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On topologization of countably generated algebras
Ly

W, ZILAZKO (Warszawa)

Abstract. We prove that any real or cowmplex countably generated algebra has a
somplete Jocally convex topology making it a topological algebra. Assuming the continuum
hypothesis, 3t 38 (e hest. possible result oxprossed iu terms of the cardinality of a set of
generators, Thin rowalt is a corollary to a theorem stating that a free algebra provided with
the maxingl loeally convex topology s o topologieal algebra if and only if the number of
variablos i al okl conutahble, Ag o byproduet we obtain an example of a semitopological
{(now-topological) algebra with every commutative subalgebra topological.

A topological algebra is  real or complex algebra whose underlying vec-
tor space is a lopological (Hausdorfl) vector space and whose nmitiplication
is joiutly continnous. In the case when the multiplication is merely sepa-
rately continuous, we say that the algebra in question is semitopological. A
locally conves algebra in atopological algebra whose underlying vector space
is a locally convex space, lis topology can be given by means of a family
(|}l )eees ©f seminorms such that for each index ¢ there s a B € a so that

(1) eyl < Nellallylls
for all ax and g in the algebra in question. For more information on locally
convex algehras the reader is referred o [1] and [4].

The mamimod foeally conver topology on a vector space X is the topology
given hy means of all seminorms. 1t s clearly a Hausdorfl topology. This
topalogy will be denoted by 7585 Tt is known (see [3], Example on p. 56)
thal (X, 714 ) in s complete loeally convex space, In [5] we observed that any
read or complex algeben topologived with L s somitopological algebra.
On the obher hand, we proved in [6] that for any real or complex vector
spaee X Whe algebra L) of all its andomorphisms has a locally convex
topology naking it s locally convex algebra if and only if the dimeusion of
X is Hnite, A natural gquoestion arises: under what conditions a given algebra
s topologizable as a loeally convex algebra? In this paper we give an answer
1981 Mathematies Sulbject Clnssifications Primary 46HO5.
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to this question in terms of the cardinality of a set of generators of the
algebra in question {Theorem 2).

Let t = (£;)ier be a family of variables. The (real or complex) free wlgebra
in the variables t, denoted by F(t), is the algebra of all non-commuting
polynormials in the variables t with scalar coefficients; we assume that F(t)
has a unit element denoted by e. Put 702 = [ J22_, "', where IV = (0) and
0 is not an element of I. For any 1 in J(%), 1= (i1,... ), or i =0, we pul
t! =ty ... 1, or, respectively, t' = e. With this notation every element z
of F(t) can be written in the form

(2) T = Z Eiti,
igItes)

where the & are real or complex coefficients, and only a finite number of
the coefficients are different from zero. Writing ij = {(f1,..., 8k, J1s- -, J1) if
i=(i1,. .. igh = (J1,- -y 1), and 0 =0i=1i, fori,j & I%) e have

(3) Ty = Z (Zgim)tk,
=k

ks (o)
where y iz of the form (2) with coefficients 7; instead of .
We shall need the following

LEMMA. Assume that the index set T is non-void and ot most countable.
Let i — a; be o positive function defined on IV such thot ap = 1. Then
there is a positive function b on I\°) with by = 1 such that for all 1,§ in
I} we have

(4) aiy < biby.

Proof. Clearly I'™) is countable, so that we can arrange all its elements
in a sequence iy, iz,... with i; = 0. We can now rewrite (4) as
(5) axi; < by,
for i,5 = 1,2,... We prove (5) by induction. Put first by == | and suppose

that we have defined by, ,...,b;, so that (5) is satisfied for 4,7 < k. We now
put

pa1is Blodgu
biyoy = M8X 3 (Ui, iy )/ 2, A | —iiiy ikl
R+1 [ 1k-|—11k+11 ’15_’}51\3 bi,— 1 bi_,-

It is clear that with b;,,, so defined, (3) holds for all 4,5 < k- 1. The
conclusion follows.

