

88

(3250)

- [5] W. Żelazko, On certain open problems in topological algebras, Rend. Sem. Mat. Fis. Milano 59 (1989) (1992), 49-58.
- —, Example of an algebra which is non-topologizable as a locally convex algebra, Proc. Amer. Math. Soc. 110 (1990), 947-949.

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
P.O. BOX 137
00-950 WARSZAWA, POLAND
E-mail: ZELAZKO@IMPAN.IMPAN.GOV.PL

Received March 23, 1994 Revised version April 27, 1994 STUDIA MATHEMATICA 112 (1) (1994)

Precompactness in the uniform ergodic theory

by

Yu. LYUBICH (Haifa) and J. ZEMÁNEK (Warszawa)

Abstract. We characterize the Banach space operators T whose arithmetic means $\{n^{-1}(I+T+\ldots+T^{m-1})\}_{n\geq 1}$ form a precompact set in the operator norm topology. This occurs if and only if the sequence $\{n^{-1}T^n\}_{n\geq 1}$ is precompact and the point 1 is at most a simple pole of the resolvent of T. Equivalent geometric conditions are also obtained.

Let T be a bounded linear operator on a complex Banach space X. The uniform ergodic theory deals with the asymptotic behaviour of the arithmetic means

$$M_n(T) = \frac{I + T + \ldots + T^{n-1}}{n}$$

in the operator norm (uniform) topology, as $n \in \mathbb{N} = \{1, 2, 3, \ldots\}$ tends to infinity. The basic result is due to Dunford [2, Theorem 3.16]:

THEOREM 1. The sequence $\{M_n(T)\}$ uniformly converges if and only if

 $||\mathbf{1}^{\alpha}|| \lim n^{-1} ||T^n|| = 0, \text{ and }$

 2^{α} the point 1 is at most a simple pole of the resolvent $R_{\lambda}(T) = (T - \lambda I)^{-1}$.

Condition 2° means that either 1 does not belong to the spectrum $\sigma(T)$, or 1 is really a simple pole of $R_{\lambda}(T)$. In the latter case 1 is an isolated point of $\sigma(T)$, and the corresponding Riesz projection

(1)
$$P = -\frac{1}{2\pi i} \int R_{\lambda}(T) d\lambda$$

has the image Im $P = \{x \in X : Tx = x\}$. Moreover, $X = \text{Im } P \oplus \text{Ker } P$, and Ker P is a T-invariant closed subspace such that $1 \notin \sigma(T|\text{Ker } P)$.

A stronger asymptotic property is the convergence of the powers T^n . For this a spectral criterion was established by Koliha [8], [9] and Li [10]:

¹⁹⁹¹ Mathematics Subject Classification: 47A10, 47A35, 47D03.

The paper was initiated during the semester Linear Operators held at the Stefan Banach International Mathematical Center in Warsaw, February-May 1994.

THEOREM 2. The sequence $\{T^n\}$ uniformly converges if and only if

 $1^{\circ} \sup ||T^n|| < \infty$, and

2° the point 1 is at most a simple pole of the resolvent $R_{\lambda}(T)$, and there are no other points $\lambda \in \sigma(T)$ with $|\lambda| = 1$.

Note that condition 1° always implies $|\sigma(T)| \leq 1$; in fact, it can be replaced by $|\sigma(T)| \leq 1$ in Theorem 2.

Condition 2° implies that the peripheral spectrum $\{\lambda \in \sigma(T) : |\lambda| = 1\}$ is either $\{1\}$ or empty.

A wider problem concerns the precompactness of the sequence $\{T^n\}$, instead of the convergence. This situation was characterized by Kaashoek and West [6, Theorem 3], [7, Theorem I.2.3], and independently by Święch [14, Theorem 2]:

Theorem 3. The sequence $\{T^n\}$ is uniformly precompact if and only if

 $1^{\circ} \sup ||T^n|| < \infty$, and

2° every point $\lambda \in \sigma(T)$ with $|\lambda| = 1$ is a simple pole of the resolvent $R_{\lambda}(T)$.

