M. WIŚNIEWSKI (Kielce)

EXTREME ORDER STATISTICS IN AN EQUALLY CORRELATED GAUSSIAN ARRAY

Abstract. This paper contains the results concerning the weak convergence of d-dimensional extreme order statistics in a Gaussian, equally correlated array. Three types of limit distributions are found and sufficient conditions for the existence of these distributions are given.

1. Notation and definitions. Let $\left\{\mathbf{X}_{k}^{(n)}: k \in\{1, \ldots, n\}, n \in \mathbb{N}\right\}$ be a triangular array of d-dimensional random vectors whose mean values and variances satisfy

$$
\begin{align*}
E \mathbf{X}_{k}^{(n)} & =\left(E X_{k i}^{(n)}=0: i \in\{1, \ldots, d\}\right) \\
V \mathbf{X}_{k}^{(n)} & =\left(V X_{k i}^{(n)}=1: i \in\{1, \ldots, d\}\right) \tag{i}
\end{align*}
$$

We assume that
(ii) the rows of the considered array are Gaussian equally correlated sequences.

This means that

$$
\operatorname{cov}\left(X_{k i}^{(n)}, X_{k j}^{(n)}\right)=\varrho_{i j}^{(0)}, \quad \operatorname{cov}\left(X_{k i}^{(n)}, X_{l j}^{(n)}\right)=\varrho_{i j}^{(n)}
$$

for all $i, j \in\{1, \ldots, d\}, k, l \in\{1, \ldots, n\}, k \neq l, n \in \mathbb{N}$. We denote the matrices of covariance coefficients by

$$
\boldsymbol{\Delta}^{(0)}=\left(\varrho_{i j}^{(0)}\right)_{1 \leq i, j \leq d}, \quad \boldsymbol{\Delta}^{(n)}=\left(\varrho_{i j}^{(n)}\right)_{1 \leq i, j \leq d}
$$

We additionally assume that

$$
\begin{equation*}
\varrho_{i i}^{(n)} \in(0,1) \quad \text { for } i \in\{1, \ldots, d\}, n \in \mathbb{N} . \tag{iii}
\end{equation*}
$$

1991 Mathematics Subject Classification: Primary 60G70.
Key words and phrases: extreme order statistics, Gaussian array, equally correlated.

We also define, for each $\mathbf{t} \in(0, \infty)^{d}$ and $\mathbf{v} \in(0,1)^{d}$,

$$
\mathbb{A}(\mathbf{t})=\left[\begin{array}{ccc}
t_{1}^{1 / 2} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & t_{d}^{1 / 2}
\end{array}\right], \quad \mathbb{B}(\mathbf{v})=\left[\begin{array}{ccc}
\left(1-v_{1}\right)^{1 / 2} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \left(1-v_{d}\right)^{1 / 2}
\end{array}\right]
$$

We denote by $\mathbf{M}_{n}^{(k)}$ (for $k \in\{1, \ldots, n\}$) the d-dimensional vector of the k th extreme order statistics in the sequence

$$
\left\{\mathbf{X}_{l}^{(n)}: l \in\{1, \ldots, n\}\right\}
$$

Thus we have

$$
M_{n i}^{(n)} \leq M_{n i}^{(n-1)} \leq \ldots \leq M_{n i}^{(1)} \quad \text { for } i \in\{1, \ldots, d\}, n \in \mathbb{N}
$$

We want to find the limit distributions of the vectors of extreme order statistics normalized by means of sequences of vectors $\mathbf{a}_{n}=\left(a_{n}, \ldots, a_{n}\right)$ and $\mathbf{b}_{n}=\left(b_{n}, \ldots, b_{n}\right)$, where $b_{n}=(2 \ln n)^{-1 / 2}$ and $a_{n}=b_{n}^{-1}-\frac{1}{2} b_{n}(\ln \ln n$ $+\ln 4 \pi)$. (Notice that all algebraic operations are meant componentwise.)

