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On unbounded hyponormal operators I1I
by
JoOTANAS (Kraldw)

Abstenet, The paper deals mostly with spectral properties of unbounded hyponormal
upevalors, Sone nontrivial examples of such operators are given,

L Introduction. In this work we continue our previous study of un-
hounded hyponormal operators, [1], [2]. We concentrate on some of their
hasic spectral properties, and on their polar factors. We also find when the
square of a hypouormal operator is the generator of a holomorphic semi-
group. The paper ends up with two examples of new classes of unbounded
hyponornial operators,

Let I he a complex Hilbert space and let 7' be a densely defined linear
operstor in H with damnasin 2T,

We say that 'I" is hyponormal if D(T) ¢ D(T*) and |T*f| < |TF|,
&€ D(T). We refer o [1] for basic facts concerning unbounded hyponor-
mal operators. Throughout the paper o(T), W(T) and R{)\,T) denote the
spectri, the numerical range and the resolvent of T, respectively. For a set
A < C its closure is denoted by ¢l A, A stands for {X: )\ e A}, and conv A
denotes the closed convex hull of A.

IT. A few spectral relations. Though some clementary facts about
wthounded hyponormal operators were proved in our earlier works [1], {2},
the following lemimas seem to be uselul, and were not stated there,

LiumaMA 2.1 Lel T b a closed hyponormal operator in H. Then W{(T) ¢
cony o (17,

Proof. There wee two possibilitios.

1) comv er(7") == €, Then the inclusion iy trivial.

2) conv (1) ¢ C. Since o'+ 1 is hyponormal for any o, g & C, we may
asstine without loss of generality that conve(T) ¢ Cr = {A: ReA = 0}. It
remaing to prove that W(T) ¢ C*.
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Suppose that 0 & o(T). Then for y € D(I), [ly]| = 1, we have y = 1"~ ‘e
for some z # 0. Hence

(Ty,y) = (2,7 2) = el (21, T 21),
where z; = z||z||~*. Since ] W(T' ™) = conv o (T71) and z ~+ 1 /2 maps C*
onto C*, we have (Ty,y) € CT.
1t 0 € ¢(T) and conv o(T) C C", then T+ &/ is invertible for any € > 0.
Therefore ((T'4-2Dy,y) € C* by the above argiment and we get the desired
inclusion by letting € — 0. =

As a consequence of Lemma 1 we have

LEMMA 2.2. If T is a closed hyponormal operator and cl W {T)Uel W (T%)
5 conver, then

cony o (T) = clW(T) Ul W({T™}.
Proof We may assume that conv(T) # C. By repeating the reasoning

given in the proof of Lemma, 1 we check that cl W (T} C conv o (T). On the
other hand, for any closed operator A,

o(A) CclW({A) U W(A*
(see [6]). 1t follows that
conv o(T) C A W{(T) Ul W(T™}
and this completes the proof. m

CoRrOLLARY 2.3. If T is o closed hyponormal operator and D(T) =
D(T*), then convo(T) = I W(T).

Proof. The equality D(T) = D{1™) implies that W(I™) = W(I).
Hence cl W{T) Ul W({T*) = cl W(T) is convex and the result follows from
Lemma 2. w

We conclude this section with a useful theorem concerning the problem
of computing o{T'). It is well known that for a sequence T, of bounded hy-
ponormal operators which is uniformly convergent to T one has the equality

(R) 0' = cl U m
1

n= TH==r

An extension of this result to the unbounded case has been given in [1]. The
theorem we are going to prove below gives another useful extension of (IR}
in the unbounded case. Before we state this extension let us introduce the
following notation.

For a sequence o of closed sets in C we define

limo, = {A € C: there exists a sequence X € g, such that A = liilcm et

Unbounded hyponormal operators 77

Recall thal a linear subspace 1) < D(T7) i3 a core for a closed operator
Tif Ty = T, the elosnre in the graph norm,

TrworREM 24, Let Ty be o sequence of closed hyponormal operators.
Suppose Hhat T s 4 closed hyponormal operator such that DTy ¢ D(Ty)
and DY ¢ DTE). Assume hal there exist sequences of positive numbers
hy Dty iy iy all conuerging to zero, and satisfying the inegualities

W) ([ )h < g [ 4 bRl R, B e D,

(b) f(r- YIS LB
where 1) amed 1% e e cores of T and T, veapectively, If T'~Ty considered
on DCTY ds cloged for & & kyy then

li;}m‘("l"}“) == o (1.

