M. WIŚNIEWSKI (Kielce)

EXTREME ORDER STATISTICS IN AN EQUALLY CORRELATED GAUSSIAN ARRAY

Abstract. This paper contains the results concerning the weak convergence of d-dimensional extreme order statistics in a Gaussian, equally correlated array. Three types of limit distributions are found and sufficient conditions for the existence of these distributions are given.

1. Notation and definitions. Let $\{\mathbf{X}_k^{(n)} : k \in \{1, ..., n\}, n \in \mathbb{N}\}$ be a triangular array of *d*-dimensional random vectors whose mean values and variances satisfy

(i)
$$E\mathbf{X}_{k}^{(n)} = (EX_{ki}^{(n)} = 0 : i \in \{1, \dots, d\}),$$
$$V\mathbf{X}_{k}^{(n)} = (VX_{ki}^{(n)} = 1 : i \in \{1, \dots, d\}).$$

We assume that

(ii) the rows of the considered array are Gaussian equally correlated sequences.

This means that

$$\operatorname{cov}(X_{ki}^{(n)}, X_{kj}^{(n)}) = \varrho_{ij}^{(0)}, \quad \operatorname{cov}(X_{ki}^{(n)}, X_{lj}^{(n)}) = \varrho_{ij}^{(n)}$$

for all $i, j \in \{1, ..., d\}, k, l \in \{1, ..., n\}, k \neq l, n \in \mathbb{N}$. We denote the matrices of covariance coefficients by

$$\mathbf{\Delta}^{(0)} = (\varrho_{ij}^{(0)})_{1 \le i,j \le d}, \qquad \mathbf{\Delta}^{(n)} = (\varrho_{ij}^{(n)})_{1 \le i,j \le d}.$$

We additionally assume that

(iii)

$$\varrho_{ii}^{(n)} \in (0,1) \quad \text{ for } i \in \{1, \dots, d\}, \ n \in \mathbb{N}.$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 60G70.

Key words and phrases: extreme order statistics, Gaussian array, equally correlated.

M. Wiśniewski

We also define, for each $\mathbf{t} \in (0, \infty)^d$ and $\mathbf{v} \in (0, 1)^d$,

$$\mathbb{A}(\mathbf{t}) = \begin{bmatrix} t_1^{1/2} & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & t_d^{1/2} \end{bmatrix}, \quad \mathbb{B}(\mathbf{v}) = \begin{bmatrix} (1-v_1)^{1/2} & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & (1-v_d)^{1/2} \end{bmatrix}.$$

We denote by $\mathbf{M}_n^{(k)}$ (for $k \in \{1, ..., n\}$) the *d*-dimensional vector of the *k*th extreme order statistics in the sequence

 $\{\mathbf{X}_{l}^{(n)}: l \in \{1, \ldots, n\}\}.$

Thus we have

$$M_{ni}^{(n)} \le M_{ni}^{(n-1)} \le \ldots \le M_{ni}^{(1)}$$
 for $i \in \{1, \ldots, d\}, n \in \mathbb{N}$.

We want to find the limit distributions of the vectors of extreme order statistics normalized by means of sequences of vectors $\mathbf{a}_n = (a_n, \ldots, a_n)$ and $\mathbf{b}_n = (b_n, \ldots, b_n)$, where $b_n = (2 \ln n)^{-1/2}$ and $a_n = b_n^{-1} - \frac{1}{2}b_n(\ln \ln n + \ln 4\pi)$. (Notice that all algebraic operations are meant componentwise.)

In 1962 S. M. Berman found the limit distribution of the first extreme order statistics built on the base of a one-dimensional equally correlated Gaussian sequence (see Berman [1]). Mittal's, Ylvisaker's and Pickands's papers (see [4], [5]) give a generalization of this result in the stationary case. In the following section the limit distributions of the kth extreme order statistics built on the base of a multidimensional equally correlated Gaussian array are found.