In $1962 \mathrm{~S} . \mathrm{M}$. Berman found the limit distribution of the first extreme order statistics built on the base of a one-dimensional equally correlated Gaussian sequence (see Berman [1]). Mittal's, Ylvisaker's and Pickands's papers (see [4], [5]) give a generalization of this result in the stationary case. In the following section the limit distributions of the k th extreme order statistics built on the base of a multidimensional equally correlated Gaussian array are found.

2. Main results

Proposition 1. Assume that the array $\left\{\mathbf{X}_{k}^{(n)}: k \in\{1, \ldots, n\}, n \in \mathbb{N}\right\}$ satisfies conditions (i)-(iii). Then the rows of the array can be represented by means of sums of independent vectors in the following way:

$$
\begin{aligned}
& \left(\mathbf{X}_{1}^{(n)}, \ldots, \mathbf{X}_{n}^{(n)}\right) \\
& \quad \stackrel{a . s .}{=}\left(\mathbf{Y}_{0}^{(n)} \mathbb{A}(\mathbf{r}(n))+\mathbf{Y}_{1}^{(n)} \mathbb{B}(\mathbf{r}(n)), \ldots, \mathbf{Y}_{0}^{(n)} \mathbb{A}(\mathbf{r}(n))+\mathbf{Y}_{n}^{(n)} \mathbb{B}(\mathbf{r}(n))\right),
\end{aligned}
$$

where $\mathbf{r}(n)=\left(\varrho_{11}^{(n)}, \ldots, \varrho_{d d}^{(n)}\right)$, and $\left\{\mathbf{Y}_{k}^{(n)}: k \in\{0\} \cup \mathbb{N}\right\}$ is an independent Gaussian sequence with covariance matrices

$$
\begin{align*}
\operatorname{cov}\left(\mathbf{Y}_{0}^{(n)}\right) & =\left(\frac{\varrho_{i j}^{(n)}}{\left(\varrho_{i i}^{(n)} \varrho_{j j}^{(n)}\right)^{1 / 2}}\right)_{1 \leq i, j \leq d} \tag{1}\\
\operatorname{cov}\left(\mathbf{Y}_{k}^{(n)}\right) & =\left(\frac{\varrho_{i j}^{(0)}-\varrho_{i j}^{(n)}}{\left[\left(1-\varrho_{i i}^{(n)}\right)\left(1-\varrho_{j j}^{(n)}\right)\right]^{1 / 2}}\right)_{1 \leq i, j \leq d} \tag{2}
\end{align*}
$$

and with vectors of mean values

$$
E \mathbf{Y}_{0}^{(n)}=E \mathbf{Y}_{k}^{(n)}=\mathbf{0}
$$

(see the one-dimensional case in Berman [1], Galambos [2], Section 3.8, Pickands [5]).

Proof. Fix $n \in \mathbb{N}$. We denote by $\left\{\mathbf{X}_{k}^{(n)}: k \in \mathbb{N}\right\}$ a d-dimensional, Gaussian, equally correlated sequence with

$$
\operatorname{cov}\left(\mathbf{X}_{k}^{(n)}, \mathbf{X}_{m}^{(n)}\right)=\left[\begin{array}{ll}
\boldsymbol{\Delta}^{(0)} & \boldsymbol{\Delta}^{(n)} \\
\boldsymbol{\Delta}^{(n)} & \boldsymbol{\Delta}^{(0)}
\end{array}\right] \quad \text { for } k \neq m
$$

and with $E \mathbf{X}_{k}^{(n)}=\mathbf{0}$ for $k \in \mathbb{N}$. (Thus $\left\{\mathbf{X}_{k}^{(n)}: k \in \mathbb{N}\right\}$ contains the nth row of the considered array.) For $i \in\{1, \ldots, d\}$ the Gaussian sequences of random variables $\left\{X_{k i}^{(n)}: k \in \mathbb{N}\right\}$ are equally correlated with parameters $\varrho_{i i}^{(n)}$. Hence they have the following representation (see Berman [1], Galambos [2]):

