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ASYMPTOTIC DISTRIBUTIONS
OF LINEAR COMBINATIONS OF ORDER STATISTICS

Abstract. We study the asymptotic distributions of linear combinations
of order statistics (L-statistics) which can be expressed as differentiable
statistical functionals and we obtain Berry–Esseen type bounds and the
Edgeworth series for the distribution functions of L-statistics. We also an-
alyze certain saddlepoint approximations for the distribution functions of
L-statistics.

1. Introduction. This paper is concerned with the asymptotic be-
haviour of linear combinations of order statistics (or L-statistics), i.e. statis-
tics of the form

(1) Ln =
1
n

n∑
i=1

cinXi:n, n ≥ 1 ,

where cin, i = 1, . . . , n, are fixed real numbers and Xi:n, i = 1, . . . , n, are
the order statistics of a sequence X1, . . . , Xn of i.i.d. random variables (rv’s)
with common distribution function (df) F . L-statistics are widely used in
the robust estimation of location and scale parameters.

The first step in the investigation of L-statistics was to find conditions
assuring their asymptotic normality. This problem was studied in the sixties
and seventies by Chernoff, Gastwirth and Johns (see [7]), Stigler (see [19,
20, 21]) and Shorack (see [17, 18]), and a little later by Boos (see [4, 5]). A
short summary of their results is included in the book [16] in Chapter 8.2.4.

The next step in the development of the theory was to obtain Berry–
Esseen type bounds for L-statistics and the approximation of their distri-
butions by the first terms of Edgeworth expansions and by the saddlepoint
method. Sections 2 and 3 of the present paper give a short summary of the
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already existing results and some new ones achieved under modified assump-
tions (Theorems 2, 3, 4 and approximations (38) and (48)). Following Boos
(see [5]) we treat the L-statistics as differentiable statistical functions and
utilize the von Mises representation. For the estimation of the remainder
term of the von Mises expansion we apply the result of Inglot and Led-
wina from the theory of strong approximations (see [12]). The investigation
of the behaviour of the leading term of this expansion requires only some
well-known facts concerning the distributions of the mean and U -statistics.

2. Berry–Esseen type bounds. In 1977 Bjerve (see [2]) obtained
the Berry–Esseen rate O(n−1/2) for generalized L-statistics of the form

Tn =
1
n

n∑
i=1

cinh(Xi:n) ,

where h is some measurable function, under the assumption that a cer-
tain proportion of the observations among the smallest and the largest are
discarded. His theorem concerns the situation when the df F of X1 is con-
siderably smooth. In particular, for L-statistics of the form

(2) En =
1
n

n∑
i=1

J

(
i

n + 1

)
Xi:n ,

where J(s) is a real-valued function which vanishes outside [a, b], 0 < a <
b < 1, the Berry–Esseen bound holds if J(s) and F−1′′(s) satisfy the Lip-
schitz condition on the open interval containing [a, b]. As usual, we write

F−1(s) = inf{x : F (x) ≥ s} .

In 1979 Boos and Serfling (see [6]) investigated L-statistics of the form

(3) In =
1∫

0

F−1
n (s)J(s) ds ,

where Fn(t) is the empirical df based on a sample X1, . . . , Xn. Equi-
valently, these statistics can be expressed by formula (1) with cin =
n

∫ i/n

(i−1)/n
J(s) ds. If J ′(s) satisfies the Lipschitz condition of order δ,

|J ′(s)− J ′(t)| ≤ D|s− t|δ , D > 0 ,

with δ > 1/3 or if J(s) vanishes outside [a, b], 0 < a < b < 1, then providing
that some additional assumptions on the distributions are made the authors
of [6] achieved a Berry–Esseen rate O(n−1/2). As in [2], this result is a
conclusion from a more general theorem.

A short summary of all the above mentioned results can be found in the
book [16] (Ch. 8.2.5).
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The following theorem which puts much weaker conditions on the df F of
X1 and a weight function J(s) was obtained by Helmers in his PhD thesis,
published in 1978.

Let us consider a statistic Ln of the form (1).

Assumption 1. Suppose that a sequence of real numbers 0 < s1, . . .
. . . , sk < 1, k ∈ N, is such that F−1(s) satisfies the Lipschitz condition of
order δ ≥ 1/2 in their neighbourhoods. Suppose further that weights cjln,
1 ≤ l ≤ k, n ≥ 1, where jl = [nsl] + 1, are uniformly bounded and that
there exists some real-valued measurable function G(s) such that

max
1≤i≤n,i 6=j1,...,jk

∣∣∣cin − n

i/n∫
(i−1)/n

G(s) ds
∣∣∣ = O(n−1) as n →∞ .

Below we use the following notation:

σ2 =
∞∫

−∞

∞∫
−∞

J(F (x))J(F (y))[min(F (x), F (y))− F (x)F (y)] dx dy ,(4)

µ =
1∫

0

J(s)F−1(s) ds .(5)

Theorem 1. Let Ln be a statistic which satisfies Assumption 1. If G(s)
satisfies the Lipschitz condition of order 1 on [0, 1] and at the same time
E|X1|3 < ∞ and σ2 > 0, then

sup
x∈R

∣∣∣∣P(√
n

Ln − µ

σ
≤ x

)
− Φ(x)

∣∣∣∣ = O(n−1/2) as n →∞ .

As usual, Φ(x) denotes the df of the standard normal distribution. It
is easy to check that Assumption 1 is satisfied by the L-statistics defined
by (3), and if J(s) satisfies the Lipschitz condition of order 1, also by the
L-statistics given by (2).

None of the above mentioned theorems can be applied when the function
J(s) in (2) and (3) is not continuous, although such a function is very useful
for obtaining a trimmed mean. The following theorem, dealing with this
situation and proved by elementary methods, gives a Berry–Esseen rate
only a little weaker than O(n−1/2).

Theorem 2. Let In be a statistic of the form (3). Suppose that

(6) J(s) vanishes outside [a, b] , 0 < a < b < 1 ,

and J(s) satisfies the Lipschitz condition of order 1 on [a, b], i.e.

(7) |J(s)− J(t)| ≤ D|s− t| , s, t ∈ [a, b] .
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Moreover , assume

F−1(a + η)− F−1(a− η) = O(η)

and

F−1(b + η)− F−1(b− η) = O(η) as η → 0 .