IProof. (i) We livsi prove the inclusion o(77) ¢ limyg, ¢(T}). Suppose that
0 & (1. Then there exists a doquence fﬂ € D%, | fall = 1, for which
lizxwy, (4% fodl == 0. Henco

dist {0, a(100) < || 1o Fanl

S = Tl 1T f|

": (L | bm” ’-[M‘fm “ "l" thyy, — 0
s e - o, This proves the inclusion,

(i) To prove the opposite inelusion suppose that 0 € o(T'). Then for any
Ao the open dise A0, 217131 and g such that 79 € D we have
1= Ty 4 MY g < T = T g |+ Wl
< eallT gl + dallgll + AT g

Since the set of all g such that T'g € D is dense in H it follows that
(71, = ATV« 1 for nosufliciently large and [A] < (2 T7H)~1
Theorem H.011 of |8] now implies that Al — T, is a bijection for A and n
as above, Therelore e(T5,) 1 KO, @171 = @, for n sufliciently large.
Thus O ¢ lim, o (4,). This complotes the proof, =

Reviark 2.0, Note thal for bonuded ‘U the operators T'-T), are always
elowed o 1I{T).

Remark 2.2 The equality ling, o{7,) = oI is stronger than the
equality (1), in ;x,vnur'nl.

II1. A class of Putnam, Following the work of Putnam [5] we now
consider a specinl elass of bypononnal operators, namely those hyponormal
operators 1" which can be written in the form

(1) T K4 1L,
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where K and I are selfadjoint and L is bounded. Note that D(T) = D(K)
and T* = K ~iL. By careful repetition of the reasoning given in [5] one can
prove the following

THEOREM 3.1. Let T' be a hyponormal operator which huas a Cariesion
decomposition (1). Assurne there is no nonzero f € D(T) such that [Tf| =
|T*fl|. Then

(1) K is absolutely continuous,
(1) o(K) = ,o(T), where IT, denoles the projection of € onlo the
real axis,
(i) #f o(K) # R then o(l) = cl{Ilye(T)), where I, is the projection
onto the imaginary axis, ond L is absolutely continuous,
(iv) if the planar measure m{o{T")) 4s finite then LD{K) C. IMK) and
the commutator KL — LK is bounded.

In Section IV we shall give some examples of kyponormal T" which have
a Cartesian decomposition of type (1).

IV. When does T2 generate a semigroup? In our earlier work [1]
we gave a sufficient condition for a hyponormal operator A to generate a
hyponormal semigroup. Since the square 4% is not hyponormal in general,
the following result seems to be interesting.

THEOREM 4.1. Let A be a closed hyponormal operator. Assume thal there
exists £ > (0 for which

g(A) C{w :n/2 Cargw < 3n/d—e}U{w: —3n/d+¢e L argw < —7/2}.
Then A? generates a holomorphic semigroup in the set
{v:largw| < g, 0 < p< 2},
Proof It is enough to check that
(%) IR(N, A% < A7,

for any A such that |arg A < /2 -6, 0 < § < 2. Write A = v? for some v
with larg v| < w/4 4 §/2. This choice of v implies that

dist(v, o(A)) > Rew 2 |v]cos(n/4 + §/2)
and

dist(v,0(—A)) > |v| sin(e - §/2).

icm

(Indosended hyponormal operctors 79
Henee

, " g g |
m&www-mwammww4Mmm+Rm~mﬂ

’| ||cl1sl oAy dist{v, o(—A))"1]

Lo oo . . AR -l
- ;zl:”lg' LN 4 | :“2’ ”l"‘ By & -~ "ﬁ)) ] - MiAl .