$$
X_{k i}^{(n)}=Y_{0 i}^{(n)}\left(\varrho_{i i}^{(n)}\right)^{1 / 2}+Y_{k i}^{(n)}\left(1-\varrho_{i i}^{(n)}\right)^{1 / 2} \quad \text { for } i \in\{1, \ldots, d\}, k \in \mathbb{N}
$$

where the sequences $\left\{Y_{k i}^{(n)}: k \in\{0\} \cup \mathbb{N}\right\}$ consist of independent random Gaussian variables with mean 0 and variance 1. The random variables $Y_{0 i}^{(n)}$ can be obtained from the ergodic theorem in the following way:

$$
\begin{equation*}
Y_{0 i}^{(n)}=\left(\varrho_{i i}^{(n)}\right)^{-1 / 2}{ }_{k \rightarrow \infty} \text { i.m. } \frac{1}{k} \sum_{j=1}^{k} X_{j i}^{(n)} \quad \text { for } i \in\{1, \ldots, d\} \tag{3}
\end{equation*}
$$

Because the random vector $\mathbf{Z}_{k}^{(n)}=\frac{1}{k} \sum_{j=1}^{k} \mathbf{X}_{j}^{(n)} \mathbb{A}^{-1}(\mathbf{r}(n))$ is normal and $E \mathbf{Z}_{k}^{(n)}=\mathbf{0}$ its characteristic function $\Psi_{k}^{(n)}$ is

$$
\Psi_{k}^{(n)}(\mathbf{w})=\exp \left(-\frac{1}{2} \mathbf{w} \mathbb{D}_{k}^{(n)} \mathbf{w}^{\prime}\right) \quad \text { for } \mathbf{w} \in \mathbb{R}^{d}
$$

where $\mathbb{O}_{k}^{(n)}=\left(o_{k}^{(n)}(p, q)\right)_{1 \leq p, q \leq d}$. It is easy to see that

$$
\begin{equation*}
o_{k}^{(n)}(p, q)=\left[\frac{1}{k} \varrho_{p q}^{(0)}+\left(1-\frac{1}{k}\right) \varrho_{p q}^{(n)}\right]\left(\varrho_{p p}^{(n)} \varrho_{q q}^{(n)}\right)^{-1 / 2} \tag{4}
\end{equation*}
$$

Notice that if $\mathbf{Y}_{0}^{(n)}=\left(Y_{01}^{(n)}, \ldots, Y_{0 d}^{(n)}\right)$ then

$$
\begin{aligned}
P\left(\left\|\mathbf{Z}_{k}^{(n)}-\mathbf{Y}_{0}^{(n)}\right\|>\varepsilon\right) & =P\left(\max \left\{\left|Z_{k i}^{(n)}-Y_{0 i}^{(n)}\right|: i \in\{1, \ldots, d\}\right\}>\varepsilon\right) \\
& \leq \sum_{i=1}^{d} P\left(\left|Z_{k i}^{(n)}-Y_{0 i}^{(n)}\right|>\varepsilon\right) \leq \sum_{i=1}^{d} \frac{E\left|Z_{k i}^{(n)}-Y_{0 i}\right|^{2}}{\varepsilon^{2}}
\end{aligned}
$$

From (3) we obtain $P\left(\left\|\mathbf{Z}_{k}^{(n)}-\mathbf{Y}_{0}^{(n)}\right\|>\varepsilon\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$ for all $\varepsilon>0$. Hence for each $\mathbf{w} \in \mathbb{R}^{d}$ we have $\Psi_{k}^{(n)}(\mathbf{w}) \underset{n \rightarrow \infty}{\longrightarrow} \Psi_{0}^{(n)}(\mathbf{w})$, where $\Psi_{0}^{(n)}$ is the characteristic function of $\mathbf{Y}_{0}^{(n)}$. From (4) it results that
$\Psi_{0}^{(n)}(\mathbf{w})=\exp \left(-\frac{1}{2} \mathbf{w} \mathbb{O}_{0}^{(n)} \mathbf{w}^{\prime}\right), \quad$ where $\quad \mathbb{O}_{0}^{(n)}=\left(\varrho_{i j}^{n)}\left(\varrho_{i i}^{(n)} \varrho_{j j}^{(n)}\right)^{-1 / 2}\right)_{1 \leq i, j \leq d}$.
We have shown that $\mathbf{Y}_{0}^{(n)}$ is normally distributed with covariance matrix (1).