Suppose also that σ2 > 0. Then, uniformly in x ∈ R,

P

(√
n

In − µ

σ
< x

)
= Φ(x) + O

(
log n√

n

)
.

P r o o f. Set T (H) =
∫ 1

0
J(s)H−1(s) ds. Then In = T (Fn). Taking one

term of the von Mises expansion (see [22]) for T (Fn) − T (F ) = In − µ we
get

(8) In − µ =
1
n

n∑
i=1

h(Xi) + R1n ,

where

(9) h(x) = −
∞∫

−∞

[I(y ≥ x)− F (y)]J(F (y)) dy

and

R1n = −
∞∫

−∞

{ Fn(x)∫
F (x)

J(s) ds − J(F (x))[Fn(x)− F (x)]
}

dx ,

with I(y ≥ x) denoting the characteristic function of the set {y ≥ x} (com-
pare [16], Ch. 8.2.4). So, for every c > 0 and arbitrary εn we get

(10)

P

(√
n

In − µ

σ
< x

)
≥ P

(√
n

nσ

n∑
i=1

h(Xi) < x− cεn

)
− P

(√
n

σ
|R1n| > cεn

)
and

P

(√
n

In − µ

σ
< x

)
≤ P

(√
n

nσ

n∑
i=1

h(Xi) < x + cεn

)
+ P

(√
n

σ
|R1n| > cεn

)
.

Next we show that there is a constant c0 > 0 such that for εn =
n−1/2 log n,

(11) P

(√
n

σ
|R1n| > c0εn

)
= O(n−1/2) .
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Let η1 > 0 be such that for some constant c1 > 0 and for every 0 < η
< η1,

(12)
F−1(a + η)− F−1(a− η) ≤ c1η and

F−1(b + η)− F−1(b− η) ≤ c1η .

Next, take η0 such that 0 < η0 < min{a, 1− b, 1
2 (b− a), η1}. Put Mn =

supx∈R |Fn(x)− F (x)|. For every c > 0,

P

(√
n

σ
|R1n| > cεn

)
≤ P (Mn > η0)(13)

+ P

(
{Mn ≤ η0} ∩

{√
n

σ
|R1n| > cεn

})
.

Applying (12) and the conditions on J (see (6) and (7)), it is easy to check
that under the assumption Mn ≤ η0, we have∣∣∣∣√n

σ
R1n

∣∣∣∣ ≤ |
√

nD2M
2
n| ,

where D2 = (c2 + D1)/σ, c2 = 4c1 sup0≤s≤1 |J(s)|, and D1 = D[F−1(b) −
F−1(a)]. Thus using (13) and the Dvoretzky–Kiefer–Wolfowitz (D-K-W)
inequality we conclude that for every c > 0,

P

(√
n

σ
|R1n| > c

log n√
n

)
≤ P (Mn > η0) + P

(√
nD2M

2
n > c

log n√
n

)
≤ D0 exp(−2nη2

0) + D0 exp
(
− 2c log n

D2

)
,

where D0 is the constant from the D-K-W inequality. Therefore (11) holds
with the constant c0 = D2/4.

Next we estimate

P

(√
n

σ

1
n

n∑
i=1

h(Xi) < x± c0
log n√

n

)
.

From (9) and (6) it is immediate that for every x ∈ R,

|h(x)| ≤
∞∫

−∞

|J(F (y))| dy =
F−1(b+η0)∫
F−1(a)

|J(F (y))| dy(14)

≤ [F−1(b + η0)− F−1(a)] sup
0≤s≤1

|J(s)| < ∞ .

Thus h(X1) is a bounded rv and in particular E|h(X1)|3 < ∞. Applying
Fubini’s Theorem to the right-hand side of (9) we have Eh(X1) = 0. Because
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Eh2(X1) = σ2 > 0 (see [16], Ch. 8.2.4) we can apply the classical Berry–
Esseen Theorem to get

P

(√
n

σ

1
n

n∑
i=1

h(Xi) < x

)
= Φ(x) + O(n−1/2) ,

uniformly in x ∈ R. Because Φ(x) has a bounded derivative we have

P

(√
n

σ

1
n

n∑
i=1

h(Xi) < x± c0
log n√

n

)
= Φ(x) + O

(
log n√

n

)
as n →∞ .

Together with (10) and (11), this completes the proof.

3. Edgeworth expansions. In his 1980 work [11], Helmers gave Edge-
worth expansions for distributions of normalized L-statistics expressed by
(2) and (3), which produce the error of order o(n−1). He achieved his results
by analytic methods, under conditions including the existence of J ′′′(s) on
(0, 1) and E|X1|4 < ∞.

In Theorem 3 below, we give the Edgeworth expansion for L-statistics
of the form (3) which, in the case when J ′(s) satisfies the Lipschitz condi-
tion of order 1 on (0, 1), produces an error of order O((log2 n)/n). In the
proof we use probabilistic methods and apply an already known result for
U -statistics. In comparison with the work of Helmers [11] we weaken the
conditions concerning the smoothness of J(s) but we put some additional
requirements on the distribution of X1.

In the proof of Theorem 3 we need the following lemma.

Lemma 1. Let δ > 0. Suppose that E exp(t|X1|α) < ∞ for some t > 0
and α > 1/(2 + δ). If {εn} is a sequence of positive numbers satisfying

εn = o(n−1/2) and γn = ε2
nnδ+1 →∞ as n →∞ ,

then there exists c > 0 such that for sufficiently large n,

P
(√

n
∞∫

−∞

|Fn(x)− F (x)|δ+2 dx ≥ εn

)
≤ exp(−cγ1/(δ+2)

n ) ,

where, as usual , F (x) denotes the df of the rv X1 and Fn(x) is the empirical
df based on X1, . . . , Xn.

P r o o f. Let U1, . . . , Un be independent uniform (0, 1) rv’s. It is well
known that the joint distribution of X1, . . . , Xn is the same as that of
F−1(U1), . . . , F−1(Un). Therefore we identify Xi with F−1(Ui), i = 1, . . . , n.

Let Γn(x) denote the empirical df based on a sample U1, . . . , Un and let
αn denote the classical empirical process, i.e.