2. Main results

PROPOSITION 1. Assume that the array $\{\mathbf{X}_{k}^{(n)}: k \in \{1, ..., n\}, n \in \mathbb{N}\}$ satisfies conditions (i)–(iii). Then the rows of the array can be represented by means of sums of independent vectors in the following way:

$$(\mathbf{X}_{1}^{(n)},\ldots,\mathbf{X}_{n}^{(n)})$$

$$\stackrel{a.s.}{=} (\mathbf{Y}_{0}^{(n)}\mathbb{A}(\mathbf{r}(n)) + \mathbf{Y}_{1}^{(n)}\mathbb{B}(\mathbf{r}(n)),\ldots,\mathbf{Y}_{0}^{(n)}\mathbb{A}(\mathbf{r}(n)) + \mathbf{Y}_{n}^{(n)}\mathbb{B}(\mathbf{r}(n))),$$

where $\mathbf{r}(n) = (\varrho_{11}^{(n)}, \dots, \varrho_{dd}^{(n)})$, and $\{\mathbf{Y}_k^{(n)} : k \in \{0\} \cup \mathbb{N}\}$ is an independent Gaussian sequence with covariance matrices

(1)
$$\operatorname{cov}(\mathbf{Y}_{0}^{(n)}) = \left(\frac{\varrho_{ij}^{(n)}}{(\varrho_{ii}^{(n)}\varrho_{jj}^{(n)})^{1/2}}\right)_{1 \le i,j \le d},$$

(2)
$$\operatorname{cov}(\mathbf{Y}_{k}^{(n)}) = \left(\frac{\varrho_{ij}^{(0)} - \varrho_{ij}^{(n)}}{[(1 - \varrho_{ii}^{(n)})(1 - \varrho_{jj}^{(n)})]^{1/2}}\right)_{1 \le i,j \le d}$$

and with vectors of mean values

$$E\mathbf{Y}_0^{(n)} = E\mathbf{Y}_k^{(n)} = \mathbf{0}$$

194

(see the one-dimensional case in Berman [1], Galambos [2], Section 3.8, Pickands [5]).

Proof. Fix $n \in \mathbb{N}$. We denote by $\{\mathbf{X}_k^{(n)} : k \in \mathbb{N}\}$ a *d*-dimensional, Gaussian, equally correlated sequence with

$$\operatorname{cov}(\mathbf{X}_{k}^{(n)}, \mathbf{X}_{m}^{(n)}) = \begin{bmatrix} \mathbf{\Delta}^{(0)} & \mathbf{\Delta}^{(n)} \\ \mathbf{\Delta}^{(n)} & \mathbf{\Delta}^{(0)} \end{bmatrix} \quad \text{for } k \neq m \,.$$

and with $E\mathbf{X}_{k}^{(n)} = \mathbf{0}$ for $k \in \mathbb{N}$. (Thus $\{\mathbf{X}_{k}^{(n)} : k \in \mathbb{N}\}$ contains the *n*th row of the considered array.) For $i \in \{1, \ldots, d\}$ the Gaussian sequences of random variables $\{X_{ki}^{(n)} : k \in \mathbb{N}\}$ are equally correlated with parameters $\varrho_{ii}^{(n)}$. Hence they have the following representation (see Berman [1], Galambos [2]):

$$X_{ki}^{(n)} = Y_{0i}^{(n)} (\varrho_{ii}^{(n)})^{1/2} + Y_{ki}^{(n)} (1 - \varrho_{ii}^{(n)})^{1/2} \quad \text{for } i \in \{1, \dots, d\}, \ k \in \mathbb{N},$$

where the sequences $\{Y_{ki}^{(n)}: k \in \{0\} \cup \mathbb{N}\}$ consist of independent random Gaussian variables with mean 0 and variance 1. The random variables $Y_{0i}^{(n)}$ can be obtained from the ergodic theorem in the following way:

(3)
$$Y_{0i}^{(n)} = (\varrho_{ii}^{(n)})^{-1/2} \lim_{k \to \infty} \frac{1}{k} \sum_{j=1}^{k} X_{ji}^{(n)} \text{ for } i \in \{1, \dots, d\}.$$