In this case the peripheral spectrum is finite (possibly empty), and all its points are eigenvalues. Also here condition 1° can be replaced by $|\sigma(T)| \leq 1$.

A natural question arises: what is a similar criterion for $\{M_n(T)\}$ to be uniformly precompact? In this paper we answer this question:

THEOREM 4. The sequence $\{M_n(T)\}$ is uniformly precompact if and only if

1° the sequence $\{n^{-1}T^n\}$ is uniformly precompact, and

 2° the point 1 is at most a simple pole of the resolvent $R_{\lambda}(T)$.

The case where T is a Riesz operator was considered in [16]. The question also appeared in the Banach algebra setting [13]; we consider this situation at the end of the paper.

Note that the *sufficiency* of conditions 1° and 2° is very easy in each of these four theorems. For instance, in Theorem 4 one can use the Riesz projection P (see (1)). Then $M_n(T)|\text{Im }P$ is the identity, so we can assume that $1 \notin \sigma(T)$. But then

$$M_n(T) = (T - I)^{-1} \frac{T^n - I}{n}$$

is precompact by condition 1°.

The necessity of condition 1° in Theorem 4 follows immediately from the formula

(2)
$$\frac{T^n}{n} = \frac{n+1}{n} M_{n+1}(T) - M_n(T),$$

which also yields the necessity of 1° in Theorem 1.

Theorem 4 is the most general of all the above theorems as regards the necessity of the resolvent conditions 2^o . This is obvious for Theorem 1. As for Theorem 3, we note that if $\{T^n\}$ is precompact, then $\{M_n(T)\}$, a subset of the convex hull of $\{T^n\}_{n\geq 0}$, is also precompact by Mazur's theorem. Replacing T by $\lambda^{-1}T$ for $\lambda\in\sigma(T)$, $|\lambda|=1$, and applying Theorem 4 we get the necessity of 2^o in Theorem 3. Now we can pass to Theorem 2 by noting that if $Tx=\lambda x$ with $|\lambda|=1$, $\lambda\neq 1$, $x\neq 0$, then $T^nx=\lambda^n x$ is not convergent.

We have the chain of implications

 $\{T^n\}$ convergent $\Rightarrow \{T^n\}$ precompact \Rightarrow

$$\Rightarrow \{M_n(T)\}\ \text{convergent} \Rightarrow \{M_n(T)\}\ \text{precompact},$$

where the second implication is a consequence of Theorems 3 and 1.

Let us give some examples to show that all these properties are distinct (that is, none of the above implications can be reversed).

EXAMPLE 1. Let T = -I. Then $\{T^n\}$ is precompact, but not convergent.

EXAMPLE 2. Let $T = -(I + V)^{-1}$, where V is the Volterra operator on the Hilbert space $X = L_2[0, 1]$, defined by

$$(Vf)(t) = \int_{0}^{t} f(s) ds.$$

Then $\sigma(T) = \{-1\}$, and $||T^n|| = 1$ for $n \in \mathbb{N}$ (see [5, Problems 146 and 150]). Thus, $\{M_n(T)\}$ converges by Theorem 1, but $\{T^n\}$ is not precompact by Theorem 3, because the point -1 is not a simple pole of the resolvent of T (in fact, it is an essential singularity). Note that such an example cannot be found within the Riesz operators.

EXAMPLE 3. Let

$$T = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

on $X = \mathbb{C}^2$, with $\lambda \neq 1$, $|\lambda| = 1$. Then

$$T^n = \begin{pmatrix} \lambda^n & n\lambda^{n-1} \\ 0 & \lambda^n \end{pmatrix}.$$

Thus, $\{M_n(T)\}$ does not converge, because $n^{-1}T^n$ does not tend to zero. But $\{M_n(T)\}$ is precompact.

Passing to the proof of necessity of condition 2° in Theorem 4 we start with some lemmas, which seem to be of independent interest.

