | Sy X Ry BT ”X 5} .

Proof. Since E(2m) = E({2r)7), and E(0) = E(0%) in the strong op-
erator topology, it is enough to show the desired inequality when {MHL C
(0,27), which we now suppose. For § < j < N, pick §; € (0,2x) sc')?—tha_t
Aj < &, and let ¢; € BV(T) be the characteristic function of the arc
{e": 0 < ¢ < &) It is easy to see directly that

(5.11) - Ty, = 27H{E(8;) + B(8;)} ~ 27 B(0).
By Lemma. (3.5),
N / N
{D£ H ;Eji“«f:jfj“:da}l "< C;D,X{D'_!: ”jzzlsjfﬁHZ df}w

for all {f;}L, € L?(Z, X). It follows by Theorem (5.6) that

{ el <ol | Semf e}
DN =l : py o d=l
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for all {.cj}jv:l C X. The desired conclusion becomes evident after us%ng
(5.11) in this inequality, and letting 6; run through a sequence approaching
Aj, for each j. =

Reasoning similar to the foregoing yields companion results in the one-
parameter group setting of Theorem B, and we describe this state of aflairs
next. However, the reasoning requires some extra details occasioned by the
fact that BV(R) is not a subset of L' (IR).

(5.12) THEOREM. Assume the hypotheses and notation of Theofmm B,
and suppose that 1 < p < 00, Let N € N, suppose {;}}5; € BV(R), ond
let K be a constant such that

o P 1/p N
(5.13) { fHZEijjfjHPdE} SK{ f ”Z«?jfj
DN j‘=1 DN j-_—l

for all {f;}L, € IP(R,X). Then, in the notation of (5.4) end (5.5), we

have
)

: de } e

N N
{15l e [ |35
DN j=1 pd =t
for all {z;}iL, C X.

Proof. Since {E(a) — E(—a}} -~ I in the strong operator topology as
a — 00, it suffices to show that for a > 0 and {z;}7y C {B(e) — BE(-a)}X,

(5.14) {D£ ”iej f!l"jdEa:jHi{da}up

i=l  [—a,a]
N
SCQK{ f “Zsjmjup ds}lfp.
pN o §=1 X

When %; € LY(R) for 1 < j £ N, the proof of (5.14) can be handled in
analogy with the demonstration of Theorem (5.6). Specifically, under the
additional assumption {4;}{0; C L'(R), we define y,; € L'(R) for n 2 1
and 1 < 7 £ N by writing

g (8) = (2m) ™ R (B1e53 (1) = Rn(8) (30)” (1),
where &, now denotes the Fejér kernel of order n for R. In particular, we

have Fp, ; = Ky %15 Notlce that var(sn, * 93, R) < var(i;, R). An argument
like that used to establish (3.10) shows that

J )N dBQ)zs = [ oy (t)U—sz; d.

[—a.a] [-nn]
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The proof of (5.14) for the special case {1, }f,-\;l C LYR) can now be carried
out with the same kind of reasoning used to establish Theorem (5.6) by
using v, ; in place of 9y, ;.

In the general case, put &, ; = &,%;. Then §,; € BV(R) N LY(R), and
the function A, ; corresponding to §,; in accordance with (5.4) is given
by Ay, = &,W¥;. It follows that for 1 < j < N, Ay ; — Py pointwise
on & as n ~— oo, and sup, var(A, ;,R) < 2|/%;|gyp,. Notice that for any
n > 1, (5.13) holds with {6, ; }?Ll in place of {1;};_,. Hence we can apply
the outcome of the preceding special case to {6,,;}iL;, and thus obtain for
a >0, and {z;}}%; € {E(a) - E(~a)}X,

d P e al P 1/p
{f H Se [ A dEijX e} <e{ [ ||Zsjmj” as} .
DN ji=1 [—a,a} DN =1 X

Letting n — oo, we can apply the limit theorem for spectral integrals [5,

Proposition (2.10)] to infer (5.14) and thereby complete the proof of Theo-
rem (5.12). u

