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HAMILTONICITY AND THE 3-OPT PROCEDURE

FOR THE TRAVELING SALESMAN PROBLEM

Abstract. The 3-Opt procedure deals with interchanging three edges of a
tour with three edges not on that tour. For n ≥ 6, the 3-Interchange Graph
is a graph on 1

2
(n − 1)! vertices, corresponding to the hamiltonian tours

in Kn; two vertices are adjacent iff the corresponding hamiltonian tours
differ in an interchange of 3 edges; i.e. the tours differ in a single 3-Opt
step. It is shown that the 3-Interchange Graph is a hamiltonian subgraph
of the Symmetric Traveling Salesman Polytope. Upper bounds are derived
for the diameters of the 3-Interchange Graph and the union of the 2- and
the 3-Interchange Graphs. Finally, some new adjacency properties for the
Asymmetric Traveling Salesman Polytope and the Assignment Polytope are
given.

1. Introduction. The 3-Opt procedure is used to decrease the length
of a given tour by interchanging three edges of the given tour with three
new edges. The use of interchanging two edges and the corresponding 2-
Interchange Graph have been studied in [9]. We concentrate in this paper
on the 3-Interchange Graph. Kn = (V,E) denotes the complete graph on
n vertices. Denote by Sn the set of all tours (hamiltonian cycles) in Kn.
Define the characteristic vector of t ∈ Sn, xt ∈ R

E , by xt
e = 1 if e ∈ t and

xt
e = 0 if e 6∈ t. The polytope Qn

T := conv{xT ∈ R
E | T ∈ Sn} is called the

Symmetric Traveling Salesman Polytope; see e.g. [2]. Its skeleton is denoted
by Skel(Qn

T ). Note that the vertex set of Skel(Qn
T ) is Sn, and that

(1.1) t1, t2 ∈ Sn are adjacent on Skel(Qn
T ) iff for every λ with 0 ≤ λ ≤ 1,

the point λt1+(1−λ)t2 cannot be expressed as a convex combination
of elements of Sn \ {t1, t2}.
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Let E(t) := {e ∈ E | xt
e = 1} be the edge set of the tour t. Then (see e.g. [3],

Lemma 1.2.23) the following holds:

(1.2) t1, t2 ∈ Sn are adjacent in Skel(Qn
T ) if there does not exist a tour

t 6= t1, t2 such that E(t1) ∩ E(t2) ⊂ E(t) ⊂ E(t1) ∪ E(t2).

The k-Interchange Graph of Qn
T , denoted by Intk(Qn

T ), is the graph with
the same vertex set as Qn

T and with t1, t2 ∈ Sn adjacent on Intk(Qn
T ) iff t1

and t2 differ in an interchange of k edges; 2 ≤ k ≤ n. In this paper we
concentrate on the case k = 3. The case k = 2 is discussed in [9], and the
case k ≥ 4 in [10].

2. Adjacency on Skel(Qn
T ). In [9] it is shown that Int2(Q

n
T ) is a

spanning subgraph of Skel(Qn
T ). The following theorem asserts that the

same holds for Int3(Q
n
T ). In [10] it is shown that Intk(Qn

T ) is in general not
a subgraph of Skel(Qn

T ) for n ≥ 4.

Theorem 1. For n ≥ 3, Int3(Q
n
T ) is a spanning subgraph of Skel(Qn

T ).

P r o o f. Let t1 be any tour in Kn and let (a, b), (c, d) and (e, f) be
pairwise different edges of t1. Using (1.2), we will show that two adjacent
vertices on Int3(Q

n
T ) are also adjacent on Skel(Qn

T ).

C a s e 1: No two of the edges (a, b), (c, d) and (e, f) are adjacent. The
edge set E(t1) \ {(a, b), (c, d), (e, f)} can then be extended in Kn to a tour
different from t1 in four different ways. Let t2, t3, t4, t5 be these tours,
schematically depicted in Fig. 1. Note that the tours t2, t3, t4 have the
same structure.

Fig. 1

We will restrict ourselves to the proof that t1 and t2 are adjacent and
show that there is no tour t 6= t1, t2 such that E(t1) ∩ E(t2) ⊂ E(t) ⊂
E(t1)∪E(t2). Suppose, to the contrary, that such a tour t exists. If (a, b) ∈
E(t), then (a, c), (b, e) 6∈ E(t) and hence (c, d), (e, f) ∈ E(t), so that t = t1,
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which is a contradiction. If (a, c) ∈ E(t), then (a, b), (c, d) 6∈ E(t) and hence
(b, e), (d, f) ∈ E(t), so that t = t2, which is also a contradiction. Therefore,
t1 and t2 are adjacent.