LEMMA 1. Let $\{M_n(T)\}$ be uniformly precompact. Then every limit point L of this sequence satisfies the equation

$$(3) (T-I)^2 L^2 = 0.$$

Precompactness in the uniform ergodic theory

Proof. Let N be a subsequence of \mathbb{N} such that the limits

$$L = \lim_{N} M_n(T)$$
 and $S = \lim_{N} n^{-1}T^n$

exist as $n \to \infty$, $n \in N$. Since

$$M_{n+1}(T) = \frac{n}{n+1}TM_n(T) + \frac{1}{n+1}I,$$

we have

$$\lim_{N} M_{n+1}(T) = TL.$$

Now, it follows from (2) that

$$(4) (T-I)L = S.$$

On the other hand,

(5)
$$S^2 = \lim_{N} n^{-2} T^{2n} = 0,$$

because $\{n^{-1}T^{2n}\}$ is bounded a fortiori. Thus, (3) follows from (4) and (5), since L commutes with T.

COROLLARY 1. Suppose that 1 is not an eigenvalue of T. If $\{M_n(T)\}$ is uniformly precompact, then every limit point L of this sequence has $L^2 = 0$.

Remark 1. Under the same conditions one can show that $L_1L_2=0$ for any pair of limit points L_1 , L_2 .

Using Corollary 1 we prove

LEMMA 2. Let $\{M_n(T)\}$ be uniformly precompact. If 1 is not an eigenvalue of T, then $1 \notin \sigma(T)$.

Proof. Since $||T^n|| = O(n)$ as $n \to \infty$, we have $|\sigma(T)| \le 1$. Consequently, if $1 \in \sigma(T)$, then 1 belongs to the approximate spectrum of T. This allows us to find a sequence $\{x_n\}$ of vectors such that $||x_n|| = 1$ and $||Tx_n - x_n|| < 1/n^3$. Then for $k \in \mathbb{N}$ we have

$$||T^k x_n - x_n|| < \frac{1}{n^3} \sum_{j=0}^{k-1} ||T^j|| \le \frac{Ck(k+1)}{2n^3},$$

since $||T^j|| \leq Cj$ with some constant $C \geq 1$. Therefore,

$$||M_n(T)x_n - x_n|| \le \frac{C}{2n},$$

and we see that $\lim ||M_n(T)x_n - x_n|| = 0$.

Let N be a subsequence of N such that $\lim_N M_n(T) = L$. Since $||x_n|| = 1$, we have

$$||Lx_n - x_n|| \le ||L - M_n(T)|| + ||M_n(T)x_n - x_n||,$$

and hence

(6)
$$\lim_{N} ||Lx_n - x_n|| = 0.$$

Then also

(7)
$$\lim_{N} \|L^{2}x_{n} - Lx_{n}\| = 0.$$

Since $L^2 = 0$ by Corollary 1, we conclude from (6) and (7) that $\lim_N ||x_n|| = 0$, contrary to $||x_n|| = 1$. Thus, $1 \notin \sigma(T)$.

Proof of Theorem 4. As we have already seen, it remains to show that the uniform precompactness of $\{M_n(T)\}$ implies condition 2°. To this end, consider the ergodic subspace

$$E = \{x \in X : \lim M_n(T)x \text{ exists}\},\$$

which is obviously closed and T-invariant. The uniform precompactness implies that $\{M_n(T|E)\}$ converges uniformly to the operator P on E defined by

$$Px = \lim M_n(T)x, \quad x \in E.$$

By Theorem 1, the point 1 is at most a simple pole of $R_{\lambda}(T|E)$. (This conclusion can also be derived in the present context: Notice that $P^2 = P$, and (T-I) Im P = 0. Also Ker P is T-invariant, and 1 is not an eigenvalue of T|Ker P, hence $1 \notin \sigma(T|\text{Ker }P)$ by Lemma 2; consequently, (T-I) Ker P = Ker P. Thus, 1 is at most a simple pole of $R_{\lambda}(T|E)$ by [1, Lemma 3.4.2] or [15, p. 330].)

