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EXTREME ORDER STATISTICS IN AN EQUALLY
CORRELATED GAUSSIAN ARRAY

Abstract. This paper contains the results concerning the weak conver-
gence of d-dimensional extreme order statistics in a Gaussian, equally cor-
related array. Three types of limit distributions are found and sufficient
conditions for the existence of these distributions are given.

1. Notation and definitions. Let {X(n)
k : k ∈ {1, . . . , n}, n ∈ N} be

a triangular array of d-dimensional random vectors whose mean values and
variances satisfy

(i)
EX(n)

k = (EX
(n)
ki = 0 : i ∈ {1, . . . , d}) ,

V X(n)
k = (V X

(n)
ki = 1 : i ∈ {1, . . . , d}) .

We assume that

(ii) the rows of the considered array are Gaussian equally correlated se-
quences.

This means that

cov(X(n)
ki , X

(n)
kj ) = %

(0)
ij , cov(X(n)

ki , X
(n)
lj ) = %

(n)
ij

for all i, j ∈ {1, . . . , d}, k, l ∈ {1, . . . , n}, k 6= l, n ∈ N. We denote the
matrices of covariance coefficients by

∆(0) = (%(0)
ij )1≤i,j≤d, ∆(n) = (%(n)

ij )1≤i,j≤d .

We additionally assume that

(iii) %
(n)
ii ∈ (0, 1) for i ∈ {1, . . . , d}, n ∈ N .
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We also define, for each t ∈ (0,∞)d and v ∈ (0, 1)d,

A(t) =

 t
1/2
1 . . . 0
...

. . .
...

0 . . . t
1/2
d

 , B(v) =

 (1− v1)1/2 . . . 0
...

. . .
...

0 . . . (1− vd)1/2

 .

We denote by M(k)
n (for k ∈ {1, . . . , n}) the d-dimensional vector of the

kth extreme order statistics in the sequence

{X(n)
l : l ∈ {1, . . . , n}} .

Thus we have

M
(n)
ni ≤ M

(n−1)
ni ≤ . . . ≤ M

(1)
ni for i ∈ {1, . . . , d}, n ∈ N .

We want to find the limit distributions of the vectors of extreme order
statistics normalized by means of sequences of vectors an = (an, . . . , an)
and bn = (bn, . . . , bn), where bn = (2 lnn)−1/2 and an = b−1

n − 1
2bn(ln lnn

+ ln 4π). (Notice that all algebraic operations are meant componentwise.)
In 1962 S. M. Berman found the limit distribution of the first extreme

order statistics built on the base of a one-dimensional equally correlated
Gaussian sequence (see Berman [1]). Mittal’s, Ylvisaker’s and Pickands’s
papers (see [4], [5]) give a generalization of this result in the stationary
case. In the following section the limit distributions of the kth extreme
order statistics built on the base of a multidimensional equally correlated
Gaussian array are found.

2. Main results

Proposition 1. Assume that the array {X(n)
k : k ∈ {1, . . . , n}, n ∈ N}

satisfies conditions (i)–(iii). Then the rows of the array can be represented
by means of sums of independent vectors in the following way :

(X(n)
1 , . . . ,X(n)

n )
a.s.= (Y(n)

0 A(r(n)) + Y(n)
1 B(r(n)), . . . ,Y(n)

0 A(r(n)) + Y(n)
n B(r(n))) ,

where r(n) = (%(n)
11 , . . . , %

(n)
dd ), and {Y(n)

k : k ∈ {0} ∪ N} is an independent
Gaussian sequence with covariance matrices

cov(Y(n)
0 ) =

(
%
(n)
ij

(%(n)
ii %

(n)
jj )1/2

)
1≤i,j≤d

,(1)

cov(Y(n)
k ) =

(
%
(0)
ij − %

(n)
ij

[(1− %
(n)
ii )(1− %

(n)
jj )]1/2

)
1≤i,j≤d

,(2)

and with vectors of mean values

EY(n)
0 = EY(n)

k = 0



Extreme order statistics 195

(see the one-dimensional case in Berman [1], Galambos [2], Section 3.8,
Pickands [5]).