C a s e 2: If two of the edges (a, b), (c, d), (e, f) of t1 are adjacent, say (a, b)
and (e, f) with a = f , then there is precisely one way to extend the edge set
E(t1) \ {(a, b), (c, d), (e, f)} to a tour in Kn different from t1; see Fig. 2.

Fig. 2

The proof of Case 2 is left to the reader. The conclusion is that any two
tours t1 and t in Kn with precisely three edges interchanged are adjacent in
Skel(Qn

T ).

3. The degree of the vertices of Int3(Q
n
T ). In [9] it is shown that

the degree of Int2(Q
n
T ) is

(

n
2

)

−
(

n
1

)

. In the following theorem the degree of
the vertices of Int3(Q

n
T ) is calculated.

Theorem 2. For n ≥ 3, Int3(Q
n
T ) is a

[

4
(

n
3

)

− 6
(

n
2

)

+ 5
(

n
1

)]

-regular

subgraph of Skel(Qn
T ).

P r o o f. The proof is carried out simply by counting the number of tours
that can be obtained by replacing three edges in a given tour in Kn. In gen-
eral, there are

(

n
3

)

ways for choosing three edges from a tour. Taking the
adjacency of these three edges into account, there are three possibilities to be
considered. First, there are n ways to choose three pairwise adjacent edges.
Clearly, it is not possible to construct a new tour by replacing these three
edges. Second, there are n(n− 4) ways to choose three edges with precisely
two adjacent ones. There is only one way to construct a new tour. See Case 2
of Theorem 1. Third, there remain

(

n
3

)

−n(n−5) ways to choose three non-
adjacent edges. Then there are four ways to construct a new tour; see also
Case 1 of Theorem 1. Adding the number of tours that can be constructed
by replacing three edges of a given tour, we obtain the desired formula.

Since Int2(Q
n
T ) and Int3(Q

n
T ) are edge-disjoint subgraphs of Skel(Qn

T ), it
follows that Skel(Qn

T ) is a regular graph with degree at least 4
(

n
3

)

− 5
(

n
2

)

+

4
(

n
1

)

. An interesting open problem is to determine the degree of the vertices
of Skel(Qn

T ). The following table shows some calculations for n = 4 to 12.
In the second column the number of vertices of Skel(Qn

T ) is listed. The
third, fourth and fifth columns contain the degrees of Int2(Q

n
T ), Int3(Q

n
T )



354 G. Sierksma

and Skel(Qn
T ) respectively; the calculations are carried out by brute force

computer calculations.

n |Sn| δ(Int2(Q
n

T
)) δ(Int3(Q

n

T
)) δ(Skel(Qn

T
))

4 3 2 2
5 12 5 5 10
6 60 9 20 41
7 360 14 49 168
8 2520 20 96 730
9 20160 27 165 3555

10 181440 35 260 19391
11 1814400 44 385 115632
12 19958400 54 544 741273

4. Hamiltonicity of Int3(Q
n
T ). The Grötschel–Padberg conjecture

(see [2]), stating that the skeleton of the Symmetric Traveling Salesman
Polytope is hamiltonian, was settled in [6]. The proof in [9] relies on the
hamiltonicity of the 2-Interchange Graph. In this section we will show that
Int3(Q

n
T ) is hamiltonian as well, giving rise to a new and simple proof of the

hamiltonicity of the Grötschel–Padberg conjecture. For k ≥ 4, Intk(Qn
T ) is

not a subgraph of Skel(Qn
T ) (see [10]), so we cannot hope for an even more

elegant proof by exploring Intk(Qn
T ). On the other hand, the hamiltonicity

of Intk(Qn
T ) itself is open for 4 ≤ k ≤ n− 1; the case k = n is settled in [10].

Theorem 3. For n ≥ 6, Intk(Qn
T ) is hamiltonian.

P r o o f. By a cycle we mean a hamiltonian tour on the vertices of the
3-Interchange Graph. The proof is by induction on n. Suppose we have a
cycle on the vertices of Int3(Q

n
T ). We will “expand” every vertex of Int3(Q

n
T )

to n vertices of Int3(Q
n+1

T ), and then expand the cycle in Int3(Q
n
T ) to a cy-

cle in Int3(Q
n+1

T ). The construction is as follows. Let t = (1 i2 i3 . . . in)
be a vertex of Int3(Q

n
T ). Using the “bell-switch” method of Steinhaus (see

e.g. [4]) with the new vertex n + 1, this tour gives rise to n different tours
in Int2(Q

n
T ), namely:

t1 = (1 n + 1 i2 i3 . . . in),

t2 = (1 i2 n + 1 i3 . . . in),

...

tn = (1 i2 i3 . . . in n + 1).