Next, we pass to the factor space $\widetilde{X} = X/E$ and to the corresponding factor operator \widetilde{T} . Obviously, $\{M_n(\widetilde{T})\}$ is uniformly precompact. We shall show that 1 is not an eigenvalue of \widetilde{T} . Then $1 \not\in \sigma(\widetilde{T})$ by Lemma 2. Now it is easy to verify that 1 is at most a simple pole of $R_{\lambda}(T)$.

So suppose that $\widetilde{T}\widetilde{x} = \widetilde{x}$ for the class $\widetilde{x} \in \widetilde{X}$ of a vector $x \in X$. Then $Tx - x \in E$, which means that $\lim M_n(T)(T - I)x$ exists. This limit is in fact the vector $v = \lim n^{-1}T^nx$, whence $T^kx = kv + o(k)$ as $k \to \infty$, which yields

$$M_n(T)x = \frac{n-1}{2}v + o(n)$$
 as $n \to \infty$.

Since the left-hand side of the preceding formula is bounded, it follows that v=0, which in turn implies that $x\in E$ by a known description of E (see [3, Theorem VIII.5.1]). Thus, $\widetilde{x}=0$, and 1 is not an eigenvalue of \widetilde{T} .

COROLLARY 2. If $\{M_n(T)\}$ is uniformly precompact and $\lim n^{-1}||T^n|| = 0$, then $\{M_n(T)\}$ is uniformly convergent.

COROLLARY 3. Let $\{M_n(T)\}$ be uniformly precompact, and let L be a limit point of this sequence. Then L = P + Q, where P is the Riesz projection (1), and $Q^2 = 0$, PQ = QP = 0. In particular, $L^2 = P$, and $\sigma(L) \subset \{0, 1\}$.

Proof. We have L=LP+L(I-P). Recall that $M_n(T)|\text{Im }P$ is the identity, hence so is L|Im P. Therefore, LP=P. The operator Q=L(I-P) has the properties required: it satisfies $Q^2=0$ by Corollary 1, and PQ=0 since P commutes with L; QP=0 trivially.

Remark 2. It follows from Corollary 3 and Remark 1 that $L_1L_2 = P$ for any pair of limit points L_1 , L_2 of the uniformly precompact sequence $\{M_n(T)\}$.

The results of Dunford [2] were complemented in [11] and [12] by clarifying the geometrical meaning of condition 2° in Theorem 1: this spectral condition can be replaced by the closedness of $\operatorname{Im}((T-I)^m)$ for some (in fact, any) $m \geq 1$ (the case m=2 being already obtained by Dunford). Now we can give the corresponding counterpart of Theorem 4.

Note that

$$\sup \|M_n(T)\| < \infty$$

implies that

(9)
$$\operatorname{Im}(T-I) \cap \operatorname{Ker}(T-I) = 0.$$

Indeed, let u be in this intersection. Then u = Tv - v for some $v \in X$, and Tu = u. Consequently, $T^nv = v + nu$, hence

$$M_n(T)v = v + \frac{n-1}{2}u,$$

so that u = 0 by (8).

Notice also that (9) does not follow from the precompactness of $\{n^{-1}T^n\}$: see the matrix T in Example 3, this time with $\lambda = 1$.

THEOREM 5. Let $\{n^{-1}T^n\}$ be uniformly precompact and suppose that (9) holds. Then the following conditions are equivalent:

1° $\{M_n(T)\}$ is uniformly precompact;

$$2^{\circ} \operatorname{Im}(T-I) + \operatorname{Ker}(T-I) = X;$$

$$3^{\circ} \operatorname{Im}(T-I) + \operatorname{Ker}(T-I)$$
 is closed;

 $4^{\circ} \operatorname{Im}(T-I)$ is closed;

5° $\operatorname{Im}((T-I)^m)$ is closed for some $m \geq 1$.

Proof. The implication $1^{\circ} \Rightarrow 2^{\circ}$ is a consequence of Theorem 4 and the Riesz decomposition corresponding to the point 1 (see (1)).

The implication 2°⇒3° is trivial.