Because the random vector $\mathbf{Z}_{k}^{(n)} = \frac{1}{k} \sum_{j=1}^{k} \mathbf{X}_{j}^{(n)} \mathbb{A}^{-1}(\mathbf{r}(n))$ is normal and $E\mathbf{Z}_{k}^{(n)} = \mathbf{0}$ its characteristic function $\Psi_{k}^{(n)}$ is

$$V_k^{(n)}(\mathbf{w}) = \exp(-\frac{1}{2}\mathbf{w}\mathbb{O}_k^{(n)}\mathbf{w}') \quad \text{ for } \mathbf{w} \in \mathbb{R}^d,$$

where $\mathbb{O}_k^{(n)} = (o_k^{(n)}(p,q))_{1 \le p,q \le d}$. It is easy to see that

(4)
$$o_k^{(n)}(p,q) = \left[\frac{1}{k}\varrho_{pq}^{(0)} + \left(1 - \frac{1}{k}\right)\varrho_{pq}^{(n)}\right](\varrho_{pp}^{(n)}\varrho_{qq}^{(n)})^{-1/2}.$$

Notice that if $\mathbf{Y}_{0}^{(n)} = (Y_{01}^{(n)}, \dots, Y_{0d}^{(n)})$ then

$$P(\|\mathbf{Z}_{k}^{(n)} - \mathbf{Y}_{0}^{(n)}\| > \varepsilon) = P(\max\{|Z_{ki}^{(n)} - Y_{0i}^{(n)}| : i \in \{1, \dots, d\}\} > \varepsilon)$$
$$\leq \sum_{i=1}^{d} P(|Z_{ki}^{(n)} - Y_{0i}^{(n)}| > \varepsilon) \leq \sum_{i=1}^{d} \frac{E|Z_{ki}^{(n)} - Y_{0i}|^{2}}{\varepsilon^{2}}.$$

From (3) we obtain $P(\|\mathbf{Z}_{k}^{(n)} - \mathbf{Y}_{0}^{(n)}\| > \varepsilon) \underset{n \to \infty}{\longrightarrow} 0$ for all $\varepsilon > 0$. Hence for each $\mathbf{w} \in \mathbb{R}^{d}$ we have $\Psi_{k}^{(n)}(\mathbf{w}) \underset{n \to \infty}{\longrightarrow} \Psi_{0}^{(n)}(\mathbf{w})$, where $\Psi_{0}^{(n)}$ is the characteristic function of $\mathbf{Y}_{0}^{(n)}$. From (4) it results that

$$\Psi_0^{(n)}(\mathbf{w}) = \exp(-\frac{1}{2}\mathbf{w}\mathbb{O}_0^{(n)}\mathbf{w}'), \quad \text{where} \quad \mathbb{O}_0^{(n)} = (\varrho_{ij}^{(n)}(\varrho_{ii}^{(n)}\varrho_{jj}^{(n)})^{-1/2})_{1 \le i,j \le d}.$$
We have shown that $\mathbf{V}^{(n)}$ is normally distributed with covariance matrix (1)

We have shown that $\mathbf{Y}_{0}^{(n)}$ is normally distributed with covariance matrix (1).

Define the random Gaussian sequence

$$\mathbf{Y}_{k}^{(n)} = [\mathbf{X}_{k}^{(n)} - \mathbf{Y}_{0}^{(n)} \mathbb{A}(\mathbf{r}(n))] \mathbb{B}(\mathbf{r}(n))^{-1}.$$

From (3) it follows (Rudin [6], Theorem 4.6) that

(5)
$$EX_{ki}^{(n)}Y_{0j}^{(n)} = (\varrho_{jj}^{(n)})^{-1/2} \lim_{m \to \infty} \frac{1}{m} \sum_{p=1}^{m} EX_{ki}^{(n)}X_{pj}^{(n)} = \varrho_{ij}^{(n)}(\varrho_{jj}^{(n)})^{-1/2}$$