Note that by applying this construction to every vertex in Int3(Q
n
T ), all ver-

tices of Int3(Q
n+1

T ) are obtained. Let B3(t,Q
n+1

T ) denote the subgraph of
Int3(Q

n+1

T ) on the n expanded vertices of the vertex t of Int3(Q
n
T ).

Claim 1. B3(t,Q
n+1

T ) is hamiltonian connected.
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This follows from the fact that B3(t,Q
n+1

T ) is a complete graph without
the edges (t1, t2), (t2, t3), . . . , (tn−1, tn), (tn, t1). Namely, two vertices ti
and ti+1 (i = 1, . . . , n) with tn+1 = t1 differ in an interchange of two edges
and all other pairs of vertices differ in an interchange of three edges.

Claim 2. For any two adjacent vertices t, t′ ∈ Int3(Q
n
T ), the adjacency

of vertices in B3(t,Q
n+1

T ) to vertices in B3(t
′, Qn+1

T ) is at least one-to-one.

To prove this, let t and t′ be two adjacent vertices in Int3(Q
n
T ), differing

in an interchange of three edges, say e1, e2, e3 are in t but not in t′ and e4,
e5 e6 are in t′ but not in t. Recall that a vertex of B3(t,Q

n+1

T ) is obtained
by replacing an edge (vi, vj) in t by two edges (vi, n + 1) and (n + 1, vj).

There are now two cases:

C a s e 1: (vi, vj) 6∈ {e1, e2, e3}. Then (vi, vj) must also be in t′. Clearly,
the new tours t and t′ differ in an interchange of three edges, and hence they
are adjacent in Int3(Q

n+1

T ).

C a s e 2: (vi, vj) ∈ {e1, e2, e3}, say (vi, vj) = e1. Without loss of gener-
ality, assume that e1 and e4 have vi in common. The edge e1 in t is replaced
by (vi, n + 1) and (n + 1, vj), and e4 in t′ is replaced by (vi, n + 1) and
(n + 1, vk). Therefore, the two new tours differ in an interchange of three
edges; namely, e2, e3 and (n + 1, vj) in t, versus e5, e6 and (n + 1, vk) in t′,
and hence they are adjacent on Int3(Q

n+1

T ).

The theorem is true for n = 6. Take for instance the cycle in Int3(Q
6
T )

shown in Fig. 3.

→ 123645 → 123456 → 126345 → 123465 → 162345
↓

124563 ← 126453 ← 124536 ← 124653 ← 162453
↓

125643 → 162534 → 125364 → 126534 → 125346
↓

132654 ← 163254 ← 132564 ← 136254 ← 132436
↓

134265 → 136425 → 134256 → 134625 → 163425
↓

164235 ← 142634 ← 142356 ← 146235 ← 142365
↓

162354 → 123654 → 123546 → 126354 → 123564
↓

162335 ← 124365 ← 126435 ← 124356 ← 124635
↓

162543 → 125643 → 125436 → 126543 → 125463
↓

163245 ← 132465 ← 136245 ← 132456 ← 132645
↓

163524 → 135264 → 136524 → 135246 → 135624
↓

164325 ← 143625 ← 143625 ← 146325 ← 143265

Fig. 3
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For n ≥ 7, the induction hypothesis is now an immediate consequence
of Claims 1 and 2.

5. The diameter of Int3(Q
n
T ). Diameters of many (0, 1)-polytopes

have been calculated, and a remarkable number have diameter equal to 2;
see e.g. [8] and [11]. In [8] it is shown that the diameter of the Asymmetric
Traveling Salesman Polytope equals 2. For the symmetric case, it is only
conjectured that this diameter is 2; see e.g. [2]. For the 3-Interchange Graph
we have the following results.

Theorem 4. For n ≥ 6,

(a) Diam(Int3(Q
n
T )) ≤ n − 1, and

(b) Diam(Int2(Q
n
T ) ∪ Int3(Q

n
T )) ≤ n − ⌊

√
n − 2⌋ − 2.