Condition 3°, with the aid of (9), implies 4° in view of the following general fact:

If B is a bounded linear operator on X and $X = \operatorname{Im} B + Y$, where Y is a closed subspace such that $\operatorname{Im} B \cap Y = 0$, then $\operatorname{Im} B$ is closed; see [1, Lemma 3.2.4] or [15, Theorem IV.5.10].

The implication $4^{\circ} \Rightarrow 5^{\circ}$ is trivial.

To complete the proof, we shall show that $5^{\circ} \Rightarrow 4^{\circ} \Rightarrow 1^{\circ}$. The first of these implications is a backward induction as in [12]: assuming that $\operatorname{Im}((T-I)^m)$ is closed for some m>1, one can show, by a standard argument, that $\operatorname{Im}((T-I)^{m-1})+\operatorname{Ker}(T-I)$ is closed, and then apply (9) together with the general fact cited above to conclude that $\operatorname{Im}((T-I)^{m-1})$ is closed. Thus, $5^{\circ} \Rightarrow 4^{\circ}$.

Notice that the a priori assumption of the uniform precompactness of $\{n^{-1}T^n\}$ has not yet been used. It will be essential in the final step $4^o\Rightarrow 1^o$, which is similar to the corresponding step in [11]. Having $\operatorname{Im}(T-I)$ closed, there is a constant K>0 such that for every $y\in \operatorname{Im}(T-I)$ the equation y=(T-I)x has a solution x(y) with $\|x(y)\|\leq K\|y\|$. Then

$$\left\| M_n(T)y - \frac{T^n}{n}x(y) \right\| = \frac{\|x(y)\|}{n} \le \frac{K\|y\|}{n}.$$

Take any subsequence N of \mathbb{N} . One can assume that $\{n^{-1}T^n\}_{n\in\mathbb{N}}$ uniformly converges. Given $\varepsilon>0$, we have $\|m^{-1}T^m-n^{-1}T^n\|<\varepsilon$ for all $m,n\in\mathbb{N}$ sufficiently large. Then

$$||(M_m(T) - M_n(T))y|| \le K||y||(m^{-1} + n^{-1} + \varepsilon)$$

for these m, n, and all $y \in \text{Im}(T-I)$. Hence $\{M_n(T)\}_{n \in N}$ is convergent on Im(T-I). We see that $\{M_n(T)\}$ is uniformly precompact on Im(T-I). It follows, by Theorem 4, that 1 is at most a simple pole for T|Im(T-I). Then the corresponding Riesz projection together with (9) yield that $\text{Im}(T-I) = \text{Im}((T-I)^2)$. Since (9) also gives $\text{Ker}(T-I) = \text{Ker}((T-I)^2)$, it follows that 1 is at most a simple pole of the resolvent of T on X by [1, Lemma 3.4.2] or [15, p. 330]. Thus, 1° holds by Theorem 4.

Remark 3. We have seen that $\text{Im}((T-I)^m)$ does not depend on m provided that $\{M_n(T)\}$ is uniformly precompact. Also [12, Théorème 1] is a consequence of Theorem 5 and Corollary 2.

Remark 4. Concerning the final argument in the proof of Theorem 5 let us note that the formula

$$(\lambda - 1)I = (T - \lambda I) \left(R_{\lambda}(T | \operatorname{Im}(T - I))(T - I) - I \right)$$
$$= \left(R_{\lambda}(T | \operatorname{Im}(T - I))(T - I) - I \right) (T - \lambda I)$$

implies that 1 is automatically a pole of order at most 2 for $R_{\lambda}(T)$, if $R_{\lambda}(T|\text{Im}(T-I))$ had a simple pole at 1. Example 3 with $\lambda=1$ shows that order 2 may occur in general. This cannot happen, however, if condition (9) is satisfied.

As another application of Theorem 4 we get immediately the following improvement of conditions 2° and 3° in [16, Theorem 6], a result related to the classical theorem of Gelfand [4].