Hence we obtain (for $k \in \mathbb{N}$)

$$\begin{aligned} & \operatorname{cov}(Y_{ki}^{(n)}Y_{kj}^{(n)}) \\ &= [(1-\varrho_{ii}^{(n)})(1-\varrho_{jj}^{(n)})]^{-1/2}E[X_{ki}^{(n)}-(\varrho_{ii}^{(n)})^{1/2}Y_{0i}^{(n)}][X_{kj}^{(n)}-(\varrho_{jj}^{(n)})^{1/2}Y_{0j}^{(n)}] \\ &= [(1-\varrho_{ii}^{(n)})(1-\varrho_{jj}^{(n)})]^{-1/2}[\varrho_{ij}^{(0)}-(\varrho_{jj}^{(n)})^{1/2}\varrho_{ij}^{(n)}(\varrho_{jj}^{(n)})^{-1/2} \\ &\quad -(\varrho_{ii}^{(n)})^{1/2}\varrho_{ij}^{(n)}(\varrho_{ii}^{(n)})^{-1/2}+(\varrho_{ii}^{(n)})^{1/2}(\varrho_{jj}^{(n)})^{1/2}\varrho_{ij}^{(n)}(\varrho_{ii}^{(n)}\varrho_{jj}^{(n)})^{-1/2}] \\ &= (\varrho_{ij}^{(0)}-\varrho_{ij}^{(n)})[(1-\varrho_{ii}^{(n)})(1-\varrho_{jj}^{(n)})]^{-1/2}.\end{aligned}$$

In other words, $\mathbf{Y}_{k}^{(n)}$ has the covariance matrix (2). The independence of the vectors of the sequence $\{\mathbf{Y}_{k}^{(n)}: k \in \{0\} \cup \mathbb{N}\}$ results from (5) in the following way:

$$\operatorname{cov}(Y_{0i}^{(n)}Y_{kj}^{(n)}) = (1 - \varrho_{jj}^{(n)})^{-1/2} [\varrho_{ij}^{(n)}(\varrho_{ii}^{(n)})^{-1/2} - (\varrho_{jj}^{(n)})^{1/2} \varrho_{ij}^{(n)}(\varrho_{ii}^{(n)} \varrho_{jj}^{(n)})^{-1/2}] = 0$$

and

$$\begin{aligned} \operatorname{cov}(Y_{ki}^{(n)}Y_{mj}^{(n)}) \\ &= [(1-\varrho_{ii}^{(n)})(1-\varrho_{jj}^{(n)})]^{-1/2} [\varrho_{ij}^{(n)} - (\varrho_{jj}^{(n)})^{1/2} \varrho_{ij}^{(n)} (\varrho_{jj}^{(n)})^{-1/2} \\ &- (\varrho_{ii}^{(n)})^{1/2} \varrho_{ij}^{(n)} (\varrho_{ii}^{(n)})^{-1/2} + (\varrho_{ii}^{(n)})^{1/2} (\varrho_{jj}^{(n)})^{1/2} \varrho_{ij}^{(n)} (\varrho_{ii}^{(n)} \varrho_{jj}^{(n)})^{-1/2}] = 0 \end{aligned}$$

and so the proof is complete.

THEOREM 1. Suppose the array $\{\mathbf{X}_{k}^{(n)}: k \in \{1, \ldots, n\}, n \in \mathbb{N}\}$ satisfies conditions (i)–(iii), and additionally the following conditions hold:

(iv)
$$\varrho_{ii}^{(n)} \ln n \xrightarrow[n \to \infty]{} \tau_{ii} \in (0, \infty) \quad \text{for } i \in \{1, \dots, d\}$$

(v)
$$\varrho_{ij}^{(n)}(\varrho_{ii}^{(n)}\varrho_{jj}^{(n)})^{-1/2} \xrightarrow[n \to \infty]{} \varrho_{ij} \quad \text{for } i, j \in \{1, \dots, d\}.$$

Then

$$P((\mathbf{M}_n^{(k)} - \mathbf{a}_n) / \mathbf{b}_n \leq \mathbf{x}) \underset{n \to \infty}{\longrightarrow} (\Lambda_{\mathbf{t}}^k * \Phi_{\mathbf{t}})(\mathbf{x}) \quad \text{for } k \in \mathbb{N}, \ \mathbf{x} \in \mathbb{R}^d,$$