P r o o f. Fix n ∈ N. We denote by {X(n)
k : k ∈ N} a d-dimensional,

Gaussian, equally correlated sequence with

cov(X(n)
k ,X(n)

m ) =
[
∆(0) ∆(n)

∆(n) ∆(0)

]
for k 6= m ,

and with EX(n)
k = 0 for k ∈ N. (Thus {X(n)

k : k ∈ N} contains the nth row of
the considered array.) For i ∈ {1, . . . , d} the Gaussian sequences of random
variables {X(n)

ki : k ∈ N} are equally correlated with parameters %
(n)
ii . Hence

they have the following representation (see Berman [1], Galambos [2]):

X
(n)
ki = Y

(n)
0i (%(n)

ii )1/2 + Y
(n)
ki (1− %

(n)
ii )1/2 for i ∈ {1, . . . , d}, k ∈ N ,

where the sequences {Y (n)
ki : k ∈ {0} ∪ N} consist of independent random

Gaussian variables with mean 0 and variance 1. The random variables Y
(n)
0i

can be obtained from the ergodic theorem in the following way:

(3) Y
(n)
0i = (%(n)

ii )−1/2 l.i.m.
k→∞

1
k

k∑
j=1

X
(n)
ji for i ∈ {1, . . . , d} .

Because the random vector Z(n)
k = 1

k

∑k
j=1 X(n)

j A−1(r(n)) is normal and

EZ(n)
k = 0 its characteristic function Ψ

(n)
k is

Ψ
(n)
k (w) = exp(− 1

2wO(n)
k w′) for w ∈ Rd ,

where O(n)
k = (o(n)

k (p, q))1≤p,q≤d. It is easy to see that

(4) o
(n)
k (p, q) =

[
1
k

%(0)
pq +

(
1− 1

k

)
%(n)

pq

]
(%(n)

pp %(n)
qq )−1/2 .

Notice that if Y(n)
0 = (Y (n)

01 , . . . , Y
(n)
0d ) then

P (‖Z(n)
k −Y(n)

0 ‖ > ε) = P (max{|Z(n)
ki − Y

(n)
0i | : i ∈ {1, . . . , d}} > ε)

≤
d∑

i=1

P (|Z(n)
ki − Y

(n)
0i | > ε) ≤

d∑
i=1

E|Z(n)
ki − Y0i|2

ε2
.

From (3) we obtain P (‖Z(n)
k − Y(n)

0 ‖ > ε) −→
n→∞

0 for all ε > 0. Hence for

each w ∈ Rd we have Ψ
(n)
k (w) −→

n→∞
Ψ

(n)
0 (w), where Ψ

(n)
0 is the characteristic

function of Y(n)
0 . From (4) it results that

Ψ
(n)
0 (w) = exp(− 1

2wO(n)
0 w′), where O(n)

0 = (%n)
ij (%(n)

ii %
(n)
jj )−1/2)1≤i,j≤d .

We have shown that Y(n)
0 is normally distributed with covariance matrix (1).
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Define the random Gaussian sequence

Y(n)
k = [X(n)

k −Y(n)
0 A(r(n))]B(r(n))−1 .

From (3) it follows (Rudin [6], Theorem 4.6) that

(5) EX
(n)
ki Y

(n)
0j = (%(n)

jj )−1/2 lim
m→∞

1
m

m∑
p=1

EX
(n)
ki X

(n)
pj = %

(n)
ij (%(n)

jj )−1/2 .

Hence we obtain (for k ∈ N)

cov(Y (n)
ki Y

(n)
kj )

= [(1− %
(n)
ii )(1− %

(n)
jj )]−1/2E[X(n)

ki − (%(n)
ii )1/2Y

(n)
0i ][X(n)

kj − (%(n)
jj )1/2Y

(n)
0j ]

= [(1− %
(n)
ii )(1− %

(n)
jj )]−1/2[%(0)

ij − (%(n)
jj )1/2%

(n)
ij (%(n)

jj )−1/2

− (%(n)
ii )1/2%

(n)
ij (%(n)

ii )−1/2 + (%(n)
ii )1/2(%(n)

jj )1/2%
(n)
ij (%(n)

ii %
(n)
jj )−1/2]

= (%(0)
ij − %

(n)
ij )[(1− %

(n)
ii )(1− %

(n)
jj )]−1/2 .