(5.15) COROLLARY. Assume the hypotheses and notation of Theorem B,

and suppose 1 < p < 00, Then for each ¢ € BV(R), we have, in the notation
of (5.4) and (5.5),

1Zpll < El1¥lln, 2 (m)-

(5.16) COROLLARY. Assume the hypotheses and notation of Theorem B.
Then {E(X) : A € R} has the R-property. In fact, if 1 < p < oo, then for
N eN, {,HL CR, and {z;}}L, C X,

N p e, y 4 i/p

UL em0om ae} ™ < ] [ |2 e[l ac}™
DY o g=1 DN =1

Proof. Forn € N,and 1 <5 £ N, let ¢, ; € BV(R) be the characteris-

tic function of the interval [A; — n, A; + 1/n]. Apply Lemma (3.5) and The-

orem (5.12) to {4n ;}L,, and let n — oo to infer the desired inequality. m

Since Theorem (1.3) has already been demonstrated, we shall not require
the counterparts of the foregoing in the context of Theorem C. Nevertheless,
we include them here in order to complete the circle of ideas. Under the
hypotheses of Theorem C, we shall work with D(Z) rather than BV(Z). In
particular, for & € IMM(Z), we define T, in accordance with Theorem (1.3)(ii)
by writing

(5.17) To= Y a(—n)Py+ Y aln)P,.

n=1 n={)
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Recall that, by Theorem (4.5), for 1 < p < oo, @ has a corresponding
multiplier transform T, acting on L¥(T, X).

(5.18) THEOREM. Assume the hypotheses and notation of Theorem C,
and suppose that 1 < p < co. Let N € N, suppose {aj}?]:l C M(Z), and let

K be a comnstant such that
N
/p r I/p
Preaf J el )
DN =t v

N i
619y {J ” ZajTajfj];
Il Fe=1
for all {fj}j\;l C L*(T, X). Then, in the notation of (5.17), we have
N P i/p . N 2 1/p
(5.20) { f ” Zejiwj:chx de} < clK{ f “ Zﬁjwj p n!s}
folad =1 oy j=1

for all {z; }N CX.

Proof, Suppose first that each oy € L1(Z), and let k; : T — C be
defined by

s o]

ki(z) = Z aj(m)z™.

m=—00

The hypothesis in (5.19) can now be written in the form

(JSen s ) <x{ [ Sen e}
Dy =1 pN =1

for all {f;}1, € L?(T, X). Hence by Theorem (2.6),

(5.21) {f ”iEijijHi;dE}”PSCQK{ f HiSJmJHZ ds}l/;u
BN =1 DY =l

for all {z, }j-‘;1 C X. It is easy to see directly that for m € Z, and 1 < j < N,
we have

Hy, Py = ay(m) Py, = T, P
Hence Hy; = T, and, in this case, (5.21) coincides with the dedired con-
clusion (5.20).

In the general case, let x, denote the Fejér kernel of order n for T,
and notice that the hypothesis (5.19) continues to hold for {Rnay}l, €
LY (Z) < 9N(Z). Hence by the preceding special case, we can infer that for
all {z; 120, C X,

v ds}l/p
X

(5.22} {fHisﬁ'i”“naimj”ide}l/pS_QQK{ f”iﬁ'j.’]’ﬁj
DY g=i pN o i=l
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However,

T
m
T.&"aj = mmzn (1 — nl +|1> &j(m)Pm
is the nth Cesaro mean of the bilateral series defining Za;, and so for 1 <

7 <N, Ti,a; — Ta, in the strong operator topology as n — oo. Using thls
fact in (5.22) completes the proof of Theorem (5.18). w

As previously, the case N = 1 yields the following corollary of Theo-
rem (5.18).

(5.23) COROLLARY. Assume the hypotheses and notation of Theorem C.
Ifac ?JR(Z) ond 1 < p < oo, then, in the notation of (5.17}, we have
I1%al < ellalla,, -

(5.24) COROLLARY. Assume the hypotheses and notation of Theorem C.
Then {3 nr oo Pn : m € Z} has the R-property. In fact, if 1 < p < o,
then for N € N, {m;}}L, CZ, and {z;}1; C X, we have

(SISt} ™ sl [|Seinf, o)™
D pN  i=1

where, form € Z, By, is the sum 3 -
of B(X).