αn(u) =
√

n [Γn(u)− u] , u ∈ (0, 1) .
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It is easy to check that Γn(F (x)) = Fn(x) for every x ∈ R. Thus we obtain
∞∫

−∞

|Fn(x)− F (x)|δ+2 dx =
∞∫

−∞

|Γn(F (x))− F (x)|δ+2 dx

=
1∫

0

|Γn(s)− s|δ+2 dF−1(s) .

Therefore

(15) P
(√

n
∞∫

−∞

|Fn(x)− F (x)|δ+2 dx ≥ εn

)
= P

(√
n

1∫
0

|Γn(s)− s|δ+2 dF−1(s) ≥ εn

)

= P

(
Λ(αn) ≥

√
n

(
εn√
n

)1/(δ+2))
,

where

Λ(x) =
{ 1∫

0

|x(s)|δ+2 dF−1(s)
}1/(δ+2)

.

For any two measurable functions x(s) and y(s),

|Λ(x)− Λ(y)| ≤ Λ(x− y) ≤ A sup
0≤s≤1

|x(s)− y(s)|
|ω(s)|

,

where

ω(s) =
(

log
1

s(1− s)

)−1

, s ∈ (0, 1) ,

and

A =
( 1∫

0

|ω(s)|δ+2 dF−1(s)
)1/(δ+2)

.

Applying the Markov inequality and the condition α(δ + 2) > 1, it is easy
to check that A < ∞.

Hence the functional Λ satisfies the assumptions of Proposition 3.2
of [12]. So there exists a number a > 0 such that for every sequence of
positive numbers xn satisfying

xn → 0 and nx2
n →∞ as n →∞ ,

we get

(16) P (Λ(αn) ≥ xn

√
n) = exp

{
− a

2
nx2

n + o(nx2
n)

}
.
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Therefore, combining (15) and (16), we obtain

P
(√

n
∞∫

−∞

|Fn(x)−F (x)|δ+2 dx ≥ εn

)
= P

(
Λ(αn) ≥

√
n

(
εn√
n

)1/(δ+2))

= exp
{
− a

2
n

(
ε2

n

n

)1/(δ+2)

+ o

(
n

(
ε2

n

n

)1/(δ+2))}
= exp

{
− a

2
γ1/(δ+2)

n + o(γ1/(δ+2)
n )

}
.

Thus, for sufficiently large n and c = a/4 we have

P
(√

n
∞∫

−∞

|Fn(x)− F (x)|δ+2 dx ≥ εn

)
≤ exp(−cγ1/(δ+2)

n ) .

Before we give Edgeworth expansions for L-statistics we introduce the
following notation. Let h(x), σ and µ be as in Section 1 (see (9), (4) and (5)).
Let

(17)

β(x, y) = −
∞∫

−∞

[I(x ≤ z)− F (z)][I(y ≤ z)− F (z)]J ′(F (z)) dz ,

α(x, y) = 1
2 [h(x) + h(y) + β(x, y)] ,

κ3 =
Eh3(X1) + 3E{h(X1)h(X2)β(X1, X2)}

σ3
,

µn = µ +
Eα(X1, X1)

n
,

ϑn(x) = Φ(x)− φ(x)
κ3

6
(x2 − 1)n−1/2 .

Φ and φ denote, as usual, the df and the density of the standard normal
distribution.

We call λ an eigenvalue of the function β(x, y) with respect to the df F
if there exists a function Ψ(x) (an eigenfunction) such that

∞∫
−∞

β(x, y)Ψ(x) dF (x) ≡ λΨ(y) .

Theorem 3. Let In be a statistic given by (3). Suppose that J ′(x) sat-
isfies the Lipschitz condition of order δ > 0 with a constant D < ∞, and

(18) E exp(t|X1|γ) < ∞ for some t > 0 and γ >
1

δ + 2
,

(19) lim sup
|t|→∞

|Eeith(X1)| < 1 ,
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(20) lim sup
|t|→∞

|Eeitα(X1,X1)| < 1 ,

(21) β(x, y) has at least 5 nonzero eigenvalues with respect to F .

Then, uniformly in x ∈ R,

(22) P

(√
n(In − µn)

σ
≤ x

)
= ϑn(x) + O

(
logδ/2+1 n

n(δ+1)/2

)
as n →∞ .

P r o o f. From the definition (3) of In we have In = T (Fn), where T (H) =∫ 1

0
J(s)H−1(s) ds, for any df H. To the expression In − µ = T (Fn)− T (F )

we apply the following von Mises expansion obtained by Serfling (see [16],
Ch. 8.2.5):

In − µ =
1
n2

∑
1≤i,j≤n

α(Xi, Xj) + R2n ,

where

(23) R2n = −
∞∫

−∞

{ Fn(x)∫
F (x)

J(s) ds− J(F (x))[Fn(x)− F (x)]

− 1
2J ′(F (x))[Fn(x)− F (x)]2

}
dx .

Notice that

(24)
1
n2

∑
1≤i,j≤n

α(Xi, Xj) =
n− 1

n
Un +

1
n

Wn ,

where Un =
(
n
2

)−1 ∑
1≤i<j≤n α(Xi, Xj) is a U -statistic with kernel α(x, y),

and

(25) Wn =
1
n

∑
1≤i≤n

α(Xi, Xi) .

Thus we have

In − µn =
n− 1

n
Un + Zn + R2n ,

where

Zn =
1
n

(Wn − Eα(X1, X1)) .

From (19) we conclude that σ2 = Varh(X1) > 0, so for every εn > 0 we
obtain

P

(√
n

σ
(In − µn) ≤ x

)
≤ P

(√
n

σ

n− 1
n

Un ≤ x + 2εn

)
(26)

+ P

(√
n

σ
|Zn + R2n| > 2εn

)
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and

P

(√
n

σ
(In − µn) ≤ x

)
≥ P

(√
n

σ

n− 1
n

Un ≤ x− 2εn

)
(27)

− P

(√
n

σ
|Zn + R2n| > 2εn

)
.

It is evident that

P

(√
n

σ
|Zn + R2n| > 2εn

)
≤ P

(√
n

σ
|Zn| > εn

)
+ P

(√
n

σ
|R2n| > εn

)
.

We examine the expression P
(√n

σ |R2n| > εn

)
. Using the Lipschitz con-

dition for J ′ we obtain

|R2n| ≤
D

2

∞∫
−∞

|Fn(x)− F (x)|δ+2 dx .

