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Precompactness in the uniform ergodic theory

by

Yo. LYUBICH (Haifa) aed J. ZEMANEK (Warszawa)

Abairact, We characlerize e TBavach space operators T whose arithmetic means
PR C R AN TR B e form a precompact sel in the operator norm topology. This
poeurs i and only i the sequence {n"'l’f‘”’},,,m I8 precompact and the point 1 is at most
a simple pole of the resolvent of 7' Tquivalent geometric conditions are also obfained.

Let T be a bounded linear operator on a complex Banach space X.
The uniform ergodic theory deals with the asymptotic behaviour of the
arithinetic nieaus
I+ T 4, . 4T

1
in the operator norm (uniforin) topology, as n € N = {1,2,3,...} tends to
infinity. The basic result is due to Dunford [2, Theorem 3.16):

M (T ==

TnroreM 1, The sequence {M, (1)} uniformly converges if and only f

12 Hanon Y7 ]| = 0, and
20 the point 1 is at most o simple pole of the resolvent Ry (T)= (I'—AI)~

Clondition 2% means that either 1 does not belong to the spectrum o(T),
or 1is really asimple pole of 125 (7). In the latter case 1 is an isolated point
of e (1}, and the corresponding Riesz projection

| .
P A
(1) P 5 f DAl dA

has the image Do P2 = {e e X @ Po = w}. Morcover, X = I P @ Ker I,
and Ker /7 s o 7 -invariant elosed subspaee such that 1 ¢ o (T Ker ).

A slronger sy plotic property is the convergence of the powers T, For
this & spectral eriterion was established by Koliha [8], [9] and 1i [10]:

1901 Mathematics Subjeet Classifieation: 47TA10, 4TA35, 47D03,
The paper was initisted during the semester Linoar Operstors held at the Stefan
Banach ternstionsl Mathematival Centor in Warsaw, February -May 1994,
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TUEOREM 2. The sequence {T™} uniformly converges if and only if

1° sup [|[T™]| < oo, and
2° the point 1 is at most a simple pole of the resolvent Rx(T'), and there
are no other points A € o(T) with |A| = 1.

Note that condition 1° always implies |o(T)| < 1; in fact, it can be
replaced by |(T)| < 1 in Theorem 2.

Condition 2° implies that the peripheral spectrum {A € o(T) + |A| = 1}
is either {1} or empty.

A wider problem concerns the precompactness of the sequence {177}
instead of the convergence. This situation was characterized by Kaushoelk
and West [6, Theorem 3], [7, Theorem 1.2.3], and independently hy Swiech
[14, Theorem 2):

THEOREM 3. The sequence {T™} is uniformly precompuct if and only if

1° sup ||[T"| < oo, and

2° every point A € o(T) with |\ = 1 is a simple pole of the resolvent
Ry(T).

In this case the peripheral spectrum is finite (possibly empty}, and all its
points are eigenvalues. Also here condition 1° can be replaced by |#(T)] < 1.

A natural question arises: what is a similar criterion for {A,, (1)} to be
uniformly precompact? In this paper we answer this question:

THECREM 4. The sequence {M,(T)} is wniformily precompact if and
only if

1° the sequence {n~YI™} is uniformly precompact, and

2° the point 1 is at most  simple pole of the resolvent Ry (T").

The case where T is a. Riesz operator was considered in [16]. The question
also appeared in the Banach algebra setting [13]; we consider this situation
at the end of the paper.

Note that the sufficiency of conditions 1° and 2° is very easy in each
of these four theorems. For instance, in Theorem 4 one can use the Riesz
projection P {see (1)). Then M, (T)/Im P is the identity, so we can assume
that 1 € o(7T7). But then

. .
M (T) = (T — 1‘)*1%21{
is precompact by condition 1°.

‘The necessity of condition 1° in Theorem 4 follows immediately from the
formula

I™ n+1

(2) n 7 ﬂ’fmkl(T)"Mn(T)a

which also yields the necessity of 1° in Theorem 1.
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Theoremn 4 is the most general of all the above theorems as regards the
neceasity of the resolvent conditions 2°. This is obvious for Theorem 1. As
for Theorem 3, we note that if {T7} is precompact, then {M, (T}, a subset
of the convex hull of {T"},»0, is also precompact by Mazur’s theorem.
Replacing 7" by A™'T for A € o(T), |A| = 1, and applying Theorem 4 we
gol the necessity of 2° in Theorem 3. Now we can pass to Theorem 2 by
noting that if 7w = Az with [X| =1, A £ 1, 2 # 0, then Tz = A"z is not
couvergent.