This ends the prool of (=) and compleles the proof, =

V. Spectral properlies of polar factors. Let 7" be a hyponormal
operator with pular decomposition

(2) T T

Below we shall discuss some spectral properties of the polar factors |77
and U7, In what follows we always assume that U is unitary. It is easy to
check that this is equivalent to 0 € «,(T%). Ag in the bounded case we have

PROPOSITION O I o(U7) o T (the wndt circle) and My = {z: |T|a =
Xt then UMy M.

Prool. Applying the Cayley transform (sce [9, p. 6]) the proof is reduced
o the followiug property of a hypouormal operator 8. If S = X +4iY, where
Xow= X7 i bounded and Y = ¥ 1 positive, and 3, = {h: Yh = ah}, then
8 M, € My, =

In order to siate the next resull we extend Lemma 2.1 of [9] to the
mthotunded cage. Leb z -0 g o4 0 be a complex number. Write T, = 1" — 21.

- Since [T 8 unitary a direct computation gives

ST = @I+ el [T ~ )5

A (1] = [T £,
where [ & DY Bul D{T[) = D(T) and D{T*T) is the core for T
henee (1) holes for [ e DT,

Lot ey, (1) (rewpoetively o (7)) stand for the approximate point spectrum
(respectively vientinl mpoectrim) of 7'

() (i

CoROLLARY 5.2, Let T be o elosed hyponormael operalor.

(i) U' 3 € (’f,,(’]) (y .f (}, fhf'n |2 |E‘ o W'|).
, then [u| € oo(|T)-

The next result i imﬁml ou the paper [d} of Putnam.

PROPOSITION 5.3, Assume that there is no f 5 0 for which |[Tf| =
7% £l Suppose that 0 & o(T) and there ewisls o wedge W = {z : a <
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arg z < b} which has an empty intersection with a(T). Then U and [T orc
absolutely continuous.

Proof. It is easy to check that 71 is purely hyponormal, i.e. without
normal part. Note that
T—i — U*'T*‘—i,
and o(T~ 1) N {w: —b < argw < —a} = . From Theorem 6 of [4] we oblain
absolute continuity of U* and [7%|~1. Since U|T| = [T™*|U, this completes
the proof. m

V1. Some new examples. As noticed in our earlier works [1], [2] the
question whether a given operator is hyponormal is not easy. Therefore the
results and examples we shall give below deserve to be stated. We hegin
with a general lemma.

LEMMA. 6.1. Suppose we are given hyponormal operators A and B in H.
Assume thai there ezists a dense subspace D C D{A) N D(B} such that
AD < D(B), BD ¢ D(A) and

ABz = BAz, zeD.
If |\ <1 and ||Bz|?~ || B*z|? < ||Az|?—||A"z|*, = € D, then the operator
A+ AB* defined on D is hyponorma,l in H.
Proof. Define Sz = (A+AB*)z, z € D. Direct computation shows that
iS]* = 1572l = | Ae|® — 4" — AP(|Bz|* ~ ||B*z])*)
z (1= WA(IBa|? - [B2*) 20, weD. m

ExAMPLE 6.2. The last lemma has the following application. Let T be
an operator satisfying the canonical commutation relation

[T, T)f = f,
for f in some dense linear subspace M such that M < D(T) n D{IT™),
TM C M and T*M < M. Suppose that T has a total set of quasianalytic
vectors. Then T must be subnormal (see [7]).
Let A = T**1 and B =T%, k € N. Since A and B are subnormal they

are both hyponormal. We claim that A and B satisfy the assumptions of
Lemma 6.1. In fact, we take D = M and applying Lemma of [7] we have

‘ k+1 s fer 1 gt
(@ T FE =D [k+1)... (k+2- s)]2w, feM.
a=0 e
It follows that
) IAFI1? ~ 1A% F12 = | BAN? ~ 1B*FI?,  feM.
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Indeed, using (o) and comparing the (s-++1)-term of the left hand side of (3)
to the s-Lerm of the right hand side of (8) we obtain