196

where $\mathbf{t} = (\tau_{11}, \ldots, \tau_{dd}), *$ denotes convolution,

$$\begin{split} \Lambda^k_{\mathbf{t}}(\mathbf{x}) &= \Lambda^k(\mathbf{x} + \mathbf{t}), \qquad \Lambda^k(\mathbf{x}) = \prod_{i=1}^d e^{-e^{-x_i}} \sum_{s=0}^{k-1} \frac{(e^{-x_i})^s}{s!} \,, \\ \Phi_{\mathbf{t}}(\mathbf{x}) &= \Phi(2^{-1/2} \mathbf{x} \mathbb{A}^{-1}(\mathbf{t})) \,, \end{split}$$

and Φ is the distribution function of a Gaussian vector \mathbf{Y}_0 , with $\operatorname{cov}(\mathbf{Y}_0) = (\varrho_{ij})_{1 \leq i,j \leq d}$ and $E\mathbf{Y}_0 = \mathbf{0}$.

Proof. We denote the *k*th extreme order statistics in the sequence $\{\mathbf{Y}_{l}^{(n)}: l \in \{1, \ldots, n\}\}$ by $\overline{\mathbf{M}}_{n}^{(k)}$ (see Proposition 1). Observe that

$$(\mathbf{M}_n^{(k)} - \mathbf{a}_n) / \mathbf{b}_n = \mathbf{I}_n + \mathbf{J}_n^{(k)},$$

where

$$\mathbf{I}_n = (2\ln n)^{1/2} \mathbf{Y}_0^{(n)} \mathbb{A}(\mathbf{r}(n)), \quad \mathbf{J}_n^{(k)} = [\overline{\mathbf{M}}_n^{(k)} - \mathbf{a}_n \mathbb{B}^{-1}(\mathbf{r}(n))] \mathbb{B}(\mathbf{r}(n)) / \mathbf{b}_n.$$

Since the vectors \mathbf{I}_n and $\mathbf{J}_n^{(k)}$ are independent, to complete the proof it is enough to show that for all $\mathbf{x} \in \mathbb{R}^d$,

(6)
$$P(\mathbf{I}_n \leq \mathbf{x}) \xrightarrow[n \to \infty]{} \Phi_{\mathbf{t}}(\mathbf{x}),$$

(7)
$$P(\mathbf{J}_n^{(k)} \le \mathbf{x}) \underset{n \to \infty}{\longrightarrow} \Lambda_{\mathbf{t}}^k(\mathbf{x}).$$

Condition (v) implies that the distribution functions of the vectors $\mathbf{Y}_{0}^{(n)}$ (see Proposition 1) converge pointwise to the distribution function of \mathbf{Y}_{0} ; moreover, from (iv) it follows that

$$(2\ln n)^{1/2} \mathbb{A}(\mathbf{r}(n)) \underset{n \to \infty}{\longrightarrow} 2^{1/2} \mathbb{A}(\mathbf{t}).$$

Hence we obtain (6).

Corollary 2 of Wiśniewski [7] shows that the independence of the components of the limit maximum vector $\overline{\mathbf{M}}^{(1)}$ is equivalent to the independence of the components of the limit vectors of the order statistics $\overline{\mathbf{M}}^{(k)}$ for $k \in \mathbb{N}$. From Example 5.3.1 of Galambos [2] it follows that $\overline{\mathbf{M}}^{(1)}$ has independent components $\overline{M}_i^{(1)}$.

Additionally, Theorems 2.2.2 and 1.5.3 of Leadbetter, Lindgren and Rootzén [3] imply that

$$P(\overline{M}_i^{(k)} \le x_i) = e^{-e^{-x_i}} \sum_{s=0}^{k-1} \frac{(e^{-x_i})^s}{s!}.$$

Hence, we get

$$P((\overline{\mathbf{M}}_n^{(k)} - \mathbf{a}_n) / \mathbf{b}_n \leq \mathbf{x}) \underset{n \to \infty}{\longrightarrow} \Lambda^k(\mathbf{x}).$$