Applying Lemma 1 with

(28) εn = c1
logδ/2+1 n

n(δ+1)/2
,

where c1 = D
2σ c(δ+2)/2, we have

(29) P

(√
n

σ
|R2n| > εn

)
= O(n−1) .

Next we consider the expression P
(√n

σ |Zn| > εn

)
. We have

P

(√
n

σ
|Zn| > εn

)
≤ P

(√
n

σ
(Wn − Eα(X1, X1)) > nεn

)
+ P

(√
n

σ
(Wn − Eα(X1, X1)) < −nεn

)
.

It is easily seen that
∞∫

−∞

|I(X1 ≤ x)− F (x)| dx ≤ |X1|+ E|X1| .

Thus, using (18), we see that all the moments of the rv’s α(X1, X1) and
α(X1, X2) are finite. Because α(X1, X1) also satisfies the standard condi-
tion (20) we can apply the Edgeworth expansion of order O(n−1) for the df
of the mean Wn. Thus, it is easy to check that for εn given by (28) we have

(30)
P

(√
n

σ
(Wn − Eα(X1, X1)) > nεn

)
= O(n−1) ,

P

(√
n

σ
(Wn − Eα(X1, X1)) < −nεn

)
= O(n−1) .
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Hence

(31) P

(√
n

σ
|Zn| > εn

)
= O(n−1) .

Next we consider the expression

P

(√
n

σ

n− 1
n

Un ≤ x± 2εn

)
.

From Fubini’s Theorem we have Eα(X1, X2) = 0 and E{α(X1, X2) | X1 =
x} = 1

2h(x). So the assumptions (19) and (21) allow us to apply Corol-
lary 1.1 of [1] (taking g(x) = h(x)/2, Ψ(x, y) = β(x, y)/2, k = 5 and r = 11).
As a result, after some simple calculations exploiting the uniform bounded-
ness of ϑn(x), we obtain

(32) P

(√
n

σ

n− 1
n

Un ≤ x± 2εn

)
= ϑ(x) + O(n−1) + O(εn) as n →∞ .

This result combined with (26)–(29) and (31) gives (22).

R e m a r k 1. The assumption of the existence of k eigenfunctions (in our
case k = 5) for the function β(x, y) can be replaced by a condition easier to
verify: there exist points x1, . . . , xk in the support of the df of X1 such that
the functions β(·, x1), . . . , β(·, xk) are linearly independent (see [1], p. 1478).

Let us consider the case when J ′(s) vanishes outside [a, b], 0 < a < b < 1.
Then we show that (22) holds even if the assumption (18) is not satisfied.
To this end we prove the following lemma.

Lemma 2. Suppose J(s) vanishes outside [a, b], 0 < a < b < 1. Let J ′(s)
satisfy the Lipschitz condition of order δ ∈ (0, 1] on [0, 1]. Then there exists
c > 0 such that for dn = cn−(δ+1)/2 logδ/2+1 n,

P (
√

n|R2n| > dn) = O(n−1) .

P r o o f. In this proof we repeat some parts of the proof of Theorem 2.
Define Mn = supx∈R |Fn(x) − F (x)|. Fix a number η such that 0 < η <
min{a, 1− b}. Then

P (
√

n|R2n| > dn) ≤ P (Mn > η) + P ({Mn ≤ η} ∩ {
√

n|R2n| > dn}) .

It is easy to check that under the assumption Mn ≤ η we have |R2n| ≤
D1M

δ+2
n , where

D1 =
D

2
[F−1(b + η)− F−1(a− η)] < ∞

and D is the constant from the Lipschitz condition for J ′(s).
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Finally, using the D-K-W inequality, we get for c = (2δ/2+1D1)−1,

P (
√

n|R2n| > dn) ≤ P (Mn > η) + P (
√

nD1M
δ+2
n > dn)

≤ D0e
−2nη2

+ D0 exp
(
− 2n

(
dn√
nD1

)2/(δ+2))
= O(n−1) ,

where D0 is the constant from the D-K-W inequality.

Theorem 4. Let J(s) and J ′(s) satisfy the assumptions of Lemma 2. If
the assumptions (19)–(21) of Theorem 3 are satisfied then (22) holds.

P r o o f. Since J(s) is continuous and vanishes outside [a, b],

|h(x)| ≤ sup
0≤s≤1

|J(s)|[F−1(b)− F−1(a)] < ∞

(compare (14)). Similarly we get

|β(x, x)| ≤ sup
0≤s≤1

|J ′(s)|[F−1(b)− F−1(a)] < ∞

and

|β(x, y)| ≤ sup
0≤s≤1

|J ′(s)|[F−1(b)− F−1(a)] < ∞ .

So E|α(X1, X1)|4 < ∞ and E|β(X1, X2)|11 < ∞. Thus we can prove (31)
and (32) in the same way as in the proof of Theorem 3, without using the
condition (18). We also get (29) as a result of Lemma 2. So, repeating the
proof of (26) and (27), we get (22).

4. The saddlepoint approximation. In a fundamental 1954 paper,
Daniels derived a very accurate approximation to the density of the mean
of a sample of independent, identically distributed observations using the
saddlepoint technique of asymptotic analysis (see [8]). The resulting ap-
proximation is in most cases more accurate (especially in the tails) than the
two-term Edgeworth series approximation.

The saddlepoint approximations have been found very useful in a variety
of problems in statistics. Reid in [15] gives the general review of their
applications and suggests using them for approximations of distributions of
L-statistics (p. 222). In this paper we investigate such approximations. At
first we present the saddlepoint approximations to the density and df of the
mean of a sample of independent rv’s.

Let X1, . . . , Xn be i.i.d. rv’s. Denote the moment generating function
of the rv X1 by M(t) = E exp(tX1) and its cumulant generating function
by K(t) = log M(t). Assume that M(t) and K(t) exist in an open neigh-
bourhood of the origin. Then the density of Xn = 1

n

∑n
i=1 Xi is expressed
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as the inversion integral of its moment generating function:

(33) fXn
(x) =

n

2πi

r+i∞∫
r−i∞

exp{n[K(t)− tx]} dt ,

where r ∈ R is such that M(r) < ∞. The leading contribution to the value
of the integral (33) comes from a small region near the real saddlepoint
t̂ = t̂(x) of the function K(t)− tx, i.e. the real number defined by

(34) K ′(t̂ ) = x, t̂ ∈ R ,

and the saddlepoint approximation to the density of the mean Xn is

(35) fXn
(x) =

√
n

2πK ′′(t̂ )
exp{n[K(t̂ )− t̂x]}[1 + O(n−1)]

(see [8]). In the same paper Daniels showed that a unique real root of the
saddlepoint equation (34) exists under very broad conditions.