Define the random Gaussian sequence

$$
\mathbf{Y}_{k}^{(n)}=\left[\mathbf{X}_{k}^{(n)}-\mathbf{Y}_{0}^{(n)} \mathbb{A}(\mathbf{r}(n))\right] \mathbb{B}(\mathbf{r}(n))^{-1}
$$

From (3) it follows (Rudin [6], Theorem 4.6) that
(5) $E X_{k i}^{(n)} Y_{0 j}^{(n)}=\left(\varrho_{j j}^{(n)}\right)^{-1 / 2} \lim _{m \rightarrow \infty} \frac{1}{m} \sum_{p=1}^{m} E X_{k i}^{(n)} X_{p j}^{(n)}=\varrho_{i j}^{(n)}\left(\varrho_{j j}^{(n)}\right)^{-1 / 2}$.

Hence we obtain (for $k \in \mathbb{N}$)

$$
\begin{aligned}
\operatorname{cov} & \left(Y_{k i}^{(n)} Y_{k j}^{(n)}\right) \\
= & {\left[\left(1-\varrho_{i i}^{(n)}\right)\left(1-\varrho_{j j}^{(n)}\right)\right]^{-1 / 2} E\left[X_{k i}^{(n)}-\left(\varrho_{i i}^{(n)}\right)^{1 / 2} Y_{0 i}^{(n)}\right]\left[X_{k j}^{(n)}-\left(\varrho_{j j}^{(n)}\right)^{1 / 2} Y_{0 j}^{(n)}\right] } \\
= & {\left[\left(1-\varrho_{i i}^{(n)}\right)\left(1-\varrho_{j j}^{(n)}\right)\right]^{-1 / 2}\left[\varrho_{i j}^{(0)}-\left(\varrho_{j j}^{(n)}\right)^{1 / 2} \varrho_{i j}^{(n)}\left(\varrho_{j j}^{(n)}\right)^{-1 / 2}\right.} \\
& \left.-\left(\varrho_{i i}^{(n)}\right)^{1 / 2} \varrho_{i j}^{(n)}\left(\varrho_{i i}^{(n)}\right)^{-1 / 2}+\left(\varrho_{i i}^{(n)}\right)^{1 / 2}\left(\varrho_{j j}^{(n)}\right)^{1 / 2} \varrho_{i j}^{(n)}\left(\varrho_{i i}^{(n)} \varrho_{j j}^{(n)}\right)^{-1 / 2}\right] \\
= & \left(\varrho_{i j}^{(0)}-\varrho_{i j}^{(n)}\right)\left[\left(1-\varrho_{i i}^{(n)}\right)\left(1-\varrho_{j j}^{(n)}\right)\right]^{-1 / 2} .
\end{aligned}
$$

In other words, $\mathbf{Y}_{k}^{(n)}$ has the covariance matrix (2).
The independence of the vectors of the sequence $\left\{\mathbf{Y}_{k}^{(n)}: k \in\{0\} \cup \mathbb{N}\right\}$ results from (5) in the following way:

$$
\begin{aligned}
& \operatorname{cov}\left(Y_{0 i}^{(n)} Y_{k j}^{(n)}\right) \\
&=\left(1-\varrho_{j j}^{(n)}\right)^{-1 / 2}\left[\varrho_{i j}^{(n)}\left(\varrho_{i i}^{(n)}\right)^{-1 / 2}-\left(\varrho_{j j}^{(n)}\right)^{1 / 2} \varrho_{i j}^{(n)}\left(\varrho_{i i}^{(n)} \varrho_{j j}^{(n)}\right)^{-1 / 2}\right]=0
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{cov}\left(Y_{k i}^{(n)} Y_{m j}^{(n)}\right) \\
& =\quad\left[\left(1-\varrho_{i i}^{(n)}\right)\left(1-\varrho_{j j}^{(n)}\right)\right]^{-1 / 2}\left[\varrho_{i j}^{(n)}-\left(\varrho_{j j}^{(n)}\right)^{1 / 2} \varrho_{i j}^{(n)}\left(\varrho_{j j}^{(n)}\right)^{-1 / 2}\right. \\
& \left.\quad-\left(\varrho_{i i}^{(n)}\right)^{1 / 2} \varrho_{i j}^{(n)}\left(\varrho_{i i}^{(n)}\right)^{-1 / 2}+\left(\varrho_{i i}^{(n)}\right)^{1 / 2}\left(\varrho_{j j}^{(n)}\right)^{1 / 2} \varrho_{i j}^{(n)}\left(\varrho_{i i}^{(n)} \varrho_{j j}^{(n)}\right)^{-1 / 2}\right]=0
\end{aligned}
$$

and so the proof is complete.
Theorem 1. Suppose the array $\left\{\mathbf{X}_{k}^{(n)}: k \in\{1, \ldots, n\}, n \in \mathbb{N}\right\}$ satisfies conditions (i)-(iii), and additionally the following conditions hold:
(iv)

$$
\varrho_{i i}^{(n)} \ln n \underset{n \rightarrow \infty}{\longrightarrow} \tau_{i i} \in(0, \infty) \quad \text { for } i \in\{1, \ldots, d\}
$$

(v)

$$
\varrho_{i j}^{(n)}\left(\varrho_{i i}^{(n)} \varrho_{j j}^{(n)}\right)^{-1 / 2} \underset{n \rightarrow \infty}{\longrightarrow} \varrho_{i j} \quad \text { for } i, j \in\{1, \ldots, d\}
$$

Then

$$
P\left(\left(\mathbf{M}_{n}^{(k)}-\mathbf{a}_{n}\right) / \mathbf{b}_{n} \leq \mathbf{x}\right) \underset{n \rightarrow \infty}{\longrightarrow}\left(\Lambda_{\mathbf{t}}^{k} * \Phi_{\mathbf{t}}\right)(\mathbf{x}) \quad \text { for } k \in \mathbb{N}, \mathbf{x} \in \mathbb{R}^{d}
$$

where $\mathbf{t}=\left(\tau_{11}, \ldots, \tau_{d d}\right), *$ denotes convolution,

$$
\begin{gathered}
\Lambda_{\mathbf{t}}^{k}(\mathbf{x})=\Lambda^{k}(\mathbf{x}+\mathbf{t}), \quad \Lambda^{k}(\mathbf{x})=\prod_{i=1}^{d} e^{-e^{-x_{i}}} \sum_{s=0}^{k-1} \frac{\left(e^{-x_{i}}\right)^{s}}{s!} \\
\Phi_{\mathbf{t}}(\mathbf{x})=\Phi\left(2^{-1 / 2} \mathbf{x} \mathbb{A}^{-1}(\mathbf{t})\right)
\end{gathered}
$$

and Φ is the distribution function of a Gaussian vector \mathbf{Y}_{0}, with $\operatorname{cov}\left(\mathbf{Y}_{0}\right)$ $=\left(\varrho_{i j}\right)_{1 \leq i, j \leq d}$ and $E \mathbf{Y}_{0}=\mathbf{0}$.

Proof. We denote the k th extreme order statistics in the sequence $\left\{\mathbf{Y}_{l}^{(n)}: l \in\{1, \ldots, n\}\right\}$ by $\overline{\mathbf{M}}_{n}^{(k)}$ (see Proposition 1). Observe that

$$
\left(\mathbf{M}_{n}^{(k)}-\mathbf{a}_{n}\right) / \mathbf{b}_{n}=\mathbf{I}_{n}+\mathbf{J}_{n}^{(k)}
$$

where

$$
\mathbf{I}_{n}=(2 \ln n)^{1 / 2} \mathbf{Y}_{0}^{(n)} \mathbb{A}(\mathbf{r}(n)), \quad \mathbf{J}_{n}^{(k)}=\left[\overline{\mathbf{M}}_{n}^{(k)}-\mathbf{a}_{n} \mathbb{B}^{-1}(\mathbf{r}(n))\right] \mathbb{B}(\mathbf{r}(n)) / \mathbf{b}_{n}
$$