We shall prove the following
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Tuwonrsm b Ll T obe oo non-void seb of indices and consider the real
24 & It Then (F(t),7L8) is a
(comnplete) locully connea lopolagical algebra if ond only if the set I is at
mast comundable,

Proof. First we show that for 7 at inost countable the multiplication in
(F(6), 7)) i jointly continious, We have to show that for a given seminorm
|| o £'(t) theve Is asensinorin || such that for all z and y in F(t),

(6) afllll.

Withotut loss of generality woe can assume

(2) wo have
ol < 37 e
i

Sotting @1 - max(1, [6']) we obtain a positive function on I () satisfying
g = 1. Bor o of the form (2), set

(7 el = 5 a8l
i

Thes
(8) =] & lala

for all & In #(L).
Let b be the fmetion of the Lemia satisfying (4), and let |z[, be the
seminorm of the form (7) with b instead of a. By (3), (4) and (8) we obtain

sy < }: (.Lkl E Elﬂj{ < Z Z bibj|&s] |

kel ik ko ik

Z A Z bl = lelelylo.

e ftmd Je it

Thus (6) Liokds with [|al] = [el, and (F(8), 7o) s & topological algebra.
Wo now show that (F(4),72¢) fails to be a topological algebra for I
wneonnlable, 10 ened(£) 3 ¢ (contimunn), we can assiine that the unit in-
tarval [0, 1] in & subset of £ and put fo = [0, 1), If card(I} < ¢ (which can
happen i wo rejeet the continun hiypothesis) we can assuroe [ C [0, 1] and
put fy = 1.l hoth eases [y 8 an wneountable subset of the unit interval.
Assine that our algebra i topologieal, Then for every seminorin |} there
i o seminorm ||l sueh that (6) holds. Since the products £y, 8,7 € Iy, are
linearly Independent, there eists a seminorm [z| on F{t) satislying

. 1
|l§,-f<~| i { l’f’ - ,ql“]‘

ayl <

e¢| < 1. Writing « in the form

if r = 8,
otherwise.
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Indeed, the elements ¢,t;, r,s € Iy, can be included in a Hamel basis (h,),
and for such a basis and any non-negative function & — @, the formula

! Z&aha = Z“M‘Edl

defines on F(t) a seminorm assuming on fuq the given non-negative values
@o. The formula (6) now implies

(9) sl < o(r)pls), T s nse D,
where ©(g) = |||, g € Io- But such a (finite) function ¢ cannot exist becanse
for a given natural n, (9) implies that (t) > n except for finitely many

points in Jo, and so w(t) = oo except for countably many points in fy. The
conclusion follows.

As a corollary we obtain the following result:

THEOREM 2. Let A be a countably or finitely generated real or compler
algebra. Then A can be topologized as a complete locally convex topological
algebra. More precisely, the algebra (A,7ES) is a topological algehra.

Proof. It is well known that any algebra is a quotient algebra of a free
algebra with the set of variables of the same cardinality as a set of generators
of the algebra in question. Thus A is the quotient of FI(t) by a two-sided
ideal J, and t is at most countable. Since in the topological vector space
(X,7LC), X any real or complex vector space, any linear subspace is closed,
the ideal J is closed and the algebra A with the quotient topology is a locally
convex topological algebra. It remains to be shown that the quotient topol-
ogy on A coincides with 7LC, . Denote elements of 4 (cosets) by [z], with
z € F(t). Take a Hamel basis ([h,]) in A. The elements (h,) arc lincarly
independent in F(t) so they can be included in a Hamel basis (I4) for F(t)
obtained by adding to {(h,) any Hamel basis for the ideal J. Let |[z]| be any
seminorm on A. For any element [z] of A we have [z] = Y, €u[h]o and

|[z]| < Z [Eali[hall = Za’war»' = |[x]]q.

[}

Thus |{z]] is dominated by the seminorm |[z]|, defined above. It is easy to
verify that the seminorm {[z]], is the quotient of the seminorm |z|y on I7(t)
given by means of the Hamel basis ({4) and the function g — bg, where

by = {aa iflfﬁzhm
A 0 otherwise.