In 1980, Lugannani and Rice, applying the idea of Bleinstein (see [3]),
derived the approximation for the tail probability of Xn which proved to be
very accurate over the whole range of arguments for which the saddlepoints
exist (see [14]). Their result is

(36) P (Xn > x) = 1− Φ(ξ) + φ(ξ)
{

1
z
− 1

ξ
+ O(n−3/2)

}
,

where

z = t̂

√
nK ′′(t̂ ) , ξ =

√
2n[t̂x−K(t̂ )] sgn(t̂ ) .

At x = EX1, (36) reduces to

P (Xn > EX1) =
1
2
− 1

6
λ√
2πn

+ O(n−3/2) ,

where λ = K(3)(0)/[K ′′(0)]3/2.
The approximation (36) has been discussed by Daniels in [9]. Some

remarks on the uniformity of the error in (35) and (36) can be found in [13].
For many standard distributions of Xi’s the error in (36) can be bounded
uniformly in some neighbourhood of x = 0 if the saddlepoints exist for all
x from some larger neighbourhood of 0. In that case from (36) we have

P

(√
n

VarX1
Xn > x

)
= P (Xn > x

√
n−1 VarX1)(37)

= 1− Φ(ξn) + φ(ξn)
{

1
zn
− 1

ξn
+ O(n−3/2)

}
,
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where

zn = t̂n

√
nK ′′(t̂n) ,

ξn =
√

2n[t̂nx
√

n−1 VarX1 −K(t̂n)] sgn(t̂n) ,

and the saddlepoint t̂n is given by

K ′(t̂n) = x
√

n−1 VarX1 , t̂n ∈ R .

For L-statistics of the form (3) we have

In − µ =
1
n

n∑
i=1

h(Xi) + R1n

(see (8)). In most cases we can apply (37) for the mean hn = 1
n

∑n
i=1 h(Xi).

Therefore we would like to know how accurate is the approximation of the
df of a normalized L-statistic by

(38) LR(x) = Φ(ξn)− φ(ξn)
{

1
zn
− 1

ξn

}
,

where ξn and zn are given by (37) with K(t) = log E[exp(th(X1))]. To
answer this question we compare the Edgeworth series for the mean hn and
for the L-statistic In.

The Edgeworth series for the statistics In and En (see (3) and (2)) can
be found in [11]. They were obtained under assumptions on the smoothness
of J(s) (the existence of J ′′′(s)) and on the existence of E|X1|4. Denote by
Sn any of the statistics In and En. We have

(39) P

(√
n

Sn − µ

σ
≤ x

)
= Φ(x)−φ(x)

[
κ3

6σ3
(x2−1)−a3

]
n−1/2+O(n−1) ,

with σ, µ, κ3 as in (4), (5) and (17). The parameter a3 for En is given by

a3 =
1
σ

[
1
2

1∫
0

s(1− s)J ′(s) dF−1(s)−
1∫

0

F−1(s)
(

1
2
− s

)
J ′(s) ds

]
and for In by

a3 =
1
2σ

1∫
0

s(1− s)J ′(s) dF−1(s)

(see [11], p. 1363).
Since Eh(X1) = 0 and Varh(X1) = σ2, the Edgeworth series for the

mean hn is

(40) P

(√
n

σ
hn ≤ x

)
= Φ(x)− φ(x)(x2 − 1)

Eh3(X1)
6σ3

n−1/2 + O(n−1) .
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Comparing (39) and (40) we obtain

(41) P

(√
n

Sn − µ

σ
≤ x

)
= P

(√
n

σ
hn ≤ x

)
+ D(x)n−1/2 + O(n−1) ,

where

D(x) = φ(x)
[
Eh3(X1)− κ3

6σ3
(x2 − 1) + a3

]
.

Applying (37) for hn we get

(42) P

(√
n

σ
hn ≤ x

)
= LR(x) + O(n−3/2) ,

where LR(x) is given by (38). Thus from (41) and (42) we have

(43) P

(√
n

Sn − µ

σ
≤ x

)
= LR(x) + D(x)n−1/2 + O(n−1) .

In most cases D(x) 6= 0, so we conclude that the approximation of
P (
√

n(Sn − µ) ≤ σx) by LR(x) gives an error of order O(n−1/2). How-
ever, if the density function of X1 is symmetric about EX1 and J(s) is
symmetric about 1/2, then Eh3(X1) = 0, κ3 = 0 and a3 = 0. Therefore in
that case D(x) ≡ 0 and (43) reduces to

(44) P

(√
n

Sn − µ

σ
≤ x

)
= LR(x) + O(n−1) .

On the other hand, from (39) we get

P

(√
n

Sn − µ

σ
≤ x

)
= Φ(x) + O(n−1) .

Thus we have shown that in such a symmetric case the approximations of
P (
√

n(Sn − µ) ≤ σx) by the Edgeworth series and LR(x) are asymptot-
ically equivalent. We compare the behaviour of these approximations by
calculating some examples (see Section 5).

Easton and Ronchetti [10] have proposed another application of the sad-
dlepoint method for approximating the density functions of L-statistics. We
briefly recall their approach and also suggest an alternative way of using
the Lugannani–Rice formula to approximate the df of Sn. The Easton–
Ronchetti approach can be applied when the Edgeworth expansion up to
and including the term of order o(n−1) for the density fn(x) of the consid-
ered statistic Sn is available, i.e.

(45) fn(x) = f̃n(x) + o(n−1) ,



216 M. Bogdan

where

f̃n(x) = φ(x)
[
1 +

κ3n

6
(x3 − 3x) +

κ4n

24
(x4 − 6x2 + 3)

+
κ2

3n

72
(x6 − 15x4 + 45x2 − 15)

]
and κ3n and κ4n are known numbers. Their approach is as follows: let

K̃n(t) = log
∞∫

−∞

etxf̃n(x) dx and R̃n(t) = K̃n(nt)/n .