Since the vectors \mathbf{I}_{n} and $\mathbf{J}_{n}^{(k)}$ are independent, to complete the proof it is enough to show that for all $\mathbf{x} \in \mathbb{R}^{d}$,

$$
\begin{array}{r}
P\left(\mathbf{I}_{n} \leq \mathbf{x}\right) \underset{n \rightarrow \infty}{\longrightarrow} \Phi_{\mathbf{t}}(\mathbf{x}), \\
P\left(\mathbf{J}_{n}^{(k)} \leq \mathbf{x}\right) \underset{n \rightarrow \infty}{\longrightarrow} \Lambda_{\mathbf{t}}^{k}(\mathbf{x}) . \tag{7}
\end{array}
$$

Condition (v) implies that the distribution functions of the vectors $\mathbf{Y}_{0}^{(n)}$ (see Proposition 1) converge pointwise to the distribution function of \mathbf{Y}_{0}; moreover, from (iv) it follows that

$$
(2 \ln n)^{1 / 2} \mathbb{A}(\mathbf{r}(n)) \underset{n \rightarrow \infty}{\longrightarrow} 2^{1 / 2} \mathbb{A}(\mathbf{t})
$$

Hence we obtain (6).
Corollary 2 of Wiśniewski [7] shows that the independence of the components of the limit maximum vector $\overline{\mathbf{M}}^{(1)}$ is equivalent to the independence of the components of the limit vectors of the order statistics $\overline{\mathbf{M}}^{(k)}$ for $k \in \mathbb{N}$. From Example 5.3 .1 of Galambos [2] it follows that $\overline{\mathbf{M}}^{(1)}$ has independent components $\bar{M}_{i}^{(1)}$.

Additionally, Theorems 2.2.2 and 1.5.3 of Leadbetter, Lindgren and Rootzén [3] imply that

$$
P\left(\bar{M}_{i}^{(k)} \leq x_{i}\right)=e^{-e^{-x_{i}}} \sum_{s=0}^{k-1} \frac{\left(e^{-x_{i}}\right)^{s}}{s!}
$$

Hence, we get

$$
P\left(\left(\overline{\mathbf{M}}_{n}^{(k)}-\mathbf{a}_{n}\right) / \mathbf{b}_{n} \leq \mathbf{x}\right) \underset{n \rightarrow \infty}{\longrightarrow} \Lambda^{k}(\mathbf{x})
$$

We note that

$$
P\left(\mathbf{J}_{n}^{(k)} \leq \mathbf{x}\right)=P\left(\left(\mathbf{M}_{n}^{(k)}-\mathbf{A}_{n}\right) / \mathbf{B}_{n} \leq \mathbf{x}\right)
$$

where

$$
\mathbf{A}_{n}=\mathbf{a}_{n} \mathbb{B}^{-1}(\mathbf{r}(n)), \quad \mathbf{B}_{n}=\mathbf{b}_{n} \mathbb{B}^{-1}(\mathbf{r}(n))
$$

From a multidimensional version of Khinchin's theorem it follows that to complete the proof of (7) we must show that

$$
\begin{equation*}
\frac{A_{n i}-a_{n}}{b_{n}} \underset{n \rightarrow \infty}{\longrightarrow} \tau_{i i} \tag{8}
\end{equation*}
$$

and
(9)

$$
\frac{B_{n i}}{b_{n}} \underset{n \rightarrow \infty}{\longrightarrow} 1
$$

Now, (9) follows from $\varrho_{i i}^{(n)} \underset{n \rightarrow \infty}{\longrightarrow} 0$ (see (iv)). Since