We note that

$$P(\mathbf{J}_n^{(k)} \le \mathbf{x}) = P((\mathbf{M}_n^{(k)} - \mathbf{A}_n) / \mathbf{B}_n \le \mathbf{x})$$

where

$$\mathbf{A}_n = \mathbf{a}_n \mathbb{B}^{-1}(\mathbf{r}(n)), \quad \mathbf{B}_n = \mathbf{b}_n \mathbb{B}^{-1}(\mathbf{r}(n))$$

From a multidimensional version of Khinchin's theorem it follows that to complete the proof of (7) we must show that

(8)
$$\frac{A_{ni} - a_n}{b_n} \underset{n \to \infty}{\longrightarrow} \tau_{ii}$$

and (9)

$$\frac{B_{ni}}{b_n} \underset{n \to \infty}{\longrightarrow} 1 \,.$$

Now, (9) follows from $\rho_{ii}^{(n)} \xrightarrow[n \to \infty]{} 0$ (see (iv)). Since

$$(1 - \varrho_{ii}^{(n)})^{-1/2} = 1 + \frac{1}{2}\varrho_{ii}^{(n)} + O((\varrho_{ii}^{(n)})^2) \quad \text{as } \varrho_{ii}^{(n)} \to 0,$$

we have

$$\frac{A_{ni} - a_n}{b_n} = \left[\frac{1}{2}\varrho_{ii}^{(n)} + O((\varrho_{ii}^{(n)})^2)\right] (2\ln n + o(\ln n)) \underset{n \to \infty}{\longrightarrow} \tau_{ii} \,,$$

and this completes the proof.

THEOREM 2. If the array $\{\mathbf{X}_k^{(n)} : k \in \{1, \dots, n\}, n \in \mathbb{N}\}$ satisfies conditions (i)–(iii) and

(iv)'
$$\varrho_{ii}^{(n)} \ln n \underset{n \to \infty}{\longrightarrow} 0 \quad \text{for } i \in \{1, \dots, d\},$$

then

$$P((\mathbf{M}_n^{(k)} - \mathbf{a}_n) / \mathbf{b}_n \le \mathbf{x}) \xrightarrow[n \to \infty]{} \Lambda^k(\mathbf{x}) \quad \text{for } k \in \mathbb{N}, \ \mathbf{x} \in \mathbb{R}^d.$$

Proof. Notice that (see the proof of Theorem 1)

$$P(\max\{|I_{ni}|: i \in \{1, \dots, d\}\} > \varepsilon) \le \sum_{i=1}^{d} P(|I_{ni}| > \varepsilon)$$
$$\le \sum_{i=1}^{d} \frac{EI_{ni}^{2}}{\varepsilon^{2}} = \frac{1}{\varepsilon^{2}} \sum_{i=1}^{d} 2\varrho_{ii}^{(n)} E(Y_{0i}^{(n)})^{2} \ln n.$$

Hence the condition

$$P(\|I_n\| > \varepsilon) \underset{n \to \infty}{\longrightarrow} 0 \quad \text{for all } \varepsilon > 0$$

follows from (iv)'. Now, the proof is similar to that of (2).

THEOREM 3. If the array $\{\mathbf{X}_{k}^{(n)}: k \in \{1, \dots, n\}, n \in \mathbb{N}\}$ satisfies conditions (i)–(iii), (v) and

(iv)"
$$\varrho_{ii}^{(n)} \ln n \underset{n \to \infty}{\longrightarrow} \infty \quad \text{for } i \in \{1, \dots, d\},\$$

198

then

$$P([\mathbf{M}_n^{(k)} - \mathbf{a}_n \mathbb{B}(\mathbf{r}(n))] \mathbb{A}^{-1}(\mathbf{r}(n)) \le \mathbf{x}) \underset{n \to \infty}{\longrightarrow} \Phi(\mathbf{x}) \quad \text{for } k \in \mathbb{N}, \ \mathbf{x} \in \mathbb{R}^d.$$

Proof. We notice that

$$[\mathbf{M}_n^{(k)} - \mathbf{a}_n \mathbb{B}(\mathbf{r}(n))] \mathbb{A}^{-1}(\mathbf{r}(n)) = \mathbf{Y}_0^{(n)} + \mathbf{N}_n^{(k)},$$

where (see the proof of Theorem 1)

$$\mathbf{N}_n^{(k)} = (\overline{\mathbf{M}}_n^{(k)} - \mathbf{a}_n) \mathbb{B}(\mathbf{r}(n)) \mathbb{A}^{-1}(\mathbf{r}(n)) \,.$$