By Fourier inversion,

f̃n(x) =
n

2πi

τ+i∞∫
τ−i∞

exp[n(R̃n(t)− tx)] dt .

Applying the saddlepoint technique to this integral Easton and Ronchetti
have obtained

f̃n(x) = f̂n(x) + O(n−1) ,

where

(46) f̂n(x) =

√
n

2πR̃′′n(t̂ )
exp[n(R̃n(t̂ )− t̂x)] ,

and t̂ is the saddlepoint of the function R̃n(t) − tx, i.e. R̃′n(t̂ ) = x, t̂ ∈ R.
They have also noticed that

(47) R̃n(t) = mnt + n
σ2

nt2

2
+

κ3nσ3
nn2t3

6
+

κ4nσ4
nn3t4

24
,

where mn is the mean and σ2
n the variance of Sn, and that the replacement

in (47) of mn and σn by

mn = m1 +
a1

n
+ o(n−1) ,

σn =
b0

n1/2
+

b1

n3/2
+ o(n−3/2) ,

does not change the order of the approximation of fn(x) by f̂n(x). Finally,
Easton and Ronchetti obtained the df of Sn by numerical integration of the
approximated density f̂n(x).

In this paper, by analogy with the above presented method of approxi-
mating a density function, we propose approximating the df of Sn by utiliz-
ing the Lugannani–Rice formula (36) with K(t) = R̃n(t). Thus to estimate
P (
√

n(Sn − µ) ≤ σx) we use the expression

(48) Qn(x) = Φ(ξn)− φ(ξn)
(

1
zn
− 1

ξn

)
,
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where

zn = t̂n

√
nR̃′′n(t̂n) , ξn =

√
2n

[
t̂nx

σ√
n
− R̃n(t) + µt

]
sgn(t̂n) ,

and t̂n is given by

R̃′n(t̂n)− µ = x
σ√
n

.

We verify the above mentioned approximations in the examples below.
Notice that while approximating the density of Sn and P

(√n
σ (Sn − µ)

≤ x
)

by f̂n(x) and Qn(x) respectively, we only use the information given by
the Edgeworth series (45), so we should not expect our results to be much
better than the Edgeworth expansion.

5. Examples

Example 1. Consider the asymptotically first-order efficient L-estimator
∆n for the centre θ of the logistic distribution

F (x) =
1

1 + exp(θ − x)
,

which is given by (2), with J(s) = 6s(1− s), i.e.

∆n =
1
n

n∑
i=1

6
i

n + 1

(
1− i

n + 1

)
Xi:n .

Some approximations of the df of this estimator were investigated by Helmers
[11] and Easton and Ronchetti [10].

The results of the approximations of P (
√

n(∆n − µ) ≤ σx), obtained by
several different methods, for sample sizes n = 3, 4, 10, 25, can be found in
Tables 1–4.

In column 2 of Tables 1–4 we denote by Pn(x) the exact values of
P (
√

n(∆n − µ) ≤ σx), taken from the work of Helmers [11]. They were
calculated by numerical integration for n = 3 and 4 and by Monte Carlo
simulation for n = 10 and 25.

Helmers [11] has given the Edgeworth expansion of order o(n−1) for the
df of the normalized ∆n (see p. 1364)

P

(√
n

∆n − µ

σ
≤ x

)
= Hn(x) + o(n−1) ,

where µ = θ, σ2 = 3 and

(49) Hn(x) = Φ(x)− φ(x)
[

1
20n

(x3 − 3x) +
11− π2

n
x

]
.
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The values of Hn(x) calculated by Helmers can be found in column 5 of
Tables 1–4. The values of Φ(x) are given in column 3 of these tables. It
follows from (49) that Φ(x) approximates the df of ∆n with an error of
order O(n−1).

In column 4 the values of LR(x) given by (38) can be found.

For the function J(s) = 6s(1− s),

h(X1) = −
∞∫

−∞

[I(y ≥ X1)− F (y)]J(F (y)) dy = 6F (X1)− 3

is a uniform rv on [−3, 3]. For the uniform distribution the Lugannani–Rice
formula (36) gives a uniformly bounded error in some neighbourhood of its
mean. Therefore using (37) we have

P

(√
n

σ
hn ≤ x

)
= LR(x) + O(n−3/2) as n →∞ .

Because J is symmetric about 1/2 and the density of X1 is symmetric
about θ, we conclude that (44) holds for ∆n, so the approximation LR(x)
for the df of the normalized ∆n gives an error not larger than O(n−1)
(it is easy to check that this error is not o(n−1)). Taking the Edgeworth
series (49), Easton and Ronchetti in [10] have approximated P (

√
n(∆n−µ)

≤ σx) by numerical integration of f̂n(x) given by (46). In the considered
case

(50) R̃n(t) = mnt +
1
2
nσ2

nt2 +
1
20

σ4
nn3t4 ,

where mn = θ + O(n−2) and

σn =

√
3
n

+
11− π2

n

√
3
n

+ O(n−2)

(see [10], equations (2.5), (4.2), (4.3) and the remark below equation (4.1)).

Their results, denoted by ER1(x), can be found in column 6 of Tables
1–4. Since usually f̂n(x) does not integrate to 1, Easton and Ronchetti
have also calculated the values of ER1(x) rescaled in such a way that the
approximation obtained has got the features of df. These modified results,
denoted by ER2(x), are given in column 7 of Tables 1–4. In column 8 the
values of Qn given by (48) (with R̃n(t) as in (50)) can be found.
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TABLE 1

Exact and approximate df of ∆n; n = 3

1 2 3 4 5 6 7 8

x Pn(x) Φ(x) LR(x) Hn(x) ER1(x) ER2(x) Qn(x)

0.2 .5640 .5793 .5754 .5536 .5735 .5617 .5606
0.4 .6262 .6554 .6484 .6069 .6320 .6217 .6196
0.6 .6850 .7257 .7167 .6592 .6874 .6787 .6755
0.8 .7391 .7881 .7786 .7099 .7387 .7314 .7273
1.0 .7875 .8413 .8327 .7582 .7850 .7790 .7741
1.2 .8248 .8849 .8783 .8032 .8259 .8210 .8154
1.4 .8658 .9192 .9152 .8439 .8610 .8572 .8512
1.6 .8958 .9452 .9439 .8796 .8908 .8877 .8816
1.8 .9202 .9641 .9651 .9100 .9154 .9130 .9070
2.0 .9397 .9772 .9800 .9348 .9353 .9335 .9278
2.2 .9550 .9861 .9897 .9543 .9513 .9499 .9446
2.4 .9669 .9918 .9956 .9691 .9638 .9628 .9580
2.6 .9758 .9953 .9987 .9798 .9734 .9727 .9685
2.8 .9825 .9974 − .9873 .9807 .9802 .9766
3.0 .9875 .9987 − .9923 .9862 .9858 .9828