This implies that the seminorm [[z]| is continuous on A provided with

the quotient topology. Since it was an arbitrary seminorm, the conclusion
follows. :
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Remark. Assuming the continnum hypothesis, Theorem 2, or rather its
first part offers the host possible result expressed in terms of the cardinality
of a st of generators, even il we relax the completeness requirement. In fact,
if X is & countable-dimensional vector space, then the algebra L(X) of all its
endomorphisms is non-topologizable as a locally convex topological algebra
(see [6]). Bul then L{X) has cardinality contionum and so it has continuum
many generators (ot less, by Theorem 2). Tiven if we relax the requirement
of local convexity the result does not improve: in 2], a commutative algebra
is construeted with the set ol generators of cardinality continuum, which is
not Lopelogizable as a topological algelra.

As anotlior corollary of Theoremn 1 we obtain the following result. It
answers Lhoe question whellier a semitopological algebra A with every com-
mbative subalgebra being a topological algebra in the topology inherited
from A, iy topological itsell.

TuroriM 3. There ewists o locelly convex semitopological (non-topolo-
gical) algebra with every commatative subalgebro topological.

Proal. Let A be the algebra F(t) with the set t of variables of car-
dinality continuum, provided with the topology 5C . By Theorem 1 it is
a complete Jocally conves semitopological algebra which is not topological.
Lot A he a commmutbabive subalgebra of A. I 2 € A and @ is not of the form
Ae, then A s contained o the commutant (z) = {y € A: zy = yz}. But 2
is of the form (2), involving a non-void finite set of variables, say ¢y, ..., L.
[t is cadgy to sec that any ¢ in ()’ depends only upon ¢1,...,%, and so it is
contained in Lhe subalgebra F{t,. .., 4} of F(t). As in the proof of Theo-
vem 2 we show that Uhe topology of F(t) restricted to F(t1,...,t) is 1hS,.

max*
By Theorem 1 the algebra F(¢y, ..., ), and so A, is a topological algebra.
The conelusion follows,

Acknowledgiments. In the fiest draft of the paper we proved Theorem 1
under the assumption of the contintum hypothesis. The author is greatly
indebted to the referee for ealling his attention to the fact that the same
prool works ax well without this assumption,
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Precompactness in the uniform ergodic theory

by

Yo. LYUBICH (Haifa) aed J. ZEMANEK (Warszawa)

Abairact, We characlerize e TBavach space operators T whose arithmetic means
PR C R AN TR B e form a precompact sel in the operator norm topology. This
poeurs i and only i the sequence {n"'l’f‘”’},,,m I8 precompact and the point 1 is at most
a simple pole of the resolvent of 7' Tquivalent geometric conditions are also obfained.

Let T be a bounded linear operator on a complex Banach space X.
The uniform ergodic theory deals with the asymptotic behaviour of the
arithinetic nieaus
I+ T 4, . 4T

1
in the operator norm (uniforin) topology, as n € N = {1,2,3,...} tends to
infinity. The basic result is due to Dunford [2, Theorem 3.16):

M (T ==

TnroreM 1, The sequence {M, (1)} uniformly converges if and only f

12 Hanon Y7 ]| = 0, and
20 the point 1 is at most o simple pole of the resolvent Ry (T)= (I'—AI)~

Clondition 2% means that either 1 does not belong to the spectrum o(T),
or 1is really asimple pole of 125 (7). In the latter case 1 is an isolated point
of e (1}, and the corresponding Riesz projection

| .
P A
(1) P 5 f DAl dA

has the image Do P2 = {e e X @ Po = w}. Morcover, X = I P @ Ker I,
and Ker /7 s o 7 -invariant elosed subspaee such that 1 ¢ o (T Ker ).

A slronger sy plotic property is the convergence of the powers T, For
this & spectral eriterion was established by Koliha [8], [9] and 1i [10]:
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