To complete the proof it is enough to show that

(10)
$$P(\|\mathbf{N}_{n}^{(k)}\| > \varepsilon) \underset{n \to \infty}{\longrightarrow} 0 \quad \text{ for all } \varepsilon > 0, \ k \in \mathbb{N}.$$

It is easy to see that

(11)
$$P(\max\{|N_{ni}^{(k)}|: i \in \{1, \dots, d\}\} > \varepsilon) \le \sum_{i=1}^{d} P(|N_{ni}^{(k)}| > \varepsilon)$$
$$\le \sum_{i=1}^{d} P\left(\left|\frac{\overline{M}_{ni}^{(k)} - a_n}{b_n}\right| > \varepsilon (2\varrho_{ii}^{(n)} \ln n)^{1/2}\right).$$

Since the limit distributions of the sequences $\{(\overline{M}_{ni}^{(k)} - a_n)/b_n : n \in \mathbb{N}\}$ exist for $i \in \{1, \ldots, d\}, k \in \mathbb{N}$ (see for example Galambos [2]), the condition (10) follows from (iv)" and (11).

We emphasize that in the situation considered in Theorem 3 all extreme order statistics have identical limit distributions.

Finally, we formulate a result which is easy to obtain by the method of proof of Proposition 1 and Theorem 3.

THEOREM 4. If a d-dimensional, normalized, Gaussian sequence $\{\mathbf{X}_n : n \in \mathbb{N}\}$ is equally correlated with covariance matrix

$$\operatorname{cov}(\mathbf{X}_m, \mathbf{X}_n) = \begin{pmatrix} \mathbf{\Delta}^{(0)} & \mathbf{\Delta}^{(1)} \\ \mathbf{\Delta}^{(1)} & \mathbf{\Delta}^{(0)} \end{pmatrix} \quad (for \ n \neq m)$$

and $\varrho_{ii}^{(1)} \in (0,1)$ for $i \in \{1,\ldots,d\}$, then

$$P([\mathbf{M}_n^{(k)} - \mathbf{a}_n \mathbb{B}(\mathbf{r}(n))] \mathbb{A}^{-1}(\mathbf{r}(n)) \le \mathbf{x}) \underset{n \to \infty}{\longrightarrow} \Phi_1(\mathbf{x}) \quad \text{for } k \in \mathbb{N}, \ \mathbf{x} \in \mathbb{R}^d,$$

where Φ_1 is the distribution function of a Gaussian vector \mathbf{Y} with

$$\operatorname{cov}(\mathbf{Y}) = \left(\frac{\varrho_{ij}^{(1)}}{(\varrho_{ii}^{(1)} \varrho_{jj}^{(1)})^{1/2}}\right)_{1 \le i,j \le d} \quad and \quad E\mathbf{Y} = \mathbf{0}.$$

M. Wiśniewski

References

- [1] S. M. Berman, Equally correlated random variables, Sankhyā A 24 (1962), 155–156.
- [2] J. Galambos, *The Asymptotic Theory of Extreme Order Statistics*, Wiley, New York, 1978.
- [3] M. R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer, New York, 1983.
- [4] Y. Mittal and D. Ylvisaker, Limit distributions for the maxima of stationary Gaussian processes, Stochastic Process. Appl. 3 (1975), 1–18.
- [5] J. Pickands III, Maxima of stationary Gaussian processes, Z. Wahrsch. Verw. Gebiete 7 (1967), 190-223.
- [6] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1974.
- [7] M. Wiśniewski, Multidimensional point processes of extreme order statistics, Demonstratio Math., to appear.

MATEUSZ WIŚNIEWSKI TECHNICAL UNIVERSITY OF KIELCE AL. 1000-LECIA PAŃSTWA POLSKIEGO 7 25-314 KIELCE, POLAND

Received on 30.11.1992