We have the chain of implications
{7} convergent =2 {T™} precompact =

= { M, (1)} couvergent = {M,,(T)} precompact,
where the seeond implication is a consequence of Theorems 3 and 1.

Lot us give some examples to show that all these properties are distinct
(that is, none of the above implications can be reversed).

ExampLe 1. Let T'= ~T. Then {T™} is precompact, but not convergent.

IExamPLE 2. Let T = ~(I + V)™, where V' is the Volterra operator on
the Hilbert space X = Ly[0, 1], defined by

WA = [ fis)ds.
0

Then o{T) = {~1}, and |T™|| = 1 for n € N {see [5, Problems 146 and 150]).
Thus, {M,(T)} converges by Theorem 1, but {I™} is not precompact by
Theorem 3, because the point —1 is not a simple pole of the resolvent of T
(in fact, it is an essential singularity). Note that such an example cannot be
found within the Riess operators.

ro (M1
TN0 A
on X = C?, with A % 1, |A| == 1. Then '

- At n An--l
T = 0 A\ .

Thus, {M, (T} doos nob converge, because n~ T does not tend to zero.
But {M,, (1)} is precompact. '

ExaMpLE 3. Let

Passing to the proof of necessity of condition 27 in Theorem 4 we start
with some lemmas, which seem to be of independent interest.

LeMMA 1. Let {M.(T)} be uniformly precompact. Then every limit point
L of this sequence satisfies the equation
(3) C(T- DR =0.
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Proof. Let N be a subsequence of N such that the limits
L=limMn(T) and §=limn™‘T"
N N

exist as n — oo, n € N. Since
i) 1
A b w.T '“"—Ir
MoaT) = 2o TV + 5y
we have

lij{rn Mpy:(T) =TL.
Now, it follows from (2} that

(4) (T-DL=5
On the other hand,
(5) 5% = IiJ]\.}nn“2T2” =0,

because {n~1T2"} is bounded a fortiori. Thus, (3) follows from (4) and (5),
since I commutes with T.

COROLLARY 1. Suppose that 1 is not an eigenvalue of T. If {M,,(T)} 4s
uniformly precompact, then every limit point L of this sequence has L2 = ().

Remark 1. Under the same conditions one can show that Lify = 0
for any pair of limit points Ly, Lo,

Using Corollary 1 we prove

LEMMA 2. Let {M, (1)} be uniformiy precompact. If 1 is not an eigen-
value of T, then 1 & o(T).

Proof. Since [[T"| = O(n) as n — o0, we have lo(T)| < 1. Conse-
quently, if 1 € o(7T), then 1 belongs to the approximate spectrum of 7'
This allows us to find a sequence {z,,} of vectors such that ||z, [ = 1 and
T2, — &n|| < 1/n Then for k € N we have

k-1
1 in . Chlk+1)
ko E y A SN
|T%2n — 2p]| < o) g 177 < opd

since ||77] < Cj with some constant C' > 1, Therefore,

C
M (T - Zn|l £ =,
H n( )mn i “ =5,

and we see that lim || M,, (T, — z,|| = 0.

Let N be a subsequence of N such that limy M, (T) = L. Since
we have '

|='1'5'rr. l =1,

L0 = @nl| < [|Z — Mo (D)} + [ Ma(T),, — zall,
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and hence
(6) lim || Lz, — || = 0.
N
Then also
(7) lij{fn HLzmn — Lyl =0.

Since L? = 0 by Corollary 1, we conclude from (6) and (7) that limy |jzx||
= {}, conbrary to [lo,| = 1. Thus, 1 € o(T). m

Proof of Theorem 4. As we have already seen, it remaing to show
that the wniform precompactness of {M,, (1)} mplies condition 2°. To this
end, consider the ergodic subspace

B = {r e X limM,(T) exists},

which s obviously closed and T-invariant. The uniform precompactness im-
plios that { M, (| E)} couverges uniformly to the operator P on E defined by

Py = lim M,,(Th2, =€kE.