. . 2 s
[k 1) (b L s)] BT

. ) T*k"” 2
e | (R 1.)]"|—Lm-;i-ﬂ|~—, s=10,...,k

Therefore (A) hindds and § == A1 AB* i1 hyponormal,

FxamiLe 6.3, 1o a recent paper of Kato [3] a class of bounded hyponor-
wal operators has heen Tonnd, Nanely he congidered the following problem.
Lot £ - 1 l}f“, (2 - My be the canonicad pair of differentiation and multi-
plication by @ operators in LA, I f and g are real-valued functions such
that J', g ¢ LYY, then ihe problom s to find a sufficient condition on
[ and g which guarantees the positivity of the commutator ¢[f(F), g(@)]-
Since f and g are honnded the operator 7' = f(P} + ig{Q) is bounded and
i), g(Q)] 1s positive il and only if 7' is hyponormal.

Lot fGe) = tanh(aa), gle) = tanh(bz), where a > 0,b > 0 and ab = 7/2.
Take a Anite positive measure o on B and a o-finite positive measure v on R.
For each N 2 0 define a measire on B by

HN’(J’F]) B 1/(["“" N, N} " E)

Following Kato [3] we consider the lunctions

wes ¥y, UN B gRUN.

Note that w and ppy are hommded on R, Let Ty = w{P)+ vy (@). Applying
Theorem [ of [3] we know that Ty is hyponormal in L*(R).

Suppose, additionaily, that v is symmetric, e, »(E) = v(~E). Then for
any b ¢ C(B) the sequence vy (G)h 18 strongly convergent, Indeed, for
M < N wo have

Ion (@) o ()b
. 9 .
) ] ] ol - O dp(t) + J gl -~ t) dy (i) ih(z)!? dz.

[ - N M) [M,N]
Yince supp A v compaet nud gl - 8) o =1 ag t -~ +oo and gl ~ t) — 1
88 £ v ek, the last Integral is arbitvarily small for sufficiently large.
Hence T h i lso convergent and the limit Th = My e Tivh delines an
wnbotnded hypouonual operator in L2(R). Note, in passing, that T' has the
Cartesian decomposition 1 = K+ i, where K == u(F) s bounded and
L= L* i unbounded if p{R) = o0,
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On topologization of countably generated algebras
Ly

W, ZILAZKO (Warszawa)

Abstract. We prove that any real or cowmplex countably generated algebra has a
somplete Jocally convex topology making it a topological algebra. Assuming the continuum
hypothesis, 3t 38 (e hest. possible result oxprossed iu terms of the cardinality of a set of
generators, Thin rowalt is a corollary to a theorem stating that a free algebra provided with
the maxingl loeally convex topology s o topologieal algebra if and only if the number of
variablos i al okl conutahble, Ag o byproduet we obtain an example of a semitopological
{(now-topological) algebra with every commutative subalgebra topological.

A topological algebra is  real or complex algebra whose underlying vec-
tor space is a lopological (Hausdorfl) vector space and whose nmitiplication
is joiutly continnous. In the case when the multiplication is merely sepa-
rately continuous, we say that the algebra in question is semitopological. A
locally conves algebra in atopological algebra whose underlying vector space
is a locally convex space, lis topology can be given by means of a family
(|}l )eees ©f seminorms such that for each index ¢ there s a B € a so that

(1) eyl < Nellallylls
for all ax and g in the algebra in question. For more information on locally
convex algehras the reader is referred o [1] and [4].

The mamimod foeally conver topology on a vector space X is the topology
given hy means of all seminorms. 1t s clearly a Hausdorfl topology. This
topalogy will be denoted by 7585 Tt is known (see [3], Example on p. 56)
thal (X, 714 ) in s complete loeally convex space, In [5] we observed that any
read or complex algeben topologived with L s somitopological algebra.
On the obher hand, we proved in [6] that for any real or complex vector
spaee X Whe algebra L) of all its andomorphisms has a locally convex
topology naking it s locally convex algebra if and only if the dimeusion of
X is Hnite, A natural gquoestion arises: under what conditions a given algebra
s topologizable as a loeally convex algebra? In this paper we give an answer
1981 Mathematies Sulbject Clnssifications Primary 46HO5.
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