_eo £n in the strong operator topology

Proof For 1 < j
onZ of {n € Z:n
Lemma (3.5),

il P 1/p N » 1/p
{2l oe} ™ < one{ [ [ Xernf o}
py =1 Dy i=1

for all {f;}}2, C LP(T, X). Since To; = By, for 1 < j < N, an application
of Theorem {5.18) completes the proof of Corollary (5.24). =

< N, let o; be the characteristic function, defined
< m

it In particular, a; € BV(Z) C 9M(Z). By

Proof of Theorem (1.1){i). Keeping p fixed in the range 1 < p <
oo, let X, I, B(-}, and ¢ be as in Theorem A, and denote by Dy the collection
of subsets of T consisting of the singleton set {1} together with the arcs
I, and the singleton sets {w,} for all n € Z. £(-) is a projection-valued
function initially defined on Dr, as described in (1.1)(i}, and £(a)E(8) =0
for & € D, B € Dy, a 5 3. Notice that each o € Z4(T) can be expressed as
the union of a uniguely determined subcollection A, of Dy. The uniqueness
assertion in {1.1)(i) follows immediately from this fact, and we now turn to
the existence assertion.
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Suppose first that N € N, j, € Z and g; = %l for k=1,...,&, and
e F infork#n. For L< k<N, letap € (0,27} and by € (0,27) satisfy

1y, < 0p < b <tj,41,
and denote by x; the characteristic function defined on T of {ei* : ap <
t < b}, Put ¢ = Yo, exxe. Obviously ¢ € BV(T) and [|¢flaery < 3. By
Theorem (4.5}, [|¢] a1, x (1) < Cp,x, and it follows by Corollary (5.9) that
(5.25) 1541 < 2Cpx.

Direct calculations from (5.3) show that
N
Tp = 3 enl2{E@b) + B} - 27 {Blaw) + Blap )]
k=1

Using this in {5.25), and letting ax — t;rk and by — 4 g for k=1,..., N,
we see that

N
(5.26) H > erE(Ty,)
k=1

If we replace the I';, by singleton sets {w;, }, & = 1,..., N, with the
wy, 's distinct, and if, for sufficiently small € > 0, we let x in this situation
be the characteristic function of the arc {e® : ¢;, — & <t < ¢;, + &}, then
similar considerations show that

(5.27) | iskg({wjk})“ < 2C, x.
k=1

Combining (5.26) and (5.27), wesee that f M € N,e,, = £lforl <n < M,
and a, ..., ay are distinct elements of D, then

M
(5.28) H 3 ené(en)
n=1

Notice that the span of the ranges E{a)X for o € Dy is dense in X,
It follows from this observation and (5.28) that for any sequence {e;}s>1
of distinct elements of Dy, we have pointwise on X the unconditional con-
vergence of )", £(ay) to a projection whose norm does not exceed the

S c2Cp|x .

S C2Op,x.

bound ¢?C, x in (5.28). We now extend £() from D to 2 projection-valued

function £(-) on Xy(T) by writing
CEo)z= Y Ela)z foroe Bu(T), m€ X.
xEA, :

Obviously £(0)X is the closed linear span of the ranges £(a)X for a € A,.
Similar reasoning from (5.28) now shows that £(*) is strongly countably ad-
ditive om Zg(T). The remaining properties of a spectral measure on Z4{T)
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are also readily verified for £(:), and the proof of Theorem (L1)() is corm-
plete. w

"The proof of Theorem (1.2)(i) can be carried out in an entirely analogous
fashion by using Corollary (5.15) in place of Corollary (5.9). We omit the
details for this, aud pass to consideration of (1.1)(ii) and. (1.2)(ii)