By Theorem 1, the point 1 is at most a simple pole of Ry(7T|E). (This
conclusion can also be derived in the present context: Notice that P2 = P,
awd (7' T PP = 0. Also Ker P is T-invariant, and 1 is not an eigenvalue of
TKer P2, henee | ¢ o(T|Ker P) by Lemma 2; consequently, (I'—J) Ker P =
ISer 12, Thus, 1 is at most a simple pole of R, (T'|E) by [1, Lemma 3.4.2] or
(15, p. 3301 _

Naoxt, we pass to.the factor space X = X /E and to the corresponding
factor operator T'. Obviously, {M,(T)} is uniformly precompact. We shall
show that 1 is not an cigenvalue of 7. Then 1 & o(T) by Lemma 2. Now it
it casy to verify that L is at most a simple pole of 12 (7).

So suppose that TF = 7 for the class & € X of a vector z € X. Then
T — ¢ & E, which means that lim M, (T)(T - I)z exists. This limit is in
fact the vector v = limn~ 7"z, whence T%z = kv + o(k) as k — oo, which
yields

n—1
M, (e = g +o(n) asn— oo.
Since the left-hand side of the preceding formula is bounded, it follows that
v e {), which in turn implies that @ € I by a known description 0£ E (soe
(3, Theorem VIIT5.1]). Thus, F = 0, and 1 is not an eigenvalue of 7. m
OROLLARY 2. If { My (1)} s uniformly precompact and lmn~{|T™||
= (), them {My (1)} is uniformly convergent.
CoroLLARrY 3. Let {M,(T)} be uniformly precompact, and let L be a

limit point of this sequence. Then L = P+Q), where P is the Riesz projection
(1), and Q* = 0, PQ = QP = 0. In particular, L? =P, and o(%) C {0,1}.
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Proof. We have L = LP + I{I - P). Recall that M, (7)/Im P is the
identity, hence so is L[km P. Therefore, LP = P. The operator @ = L(I—P)
has the properties required: it satisfies ()2 = 0 by Corollary 1, and PQ =0
gince P commutes with L; QP = 0 trivially. u

Remark 2. It follows from Corollary 3 and Remark 1 that LiLa = P
for any pair of limit points Ly, Lo of the uniformly precompact sequence
{Mn(T)}

The results of Dunford [2] were complemented in [11] and [12] by clar-
ifying the geometrical meaning of condition 2° in Theorem 1: this spectral
condition can be replaced by the closedness of Im((T — I}™) for some (in
fact, any) m > 1 (the case m = 2 being already obtained by Dunford). Now
we can give the corresponding counterpart of Theoremn 4.

Note that

(8) sup || M (T)[| < o0

implies that

(9) Im(T —I)NKer(T - I) =0.

Indeed, let w be in this intersection. Then u = Tw — v for some v € X, and
Ty = u. Consequently, T"u = v -+ nu, hence

-1
M, (v =v+ I

%,

so that uw = 0 by (8). .
Notice also that {9) does not follow from the precompactness of {n 17"}
see the matrix T’ in Example 3, this time with A = 1.

THEOREM 5. Let {n~2T™} be uniformly precompact and suppose that (9)
holds. Then the following conditions are equivalent:

10 {Mnp (T} s uniformly precompact;
2°Tm(T'— I+ Ker(T - 1) = X

3° Im(T" — I} + Ker(T' — I is closed;

4° Im(T ~ I} is closed;

59 Im((T" -~ I)™) is closed for some m > 1.

Proof The implication 1°=2° is a consequence of Theorem 4 and the
Riesz decompeosition corresponding to the point 1 (see (1)).

The implication 2°=»3 is trivial.