In other words, Y(n)
k has the covariance matrix (2).

The independence of the vectors of the sequence {Y(n)
k : k ∈ {0} ∪ N}

results from (5) in the following way:

cov(Y (n)
0i Y

(n)
kj )

= (1− %
(n)
jj )−1/2[%(n)

ij (%(n)
ii )−1/2 − (%(n)

jj )1/2%
(n)
ij (%(n)

ii %
(n)
jj )−1/2] = 0

and

cov(Y (n)
ki Y

(n)
mj )

= [(1− %
(n)
ii )(1− %

(n)
jj )]−1/2[%(n)

ij − (%(n)
jj )1/2%

(n)
ij (%(n)

jj )−1/2

− (%(n)
ii )1/2%

(n)
ij (%(n)

ii )−1/2 + (%(n)
ii )1/2(%(n)

jj )1/2%
(n)
ij (%(n)

ii %
(n)
jj )−1/2] = 0

and so the proof is complete.

Theorem 1. Suppose the array {X(n)
k : k ∈ {1, . . . , n}, n ∈ N} satisfies

conditions (i)–(iii), and additionally the following conditions hold :

(iv) %
(n)
ii lnn −→

n→∞
τii ∈ (0,∞) for i ∈ {1, . . . , d} ,

(v) %
(n)
ij (%(n)

ii %
(n)
jj )−1/2 −→

n→∞
%ij for i, j ∈ {1, . . . , d} .

Then

P ((M(k)
n − an)/bn ≤ x) −→

n→∞
(Λk

t ∗ Φt)(x) for k ∈ N, x ∈ Rd ,
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where t = (τ11, . . . , τdd), ∗ denotes convolution,

Λk
t (x) = Λk(x + t), Λk(x) =

d∏
i=1

e−e−xi

k−1∑
s=0

(e−xi)s

s!
,

Φt(x) = Φ(2−1/2xA−1(t)) ,

and Φ is the distribution function of a Gaussian vector Y0, with cov(Y0)
= (%ij)1≤i,j≤d and EY0 = 0.

P r o o f. We denote the kth extreme order statistics in the sequence
{Y(n)

l : l ∈ {1, . . . , n}} by M(k)
n (see Proposition 1). Observe that

(M(k)
n − an)/bn = In + J(k)

n ,

where

In = (2 lnn)1/2Y(n)
0 A(r(n)), J(k)

n = [M(k)
n − anB−1(r(n))]B(r(n))/bn .

Since the vectors In and J(k)
n are independent, to complete the proof it is

enough to show that for all x ∈ Rd,

P (In ≤ x) −→
n→∞

Φt(x) ,(6)

P (J(k)
n ≤ x) −→

n→∞
Λk

t (x) .(7)

Condition (v) implies that the distribution functions of the vectors Y(n)
0

(see Proposition 1) converge pointwise to the distribution function of Y0;
moreover, from (iv) it follows that

(2 ln n)1/2A(r(n)) −→
n→∞

21/2A(t) .

Hence we obtain (6).
Corollary 2 of Wísniewski [7] shows that the independence of the compo-

nents of the limit maximum vector M(1) is equivalent to the independence
of the components of the limit vectors of the order statistics M(k) for k ∈ N.
From Example 5.3.1 of Galambos [2] it follows that M(1) has independent
components M

(1)
i .

Additionally, Theorems 2.2.2 and 1.5.3 of Leadbetter, Lindgren and
Rootzén [3] imply that

P (M (k)
i ≤ xi) = e−e−xi

k−1∑
s=0

(e−xi)s

s!
.

Hence, we get
P ((M(k)

n − an)/bn ≤ x) −→
n→∞

Λk(x) .

We note that

P (J(k)
n ≤ x) = P ((M(k)

n −An)/Bn ≤ x)
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where
An = anB−1(r(n)), Bn = bnB−1(r(n)) .

From a multidimensional version of Khinchin’s theorem it follows that to
complete the proof of (7) we must show that

(8)
Ani − an

bn
−→

n→∞
τii

and

(9)
Bni

bn
−→

n→∞
1 .