Proof of Theorewm (l.1)(ii). Assume the setbing and notation of
Theorem A, and let ¢ & M(T). By Corollary (5.10), {BA) ;0 < X < 27} has
the R-property. The remaining hypothesis of Theorem (4.4) is also satisfied,
since, in ternos of the spectral measire £(:) in Theorem (1.1)(i),

M M
H Z 51!‘{16('{“71-4'-1) - E(tn)}H = ” Z 51:5(0'n)
=N n=N

where o, == {8 1 b, <t < 4,5 ). Hence Jio.2m) 2(€2) dB()) exists, and we
now turn our attention to obtaining an estimate of the form

(5.29) H f@ﬁ(‘ﬁu)dfﬂ@)” < 0 ||6] amery-
[, 2]

< CZGX;

This will be accomplished by successive reductions.
Notice tirst that if (0 € a < b € 27, then j'[“ ] $(e*) dE(N) exists and

(5.30) [ o(e) dr(y m{ f d)(e“)dE()\)}{E(b)——E(a)}.

o1, 5] [tv,27]

Using the symbol “x” to denote “characteristic function” relative to [0, 2],
we(see fr)om. (5.30) that, in terms of the sequence {t;}%22_  of dyadic points
m (0, 27),

S X6 wamole™dBQN) = [ o) dBO) — [ ¢(e?)dB(A)
[0, 20t] [t nitav) [0,2]

in the strong operator topology as N = 0o, So it suifices to establish (5.29)
in the special case when ¢ vanishes owtside the arc {e® 1ty <1 < tn}
for some N ¢ N, We now consider this special case. In particular, ¢ €
BV(T). Lot @ & BV([0, 2n]) be the 2r-periodie function corresponding to ¢
in accordance with (5.2), and notice that [[8amery < 2/|¢]lmey (here, and
in what follows, we identify a function f defined on T with the function
tr f{e') defined for 0 < ¢ < 27), Pug ¢ = ¢ — & € BV(T). Clearly,

(5.31) . [ llamery < 3

By Corollary (5.9) and Theorein (4.5), we can introduce p € {1,00) in a
transitory rolo to infor that

Alomry-



46 E. Berkson and T. A, Gillespie

| [ e aem)| < @oxleln.
[0,27]

Hence, in view of (5.31), it now suffices for (5.29) to show that

(5:32) | f wt0aB)| < Oxldloncry
[0,27]

Since the discontinuity set of ¢ is countable, there is a sequence {ANitiz €
[é_n,tn] such that ¢ vanishes on the set-theoretic difference 0,27\ {A it
j > 1}. Moreover, since ¥ € BV(T), 3,5, [W(3)| £ 27" var(yh, [0, 27])
< o¢. Hence the sum Zj>1 #{A;)x»,} 18 absolutely convergent in the space
BV ([0, 27]), and equals ©. Consequently, we can apply the limit theorem [or
spectral integrals [5, Proposition (2.10)] to see that as n — oo,

(5:33) [ S wlxp dB— [ $dB

[0,2x] =1 [0,27]

in the strong operator topology. Notice that for n € N,

H PILI 2! ey -

| <
M)
In view of the reduction in (5.32), it now suffices for (5.29) to obtain

(5.30) \|[O ;[r]F(t) 4B (1) < 0x |Fllmery

for any function F' having the form F = E;’_‘m_l 05X} where m € N,
{11y € C, and {y;}7%, C(0,2m).
Observe that

[ F@&)dE®) =Y o {E(y;) - E(y;)}.
i=1

(0,27

In particular, Theorem (1.1)(i) permits us to assume further, without loss
of generality, that each y; is not a dyadic point of (0,27). Accordingly, let
g > 0 be small enough so that the intervals [y; — &,y +£l, 1 £ 7 < m, are
disjoint, and so that for each j, [y; — &, y; +¢] is contained in the interior of
some corresponding dyadic interval of (0, 2).