Condition 3°, with the aid of (9), implies 4° in view of the lollowing
general fact: '

If B is a bounded linear operator on X and X = Im B + ¥, where ¥
is a closed subspace such that Im B NY = 0, then Im B is closed; see [L,
Lemma 3.2.4] or [15, Theorem IV.5.10].
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The implication 49=£5° 9 trivial,

‘T complete the proof, we shall show that 59=>49=1°. The first of these
implications is a backward induction as in [12]: assuming that Im{(7— I)™)
is closed for some m > 1, one can show, by a standard argument, that
L (7" 1)1 - Kex(T 1) is closed, and then apply (9) together with the
E(-uu,‘.r[etl fact cited above to conclude that Tm((7 — 1 )™ 1Y is closed. Thus,
B4,

Notice that the a priori asswmption of the uniform precompactness of
{n" 1"} has not yet been used. T will be essential in the final step 4%=>1°,
which is similar to the corresponding step in [11]. Having Im(7" I') closed,
bhere 38 o constant & > 0 sueh that for every iy € Im(T" —~ I) the equation
y == (1= Ia has a solution ®(y) with [|l2(y)] < K|lyl]. Then

TL ]
My (T)y — ?f_“,l,(y) _ =)l < Kyl
n, ) n

‘Take any subsequence N of N, One can assume that {n"'T"} e uni-
[ormly converges, Given ¢ > 0, we have lm—tT™ ~ n~IT < & for all
m, 1 € N suficlently large. Then

[ (M (T7) ~ Mu(T)y|l < ff“y”(?n"] +nt 4e)

for these i, n, and all y € Im(T — I). Hence {M,{T)}nen is convergent on
(7'~ 7). We see that {M,, (1)} is uniformly precompact on Im(T' -1 It
follows, hy Theorem 4, that 1 is at most a simple pole for TIm(T ~TI). Then
the corvesponding Riesz projection together with {9) yield that Im(T~I) =
(7"~ 1)%). Bince (9) also gives Ker(T'— 1) = Ker((T — I)?), it follows that
L is al most a simple pole of the resolvent of 7 on X by [1, Lamma 3.4.2]
or [15, 1 3307, Thus, 1% holds by Theorem 4. w

Remark 3. We have seen that Im((T" — I)™) does not depend on m
provided that {M, (T)} is uniformly precompact. Also [12, Théoreme 1] is
a consequence of Theorern 5 and Corollary 2.

Remarlk 4. Concerning the Anal argument in the proof of Theorem 5
let us note that the formula

(A= D = (T AD(BA(T (T~ DY(T = I) = I)
s (B ({1~ D)(T ~ ) ~ (I = AI)
hnplies that 1 s automatically a pole of order at most 2 for Ry (1), if
Ep (P (T 1)) had a simple pole at 1. Example 3 with A = 1 shows that
order 2 may ocenr in general, This cannot bappen, however, if condition (9)
is watisfied.

As another application of Theorem 4 we get immediately the following
improvement of conditions 2° and 3 in {16, Theorem 6], a result related to
the classical theorem of Gelfand [4].



96 Yu. Lyubich and J. Zemének

COROLLARY 4. If {Mn (T} is uniformly precompact and o(17) = {1},
then T' = I.

EXAMPLE 4. The operator T' = (I+V)™?, where V is the Volterra opera-
tor from Example 2, shows that, in Corollary 4, the uniform precompactness
cannot be replaced by just boundedness; it can, however, be replaced by the
boundedness of both {M,(T)} and {M,(T~1)} (see [12, Théoréme 2] or [16,
Theorem 6]).

In conclusion let us remark that the above results can be extended to

l+a+...+a*?
Mo(a) = +a+ g + :
where a is an element of a unital Banach algebra A. It is enough to embed
A isometrically into L{A), the Banach algebra of bounded linear opcrators
on A, by the left regular representation Tz = ax, + € A. Moreover, sonie
additional information can be obtained knowing the algebraic surrounding

of the element in question.

THEOREM 6. Let A be a unital Banach algebro without non~-zero nilpolent
elements. If for some a € A the sequence {M,,(a)} is precompact, then it is
convergent.

Proof. As we know from (5), all limit points of the sequence {n~'a"}
are nilpotent. Thus, Emn~ta™ = 0. [t remains to apply Corollary 2. w

Remark 5. Theorem 6 says, in other words, that the unital Banach al-
gebra generated by an element a such that {M,(a)} is precompact, but not
convergent, must contain a non-zero nilpotent. See Example 3 and Corol-
lary 3.

Remark 6. If a unital Banach algebra A does contain a non-zero nilpo-
tent element 2, then there exists an a € A such that the sequence {M, ()}
is precompact, but not convergent. Indeed, one can assume that 22 = 0 and
take o = A+ 2 with |A| =1, A s 1.
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