TABLE 2

Exact and approximate df of ∆n; n = 4

1 2 3 4 5 6 7 8

x Pn(x) Φ(x) LR(x) Hn(x) ER1(x) ER2(x) Qn(x)

0.2 .5663 .5793 .5763 .5601 .5750 .5650 .5642
0.4 .6307 .6554 .6501 .6190 .6366 .6281 .6266
0.6 .6919 .7257 .7190 .6758 .6949 .6877 .6856
0.8 .7469 .7881 .7811 .7295 .7484 .7424 .7397
1.0 .7963 .8413 .8350 .7790 .7962 .7914 .7882
1.2 .8391 .8849 .8801 .8236 .8379 .8341 .8305
1.4 .8752 .9192 .9163 .8627 .8732 .8703 .8665
1.6 .9049 .9452 .9442 .8960 .9026 .9003 .8966
1.8 .9287 .9641 .9647 .9235 .9264 .9247 .9211
2.0 .9474 .9772 .9790 .9454 .9453 .9440 .9407
2.2 .9618 .9861 .9885 .9622 .9600 .9591 .9561
2.4 .9726 .9918 .9942 .9748 .9712 .9705 .9679
2.6 .9807 .9953 .9975 .9837 .9796 .9791 .9769
2.8 .9865 .9974 .9991 .9898 .9857 .9854 .9836
3.0 .9907 .9987 .9998 .9939 .9902 .9899 .9885
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TABLE 3

Exact and approximate df of ∆n; n = 10

1 2 3 4 5 6 7 8

x Pn(x) Φ(x) LR(x) Hn(x) ER1(x) ER2(x) Qn(x)

0.2 .5734 .5793 .5781 .5716 .5776 .5725 .5723
0.4 .6445 .6554 .6533 .6409 .6468 .6426 .6423
0.6 .7089 .7257 .7231 .7058 .7115 .7080 .7075
0.8 .7680 .7881 .7854 .7647 .7698 .7670 .7665
1.0 .8196 .8413 .8389 .8164 .8208 .8186 .8180
1.2 .8629 .8849 .8831 .8604 .8638 .8622 .8615
1.4 .8985 .9192 .9181 .8966 .8990 .8978 .8971
1.6 .9275 .9452 .9448 .9255 .9269 .9260 .9254
1.8 .9486 .9641 .9643 .9478 .9483 .9477 .9472
2.0 .9646 .9772 .9790 .9645 .9644 .9639 .9635
2.2 .9764 .9861 .9869 .9766 .9760 .9757 .9753
2.4 .9845 .9918 .9926 .9850 .9842 .9840 .9837
2.6 .9905 .9953 .9961 .9907 .9898 .9897 .9895
2.8 .9937 .9974 .9980 .9944 .9936 .9935 .9934
3.0 .9959 .9987 .9991 .9967 .9961 .9960 .9959

TABLE 4

Exact and approximate df of ∆n; n = 25

1 2 3 4 5 6 7 8

x Pn(x) Φ(x) LR(x) Hn(x) ER1(x) ER2(x) Qn(x)

0.2 .5785 .5793 .5788 .5762 .5787 .5763 .5763
0.4 .6492 .6554 .6546 .6496 .6518 .6499 .6498
0.6 .7152 .7257 .7247 .7178 .7196 .7181 .7181
0.8 .7728 .7881 .7870 .7787 .7803 .7791 .7791
1.0 .8295 .8413 .8404 .8314 .8326 .8317 .8316
1.2 .8756 .8849 .8842 .8751 .8761 .8754 .8753
1.4 .9100 .9192 .9188 .9102 .9108 .9103 .9103
1.6 .9376 .9452 .9450 .9373 .9377 .9373 .9373
1.8 .9580 .9641 .9641 .9576 .9577 .9575 .9574
2.0 .9732 .9772 .9775 .9721 .9722 .9720 .9720
2.2 .9830 .9861 .9864 .9823 .9822 .9821 .9821
2.4 .9895 .9918 .9921 .9891 .9890 .9889 .9889
2.6 .9942 .9953 .9956 .9935 .9933 .9933 .9933
2.8 .9963 .9974 .9977 .9962 .9961 .9961 .9961
3.0 .9982 .9987 .9988 .9979 .9978 .9978 .9978
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Comparing the asymptotically equivalent approximations Φ(x) and
LR(x), which are shown in columns 3 and 4, we notice that for larger sam-
ple sizes (n = 10, 20) they give very similar results over the whole range
of x. For very small sample sizes (n = 3, 4) and x ≤ 1.6, the approximation
LR(x) is a little better but for x ≥ 2.2 it becomes much worse than Φ(x). We
could expect this to happen because near the ends of the support ([−3, 3])
of the density of the mean hn its df cannot be an accurate approximation
for the df of the normalized ∆n, whose support is the whole real line. For
larger sample sizes this phenomenon is not so significant.

The approximations from columns 5–8 (Hn(x), ER1(x), ER2(x) and
Qn(x)) are much more accurate than LR(x) and Φ(x). For larger n their
results are very similar to each other, and the differences are within the
bounds of the error of the Monte Carlo method. Also for very small n and
x > 1.8, the values in columns 5–8 are comparable.

For very small n and x ≤ 1.8, the results of the approximation by the
Edgeworth series Hn(x) are worse than those of Qn(x), ER1(x) and ER2(x),
which are still similar to each other. We should remark that to compute
Qn(x) we do not need to integrate numerically, unlike in the cases of ER1(x)
and ER2(x), so Qn(x) is easier to calculate.

Example 2. We consider the estimator χn for the centre θ of the logistic
distribution, given by (3) with J(s) = 6s(1− s).