$$
\left(1-\varrho_{i i}^{(n)}\right)^{-1 / 2}=1+\frac{1}{2} \varrho_{i i}^{(n)}+O\left(\left(\varrho_{i i}^{(n)}\right)^{2}\right) \quad \text { as } \varrho_{i i}^{(n)} \rightarrow 0
$$

we have

$$
\frac{A_{n i}-a_{n}}{b_{n}}=\left[\frac{1}{2} \varrho_{i i}^{(n)}+O\left(\left(\varrho_{i i}^{(n)}\right)^{2}\right)\right](2 \ln n+o(\ln n)) \underset{n \rightarrow \infty}{\longrightarrow} \tau_{i i},
$$

and this completes the proof.
Theorem 2. If the array $\left\{\mathbf{X}_{k}^{(n)}: k \in\{1, \ldots, n\}, n \in \mathbb{N}\right\}$ satisfies conditions (i)-(iii) and
$(i v)^{\prime}$

$$
\varrho_{i i}^{(n)} \ln n \underset{n \rightarrow \infty}{\longrightarrow} 0 \quad \text { for } i \in\{1, \ldots, d\}
$$

then

$$
P\left(\left(\mathbf{M}_{n}^{(k)}-\mathbf{a}_{n}\right) / \mathbf{b}_{n} \leq \mathbf{x}\right) \underset{n \rightarrow \infty}{\longrightarrow} \Lambda^{k}(\mathbf{x}) \quad \text { for } k \in \mathbb{N}, \mathbf{x} \in \mathbb{R}^{d}
$$

Proof. Notice that (see the proof of Theorem 1)

$$
\begin{aligned}
P\left(\max \left\{\left|I_{n i}\right|: i \in\{1, \ldots, d\}\right\}>\varepsilon\right) & \leq \sum_{i=1}^{d} P\left(\left|I_{n i}\right|>\varepsilon\right) \\
& \leq \sum_{i=1}^{d} \frac{E I_{n i}^{2}}{\varepsilon^{2}}=\frac{1}{\varepsilon^{2}} \sum_{i=1}^{d} 2 \varrho_{i i}^{(n)} E\left(Y_{0 i}^{(n)}\right)^{2} \ln n
\end{aligned}
$$

Hence the condition

$$
P\left(\left\|I_{n}\right\|>\varepsilon\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \quad \text { for all } \varepsilon>0
$$

follows from (iv)'. Now, the proof is similar to that of (2).
Theorem 3. If the array $\left\{\mathbf{X}_{k}^{(n)}: k \in\{1, \ldots, n\}, n \in \mathbb{N}\right\}$ satisfies conditions (i)-(iii), (v) and
(iv) ${ }^{\prime \prime}$

$$
\varrho_{i i}^{(n)} \ln n \underset{n \rightarrow \infty}{\longrightarrow} \infty \quad \text { for } i \in\{1, \ldots, d\}
$$

then

$$
P\left(\left[\mathbf{M}_{n}^{(k)}-\mathbf{a}_{n} \mathbb{B}(\mathbf{r}(n))\right] \mathbb{A}^{-1}(\mathbf{r}(n)) \leq \mathbf{x}\right) \underset{n \rightarrow \infty}{\longrightarrow} \Phi(\mathbf{x}) \quad \text { for } k \in \mathbb{N}, \mathbf{x} \in \mathbb{R}^{d}
$$

Proof. We notice that

$$
\left[\mathbf{M}_{n}^{(k)}-\mathbf{a}_{n} \mathbb{B}(\mathbf{r}(n))\right] \mathbb{A}^{-1}(\mathbf{r}(n))=\mathbf{Y}_{0}^{(n)}+\mathbf{N}_{n}^{(k)},
$$

where (see the proof of Theorem 1)

$$
\mathbf{N}_{n}^{(k)}=\left(\overline{\mathbf{M}}_{n}^{(k)}-\mathbf{a}_{n}\right) \mathbb{B}(\mathbf{r}(n)) \mathbb{A}^{-1}(\mathbf{r}(n)) .
$$