Define fe € BV([0, 271]) by writing fe = 3} 04 Xy, e ,y;+¢]- 1 15 €asy to
see that || fellmer) = |1 F']lonir). Applying Corollary (5.9) and Theorem {4.5)
to fe (regarded as an element of BV(T)), we now obtain

(5.35) €51 < Cx [|F l|amemy-

Spectrel derompositions 47

Direct caleulations vasily show that
T
T, = D27 oy (Blyte)+B({y; +¢) 7 )} =2 oy { By —e)+ B((y—2) 7).
j=1
Substituting this in (5.35), and letting £ — 0%, we obtain {5.34). This gives
(5.29).

In order to complete the proof of (1.1)(i1), it remains only to show that
the mapping M(T) 2 ¢ - f[u,z 1 e dE(A) i multiplicative. Tt follows
from (5.30) Lthat
[e 9]

{ [ o) dE(A)}

Nl

[t wabw]
is a uniformly bounded sequence of operators which, as noted earlier, con-
verges in the strong operator topology to IiﬁU o] B dE(X). If, also, o €

M(T), then both ¢ and 4 belong to BV([t.n,tx]), and so
oo dBR) [ (e dE() = [ d(e™w(e™) dB().

[t o qdnv] [t matw) b tn]

The desired multiplicativity now follows by letting N - co, and so Theorem
(1.1)(i1) is demonstrated. w

The proot of Theorem (1.2)(if) can be accomplished stmilarly, by starting
from Clorollary (5.16) and Theorem (4.1), and so the main results are now
establishel.

(8.36) A CoOUNTREREXAMPLE. We give an example showing that the con-
clusions of Theorem (1.1) can fail to hold in the Hilbert space L#(N) for a
spectral family of projections which decomposes an invertible operator U
that s not power-hounded. By the construction of a suitable conditional
basis for L2(N) it was shown in [15] that thore is a sequence {F},}32,, of
projection operators defined on F2(N) such that:

(3) Ay Foyy = O Lo oo g
(ii) z:‘, F, converges to £ in the strong operator topology;
(1i1) | Z;’l Lol » o0 nd n 00,

We now dofine o hounded, strictly decroasing sequence {A,}22,, in R by

point £, of (0, 27). Por ¢ € (0, A1) let N be the smallest N € N such that
AN S, and pat B(E) = 5o o By, the series converging in the strong op-
erator topology by (3.36)(i1). Also define B({) = 0 for ¢t < 0, and E(¢) = I
for £ > Ar. It is casy o see that E() is a spectral family of projections in
LE(N) concentrated on [0, 0] = [0,7/4]. Now put U = f[gi%] et dE(t). As
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was shown in [5, (5.10)],
sup{|U™] : n € 2} = o0.

Nevertheless, it follows from general spectral-theoretic considerations (see
[5, Propositions {2.11) and {2.17)]) that since the existence part of the con-
clusion in Theorem A is satisfied here, so is the uniqueness part. Thus, in
the present context, all the hypotheses of Theorem (1.1) are fulfilled except
the power-boundedness of U, and we now proceed to show that the spectral
family E{.) just defined does not enjoy the properties described in either
(1.1)(i) or (1.1)(ii).

Suppose first that F(-) gave rise to a countably additive spectral measure
E(-) on Xg(T), as formulated in (1.1)(i). Then, upon writing o, = {e?
topol <t <it_,}forne N, we have

E(0n) = B(t—n) — E(t—n—1}) = B(\) — EQut1) = Fa.

Tt foilows from this equality and the strong countable additivity of £{:)
that for each sequence {e,}22, such that g, = &1 for all n € N, we must
have the strong convergence of the series Y ... ; €nFn, in contradiction to
(5.36)(iii).

In order to establish the failure of (1.1)(ii) in the present context, we first
observe directly from the definition of E(-) that if ¢ : T — C is a bounded
function such that fio , ) #(e™)dE(X) exists, then

[ oM dBEQ) = ole) Py,
[0,2m] =1

with series convergence in the strong operator topology. Consequently, if
o2 $(e**) dE(\) were to exist for every ¢ € MM(T), we would have the

strong convergence of Y .o &,F, for every sequence {en}5r, such that
£n = 41 for all n € N. As noted above, this is impossible.
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