COROLLARY 4. If $\{M_n(T)\}$ is uniformly precompact and $\sigma(T) = \{1\}$, then T = I.

EXAMPLE 4. The operator $T = (I+V)^{-1}$, where V is the Volterra operator from Example 2, shows that, in Corollary 4, the uniform precompactness cannot be replaced by just boundedness; it can, however, be replaced by the boundedness of both $\{M_n(T)\}$ and $\{M_n(T^{-1})\}$ (see [12, Théorème 2] or [16, Theorem 6]).

In conclusion let us remark that the above results can be extended to

$$M_n(a) = \frac{1+a+\ldots+a^{n-1}}{n},$$

where a is an element of a unital Banach algebra A. It is enough to embed A isometrically into L(A), the Banach algebra of bounded linear operators on A, by the left regular representation $T_ax = ax$, $x \in A$. Moreover, some additional information can be obtained knowing the algebraic surrounding of the element in question.

THEOREM 6. Let A be a unital Banach algebra without non-zero nilpotent elements. If for some $a \in A$ the sequence $\{M_n(a)\}$ is precompact, then it is convergent.

Proof. As we know from (5), all limit points of the sequence $\{n^{-1}a^n\}$ are nilpotent. Thus, $\lim n^{-1}a^n=0$. It remains to apply Corollary 2.

Remark 5. Theorem 6 says, in other words, that the unital Banach algebra generated by an element a such that $\{M_n(a)\}$ is precompact, but not convergent, must contain a non-zero nilpotent. See Example 3 and Corollary 3.

Remark 6. If a unital Banach algebra A does contain a non-zero nilpotent element x, then there exists an $a \in A$ such that the sequence $\{M_n(a)\}$ is precompact, but not convergent. Indeed, one can assume that $x^2 = 0$ and take $a = \lambda + x$ with $|\lambda| = 1$, $\lambda \neq 1$.

References

- [1] S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, New York, 1974.
- [2] N. Dunford, Spectral theory. I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217.
- [3] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience Publishers, New York, 1958.
- I. Gelfand, Zur Theorie der Charaktere der Abelschen topologischen Gruppen, Mat. Sb. 9 (1941), 49-50.
- [5] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, 1967.

[6] M. A. Kaashoek and T. T. West, Locally compact monothetic semi-algebras, Proc. London Math. Soc. 18 (1968), 428-438.

- [7] —, —, Locally Compact Semi-Algebras with Applications to Spectral Theory of Positive Operators, North-Holland, Amsterdam, 1974.
- J. J. Koliha, Power convergence and pseudoinverses of operators in Banach spaces,
 J. Math. Anal. Appl. 48 (1974), 446-469.
- [9] --, Some convergence theorems in Banach algebras, Pacific J. Math. 52 (1974), 467-473.
- [10] H. Li, Equivalent conditions for the convergence of a sequence $\{B^n\}_{n=1}^{\infty}$, Acta Math. Sinica 29 (1986), 285–288 (in Chinese).
- [11] M. Liu, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340.
- [12] M. Mbekhta et J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158.
- [13] H. C. Rönnefarth, Charakterisierung des Verhaltens der Potenzen eines Elementes einer Banach-Algebra durch Spektraleigenschaften, Diplomarbeit, Technische Universität Berlin, Berlin, 1993.
- [14] A. Święch, Spectral characterization of operators with precompact orbit, Studia Math. 96 (1990), 277-282; 97 (1991), 266.
- [15] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Wiley, New York, 1980.
- [16] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, J. Zemánek (ed.), Banach Center Publ. 30, Warszawa, 1994, 369–385.

DEPARTMENT OF MATHEMATICS TECHNION

32000 HAIFA, ISRAEL E-mail: MAR0004@TECHNION.BITNET

E-mail: MAR0004@TECHNION.BITNET

MAR0004@TECHNION.TECHNION.AC.IL

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
P.O. BOX 137

00-950 WARSZAWA, POLAND E-mail: ZEMANEK@IMPAN.IMPAN.GOV.PL

Received June 23, 1994 (3295)