P r o o f. Let t1 = (1 i2 . . . ip−1 ip ip+1 . . . iq iq+1 . . . in), with p < q, be
a hamiltonian tour in Kn. Placing ip between iq and iq+1 leads to the
tour t′ = (1 i2 . . . ip−1 ip+1 . . . iq ip iq+1 . . . in). This swop is either a 2-
interchange (namely, if p + 1 = q), or a 3-interchange (if p + 1 < q).
The tours t = (1 2 . . . n) and t1 differ in at most n − 1 edges. In [10],
one can find a theorem that asserts that in any sequence of p2 + 1 ele-
ments, there is a monotone subsequence of at least p + 1 elements. Taking
p = n − 1, it follows that at least ⌊

√
n − 2⌋ + 1 of the elements i2, . . . , in

form an increasing sequence. The remaining n − ⌊
√

n − 2⌋ − 2 elements
can be moved to the natural position (i.e. corresponding to the ordering
1, . . . , n) by a sequence of 2- and 3-interchanges. This proves part (b) of the
theorem.

In the above described procedure we may have applied a number of
2-interchanges. Each element can be put in its natural position by 3-inter-
changes, except possibly for the case where the ⌊

√
n − 2⌋+1 (= m) elements,

denoted by J , have precisely one neighbor not in J in the wrong position.
For instance, in the subsequence . . . , 4, 9, 8, 6, 2, 3, . . . with 8 ∈ J , the 6 can
be put in its natural position by a 3-interchange, so that only the neighbor
9 of 8 is in the wrong position. It needs two 3-interchanges to bring 9 in the
natural position (namely, for instance, a three-jump to the right, plus a two-
jump to the left). In the most extreme case, all elements of J have a neighbor
in the wrong position. Hence, it takes (n−m−1)−m = n−2m−1 plus 2m
3-interchanges to bring all n−m−1 elements in the natural position. Adding
these numbers yields a total of (n − 2m − 1) + 2m = n − 1 3-interchanges.
This proves part (a) of the theorem.

It is an open question whether the upper bounds in Theorem 4 are sharp,
so that equalities hold. Note that the upper bound in Theorem 4(b) is an
upper bound for Diam(Skel Qn

T ) as well.
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6. The asymmetric TSP and the Assignment Polytope. Let
Dn = (V,A) be the complete digraph on n vertices. Denote by Tn the set of
all directed tours in Dn. Then the polytope Pn

T := conv{xT ∈ R
A | T ∈ Tn}

is called the Asymmetric Traveling Salesman Polytope. Let Qn
A and Pn

A

denote the Assignment Polytopes on Kn and Dn, respectively; i.e. Qn
A :=

conv{xa ∈ R
E | a is a perfect 2-matching on Kn}, and Pn

A := conv{xa ∈
R

E | a is an assignment on Dn}.
Theorem 5. Int3(P

n
T ) is an

[(

n
3

)

−
(

n
1

)]

-regular spanning subgraph of

Skel(Pn
T ).

P r o o f. The proof that Int3(P
n
T ) is a spanning subgraph of Skel(Pn

T )
is similar to the proof of Theorem 1. As for the degree of the vertices
of Int3(P

n
T ), the counting procedure is similar to the one in the proof of

Theorem 2. Note that, in contrast to the proof of Theorem 2, we now have
only one possibility (instead of four) to construct a new tour.

It is well known that Qn
T ⊂ Qn

A, and that Pn
T ⊂ Pn

A. However, adjacent
tours on Qn

T are not always adjacent on Qn
A. The same is true for Pn

T and Pn
A .

On the other hand, the following theorem states, in particular, that any two
adjacent tours in both the 2- and the 3-Interchange Graphs are adjacent on
the Assignment Polytope. We first give an example. The two tours t1 and t2,
schematically depicted in Fig. 4, are adjacent on Skel(Qn

T ). However, since
there exist two perfect 2-matchings a1 and a2 with 1

2
t1 + 1

2
t2 = 1

2
a1 + 1

2
a2,

they are not adjacent on Skel(Qn
T ).

Fig. 4

Theorem 6. For n ≥ 6, the following assertions hold :

(a) Int2(Q
n
T ) ∪ Int3(Q

n
T ) ⊂ Skel(Qn

A);
(b) Int3(P

n
T ) ⊂ Skel(Pn

A);
(c) Intk(Qn

T ) 6⊂ Skel(Qn
A) for k ≥ 4.

P r o o f. The proof is left to the reader.

Acknowledgements. Gert A. Tijssen determined the upper bound in
Theorem 4(a).
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