In this case the Edgeworth series obtained by Helmers [11] is of the form

P

(√
n

χn − µ

σ
≤ x

)
= Hn(x) + o(n−1) ,

where µ = θ, σ2 = 3 and

(51) Hn(x) = Φ(x)− φ(x)
[

1
20n

(x3 − 3x) +
10− π2

n
x

]
.

So, similarly to Example 1, we have

P

(√
n

χn − µ

σ
≤ x

)
= Φ(x) + O(n−1) .

Furthermore,

P

(√
n

χn − µ

σ
≤ x

)
= LR(x) + O(n−1) ,

where LR(x) is as in (38) with h(x) = 6F (x)− 3.
Tables 5–8 are similar to Tables 1–4. In column 2 the exact values of

P
(√

nχn−µ
σ ≤ x

)
are given. For n = 3 and 4 they were calculated by nu-

merical integration of the joint density of the random vector X1:n, . . . , Xn:n.
For n = 10 and 25 we have applied the Monte Carlo method.
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In columns 3 and 4 of Tables 5–8 the values of Φ(x) and LR(x), re-
spectively, are given, which are the same as in Tables 1–4. In column 5,
the values of the Edgeworth series Hn(x) given by (51) can be found. In
column 6 the values of Qn(x) calculated from (48) are shown, with

R̃n(t) = mnt +
1
2
nσ2

nt2 +
1
20

n3σ4
nt4 ,

where mn = θ + O(n−1) and

σn =

√
3
n

+
10− π2

n

√
3
n

+ O(n−2) .

Comparing different approximations of P
(√

n χn−µ
σ ≤ x

)
we notice that

they are all very accurate, even for small n. This happens because the
statistics given by (3) are more regular than those given by (2).

Summary of the examples. The analysis of our examples shows that
approximations based on the saddlepoint method (LR(x), ER1(x), ER2(x),
Qn(x)) can be applied for small x and n. For larger n (n ≥ 10), Φ(x) gives
an approximation comparable with LR(x), and the Edgeworth series Hn(x)
comparable with ER1(x), ER2(x) and Qn(x). In that case serious numerical
difficulties resulting from the saddlepoint method disqualify it.

TABLE 5

Exact and approximate df of χn; n = 3

1 2 3 4 5 6

x Pn(x) Φ(x) LR(x) Hn(x) Qn(x)

0.2 .5801 .5793 .5754 .5797 .5797
0.4 .6568 .6554 .6484 .6560 .6557
0.6 .7270 .7257 .7167 .7259 .7252
0.8 .7885 .7881 .7786 .7872 .7861
1.0 .8404 .8413 .8327 .8389 .8374
1.2 .8825 .8849 .8783 .8809 .8793
1.4 .9154 .9192 .9152 .9138 .9127
1.6 .9404 .9452 .9439 .9388 .9376
1.8 .9588 .9641 .9651 .9573 .9567
2.0 .9721 .9772 .9800 .9706 .9702
2.2 .9813 .9861 .9897 .9803 .9800
2.4 .9877 .9918 .9956 .9870 .9868
2.6 .9920 .9953 .9987 .9916 .9914
2.8 .9948 .9974 − .9947 .9945
3.0 .9967 .9987 − .9967 .9966
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TABLE 6

Exact and approximate df of χn; n = 4

1 2 3 4 5 6

x Pn(x) Φ(x) LR(x) Hn(x) Qn(x)

0.2 .5798 .5793 .5763 .5796 .5796
0.4 .6563 .6554 .6501 .6558 .6557
0.6 .7264 .7257 .7190 .7258 .7255
0.8 .7882 .7881 .7811 .7874 .7868
1.0 .8403 .8413 .8350 .8395 .8386
1.2 .8828 .8849 .8801 .8819 .8809
1.4 .9161 .9192 .9163 .9151 .9142
1.6 .9413 .9452 .9442 .9404 .9396
1.8 .9599 .9641 .9647 .9590 .9584
2.0 .9731 .9772 .9790 .9724 .9720
2.2 .9824 .9861 .9885 .9818 .9815
2.4 .9886 .9918 .9942 .9882 .9881
2.6 .9928 .9953 .9975 .9925 .9924
2.8 .9955 .9974 .9991 .9954 .9953
3.0 .9972 .9987 .9998 .9972 .9971

TABLE 7

Exact and approximate df of χn; n = 10

1 2 3 4 5 6

x Pn(x) Φ(x) LR(x) Hn(x) Qn(x)

0.2 .5818 .5793 .5781 .5794 .5794
0.4 .6569 .6554 .6533 .6556 .6556
0.6 .7256 .7257 .7231 .7258 .7257
0.8 .7893 .7881 .7854 .7879 .7877
1.0 .8412 .8413 .8389 .8406 .8404
1.2 .8841 .8849 .8831 .8837 .8835
1.4 .9172 .9192 .9181 .9176 .9174
1.6 .9427 .9452 .9448 .9433 .9431
1.8 .9622 .9641 .9643 .9620 .9619
2.0 .9763 .9772 .9790 .9753 .9752
2.2 .9856 .9861 .9869 .9844 .9843
2.4 .9904 .9918 .9926 .9904 .9903
2.6 .9941 .9953 .9961 .9942 .9942
2.8 .9961 .9974 .9980 .9966 .9966
3.0 .9976 .9987 .9991 .9981 .9981
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TABLE 8

Exact and approximate df of χn; n = 25

1 2 3 4 5 6

x Pn(x) Φ(x) LR(x) Hn(x) Qn(x)

0.2 .5782 .5793 .5788 .5793 .5793
0.4 .6552 .6554 .6546 .6555 .6555
0.6 .7240 .7257 .7247 .7258 .7257
0.8 .7875 .7881 .7870 .7880 .7880
1.0 .8412 .8413 .8404 .8411 .8410
1.2 .8827 .8849 .8842 .8844 .8844
1.4 .9164 .9192 .9188 .9186 .9185
1.6 .9433 .9452 .9450 .9444 .9444
1.8 .9614 .9641 .9641 .9633 .9632
2.0 .9758 .9772 .9775 .9765 .9764
2.2 .9850 .9861 .9864 .9854 .9854
2.4 .9910 .9918 .9921 .9912 .9912
2.6 .9946 .9953 .9956 .9949 .9949
2.8 .9974 .9974 .9977 .9971 .9971
3.0 .9982 .9987 .9988 .9984 .9984
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