Now, (9) follows from %
(n)
ii −→

n→∞
0 (see (iv)). Since

(1− %
(n)
ii )−1/2 = 1 + 1

2%
(n)
ii + O((%(n)

ii )2) as %
(n)
ii → 0 ,

we have
Ani − an

bn
= [12%

(n)
ii + O((%(n)

ii )2)](2 lnn + o(lnn)) −→
n→∞

τii ,

and this completes the proof.

Theorem 2. If the array {X(n)
k : k ∈ {1, . . . , n}, n ∈ N} satisfies condi-

tions (i)–(iii) and

(iv)′ %
(n)
ii lnn −→

n→∞
0 for i ∈ {1, . . . , d} ,

then

P ((M(k)
n − an)/bn ≤ x) −→

n→∞
Λk(x) for k ∈ N, x ∈ Rd .

P r o o f. Notice that (see the proof of Theorem 1)

P (max{|Ini| : i ∈ {1, . . . , d}} > ε) ≤
d∑

i=1

P (|Ini| > ε)

≤
d∑

i=1

EI2
ni

ε2
=

1
ε2

d∑
i=1

2%
(n)
ii E(Y (n)

0i )2 lnn .

Hence the condition

P (‖In‖ > ε) −→
n→∞

0 for all ε > 0

follows from (iv)′. Now, the proof is similar to that of (2).

Theorem 3. If the array {X(n)
k : k ∈ {1, . . . , n}, n ∈ N} satisfies condi-

tions (i)–(iii), (v) and

(iv)′′ %
(n)
ii lnn −→

n→∞
∞ for i ∈ {1, . . . , d} ,
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then

P ([M(k)
n − anB(r(n))]A−1(r(n)) ≤ x) −→

n→∞
Φ(x) for k ∈ N, x ∈ Rd .

P r o o f. We notice that

[M(k)
n − anB(r(n))]A−1(r(n)) = Y(n)

0 + N(k)
n ,

where (see the proof of Theorem 1)

N(k)
n = (M(k)

n − an)B(r(n))A−1(r(n)) .

To complete the proof it is enough to show that

(10) P (‖N(k)
n ‖ > ε) −→

n→∞
0 for all ε > 0, k ∈ N .

It is easy to see that

(11) P (max{|N (k)
ni | : i ∈ {1, . . . , d}} > ε) ≤

d∑
i=1

P (|N (k)
ni | > ε)

≤
d∑

i=1

P

(∣∣∣∣M (k)
ni − an

bn

∣∣∣∣ > ε(2%
(n)
ii lnn)1/2

)
.

Since the limit distributions of the sequences {(M (k)
ni −an)/bn : n ∈ N} exist

for i ∈ {1, . . . , d}, k ∈ N (see for example Galambos [2]), the condition (10)
follows from (iv)′′ and (11).

We emphasize that in the situation considered in Theorem 3 all extreme
order statistics have identical limit distributions.

Finally, we formulate a result which is easy to obtain by the method of
proof of Proposition 1 and Theorem 3.

Theorem 4. If a d-dimensional , normalized , Gaussian sequence {Xn :
n ∈ N} is equally correlated with covariance matrix

cov(Xm,Xn) =
(

∆(0) ∆(1)

∆(1) ∆(0)

)
(for n 6= m)

and %
(1)
ii ∈ (0, 1) for i ∈ {1, . . . , d}, then

P ([M(k)
n − anB(r(n))]A−1(r(n)) ≤ x) −→

n→∞
Φ1(x) for k ∈ N, x ∈ Rd ,

where Φ1 is the distribution function of a Gaussian vector Y with

cov(Y) =
(

%
(1)
ij

(%(1)
ii %

(1)
jj )1/2

)
1≤i,j≤d

and EY = 0 .



200 M. Wiśniewski
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erties of Random Sequences and Processes, Springer, New York, 1983.
[4] Y. Mitta l and D. Ylv i saker, Limit distributions for the maxima of stationary

Gaussian processes, Stochastic Process. Appl. 3 (1975), 1–18.
[5] J. Pickands III, Maxima of stationary Gaussian processes, Z. Wahrsch. Verw.

Gebiete 7 (1967), 190–223.
[6] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1974.
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