To complete the proof it is enough to show that

$$
\begin{equation*}
P\left(\left\|\mathbf{N}_{n}^{(k)}\right\|>\varepsilon\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \quad \text { for all } \varepsilon>0, k \in \mathbb{N} \tag{10}
\end{equation*}
$$

It is easy to see that

$$
\begin{align*}
& P\left(\max \left\{\left|N_{n i}^{(k)}\right|: i \in\{1, \ldots, d\}\right\}>\varepsilon\right) \leq \sum_{i=1}^{d} P\left(\left|N_{n i}^{(k)}\right|>\varepsilon\right) \tag{11}\\
& \leq \sum_{i=1}^{d} P\left(\left|\frac{\bar{M}_{n i}^{(k)}-a_{n}}{b_{n}}\right|>\varepsilon\left(2 \varrho_{i i}^{(n)} \ln n\right)^{1 / 2}\right)
\end{align*}
$$

Since the limit distributions of the sequences $\left\{\left(\bar{M}_{n i}^{(k)}-a_{n}\right) / b_{n}: n \in \mathbb{N}\right\}$ exist for $i \in\{1, \ldots, d\}, k \in \mathbb{N}$ (see for example Galambos [2]), the condition (10) follows from (iv)" and (11).

We emphasize that in the situation considered in Theorem 3 all extreme order statistics have identical limit distributions.

Finally, we formulate a result which is easy to obtain by the method of proof of Proposition 1 and Theorem 3.

Theorem 4. If a d-dimensional, normalized, Gaussian sequence $\left\{\mathbf{X}_{n}\right.$: $n \in \mathbb{N}\}$ is equally correlated with covariance matrix

$$
\operatorname{cov}\left(\mathbf{X}_{m}, \mathbf{X}_{n}\right)=\left(\begin{array}{ll}
\boldsymbol{\Delta}^{(0)} & \boldsymbol{\Delta}^{(1)} \\
\boldsymbol{\Delta}^{(1)} & \boldsymbol{\Delta}^{(0)}
\end{array}\right) \quad(\text { for } n \neq m)
$$

and $\varrho_{i i}^{(1)} \in(0,1)$ for $i \in\{1, \ldots, d\}$, then

$$
P\left(\left[\mathbf{M}_{n}^{(k)}-\mathbf{a}_{n} \mathbb{B}(\mathbf{r}(n))\right] \mathbb{A}^{-1}(\mathbf{r}(n)) \leq \mathbf{x}\right) \underset{n \rightarrow \infty}{\longrightarrow} \Phi_{1}(\mathbf{x}) \quad \text { for } k \in \mathbb{N}, \mathbf{x} \in \mathbb{R}^{d}
$$

where Φ_{1} is the distribution function of a Gaussian vector \mathbf{Y} with

$$
\operatorname{cov}(\mathbf{Y})=\left(\frac{\varrho_{i j}^{(1)}}{\left(\varrho_{i i}^{(1)} \varrho_{j j}^{(1)}\right)^{1 / 2}}\right)_{1 \leq i, j \leq d} \quad \text { and } \quad E \mathbf{Y}=\mathbf{0}
$$

References

[1] S. M. Berman, Equally correlated random variables, Sankhyā A 24 (1962), 155-156.
[2] J. Galambos, The Asymptotic Theory of Extreme Order Statistics, Wiley, New York, 1978.
[3] M. R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer, New York, 1983.
[4] Y. Mittal and D. Ylvisaker, Limit distributions for the maxima of stationary Gaussian processes, Stochastic Process. Appl. 3 (1975), 1-18.
[5] J. Pickands III, Maxima of stationary Gaussian processes, Z. Wahrsch. Verw. Gebiete 7 (1967), 190-223.
[6] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1974.
[7] M. Wiśniewski, Multidimensional point processes of extreme order statistics, Demonstratio Math., to appear.

MATEUSZ WIŚNIEWSKI
TECHNICAL UNIVERSITY OF KIELCE
AL. 1000-LECIA PAŃSTWA POLSKIEGO 7
25-314 KIELCE, POLAND

