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1. Introduction. Consider a primitive non-principal Dirichlet charac-
ter χ modulo q. For any positive integer m define

Sχ(m) =
q∑

a=1

χ(a)am.

These character sums have been studied by Williams [11] and Toyoizumi [10].
The first author proves, as a consequence of a more general theorem in
the case where χ is assumed to be the Legendre symbol, that Sχ(m) =
O(qm+1/2 log q). The second author shows a more concrete estimate giving
a bound for the constant implicit in the O symbol. He proves the following:

Theorem. (a) If χ(−1) = 1 then

|Sχ(m)| ≤ 2ζ(2)e2πm!
(2π)m+1

qm+1/2.

(b) If χ(−1) = −1 then

|Sχ(m)| ≤
(

2ζ(3)e2πm!
(2π)m+1

+
|L(χ, 1)|

π

)
qm+1/2.

See Toyoizumi [10].
Here L stands for the Dirichlet function of the given character. Toy-

oizumi uses the generalized Bernoulli numbers and the bound for L due to
Pintz [7] and Stephens [9] and based on the work of Burgess [2], [3], in order
to complete the bound in the second case.

The purpose of this paper is to give an important improvement on the
preceding theorem. In fact, our result is in some sense best possible. For
any primitive non-principal character χ modulo q and any natural number
m we will prove:

[11]
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Theorem 1. If χ(−1) = 1 then

|Sχ(m)| ≤ qm+1/2

(
m− 1

2(m + 1)

)
.

Theorem 2. If χ(−1) = −1 then∣∣∣∣Sχ(m) +
qm+1/2

πiτ q(χ)
L(χ, 1)

∣∣∣∣ ≤ qm+1/2

(
m

π

1∫
0

ln
1

2 sinπt
tm−1 dt

)
.

Here τq is a complex number of modulus one related to the gaussians
sums.

In particular, we can deduce the following

Corollary 1. If χ(−1) = −1 then

|Sχ(m)| ≤ qm+1/2

(
1
π

∣∣∣∣ ∞∑
n=[m/(2π)]

χ(n)
n

∣∣∣∣ +
1
π

)
.

Our proof is based on a Fourier analysis approach that leads to a repre-
sentation of Sχ(m) from which the theorems follow. In order to prove that
the constants are sharp we use the particular case of q being a prime number
and χ the Legendre symbol. In fact, we prove

Corollary 2. Let χ be the Legendre symbol and p a prime number.
Then for fixed m and any ε > 0 we have:

(a) There are infinitely many primes p ≡ 1 (4) such that

Sχ(m) ≥ qm+1/2

(
m− 1

2(m + 1)
− ε

)
.

(b) There are infinitely many primes p ≡ 3 (4) such that

Sχ(m) ≥ qm+1/2

(
m

π

1∫
0

ln
1

2 sinπt
tm−1 dt− L(χ, 1)

π
− ε

)
.

2. Lemmas. We will base the proof of the theorems on three lemmas.
The first is just a partial summation, the second gives the expression of the
incomplete sums of a character by means of a Fourier development and in
the third we estimate the trigonometric integrals needed for the proof.

For any χ as above, let

τq(χ) =
1
√

q

k∑
n=1

χ(n)e2πin/q.
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This number has absolute value one. We use the finite Fourier expansion
for primitive non-principal characters:

χ(n) =
1
√

q
τq(χ)

q∑
r=1

χ(r)e−2πirn/q.

The fact that
∑k

m=1 χ(m) = 0 will also be used. See Apostol [1] for these
expansions.

The exact value of τq(χ) is known for q any prime number and χ the
Legendre symbol. This particular case relates to the class number when
q ≡ 3 (4) is a prime number.

Lemma 1. For any χ and any natural m,

Sχ(m)
qm

= −m
1∫

0

( [qt]∑
a=1

χ(a)
)
tm−1 dt.

P r o o f. The inner sum is constant in the intervals (r/q, (r +1)/q) so we
have

−m
1∫

0

( [qt]∑
a=1

χ(a)
)
tm−1 dt = −

q−1∑
r=1

(r+1)/q∫
r/q

( r∑
a=1

χ(a)
)
mtm−1 dt

= −
q−1∑
r=1

( r∑
a=1

χ(a)
((

r + 1
q

)m

−
(

r

q

)m))

= −
q−1∑
a=1

χ(a)
( q−1∑

r=a

(
r + 1

q

)m

−
(

r

q

)m)

= −
q−1∑
a=1

χ(a)
(

1−
(

a

q

)m)
= 0 +

Sχ(m)
qm

.

This proves the lemma.

Lemma 2. (a) If χ(−1) = 1 then for λ ∈ [0, 1), λ 6= r/q,
√

q

πτ q(χ)

∞∑
n=1

χ(n)
sin 2πnλ

n
=

[λq]∑
a=1

χ(a).

(b) If χ(−1) = −1 then for λ ∈ [0, 1), λ 6= r/q,
√

q

iπτ q(χ)
L(χ, 1)−

√
q

iπτ q(χ)

∞∑
n=1

χ(n)
cos 2πnλ

n
=

[λq]∑
a=1

χ(a).

P r o o f. Expansions of this type were first used by Pólya [8]. For any
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λ ∈ [0, 1) set

fλ(x) =
{

1 if x ∈ [0, λ),
0 if x ∈ [λ, 1)

and continue fλ periodically with period one over the real numbers. Its
Fourier development is

fλ(x) = λ +
1
π

∞∑
n=−∞

n 6=0

e2πinx

n

(
sin 2πnλ

2
+

1− cos 2πnλ

2i

)
,

which is convergent to the function except for x = 0 and x = λ. Hence we
get

q−1∑
a=1

χ(a)fλ

(
a

q

)
=

[λq]∑
a=1

χ(a)

= λ

q−1∑
a=1

χ(a) +
1
π

∞∑
n=−∞

n 6=0

(
sin 2πnλ

2n
+

1− cos 2πnλ

2in

)q−1∑
a=1

χ(a)e−2πina/q

= 0 +
√

q

π

∞∑
n=−∞

n 6=0

(
sin 2πnλ

2n
+

1− cos 2πnλ

2in

)
χ(n)
τ q(χ)

,

where we have used the finite Fourier expansion quoted before, and where
the bar means complex conjugation.

Now grouping together the terms with n and −n we finally get
[λq]∑
a=1

χ(a) =
√

q

πτ q(χ)

∞∑
n=1

(χ(n) + χ(−n))
sin 2πnλ

2n

+
√

q

πτ q(χ)

∞∑
n=1

(χ(n)− χ(−n))
1− cos 2πnλ

2in
.

In case (a), χ(n) = χ(−n) and the second series vanishes. In case (b),
χ(n) = −χ(−n) and hence the first series vanishes, proving the lemma.

The important role played by the condition χ(−1) = 1 or −1 becomes
clear in this lemma.

Lemma 3. Let m, n be positive integers.

(a) Set I(m,n) =
∫ 1

0
tm−1 sin(2πnt) dt. Then

|I(m,n)| ≤ min
(

1
m

,
1

2πn
,

2πn

m(m + 1)

)
.
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(b) Set J(m,n) =
∫ 1

0
tm−1 cos(2πnt) dt. Then

|J(m,n)| ≤ min
(

1
m

,
1

2πn
,
m− 1
4π2n2

)
.

(c) Set H(m,n) =
∫ 1

0
tm−1(1− cos(2πnt)) dt. Then

|H(m,n)| ≤ min
(

1
m

,
4π2n2

m(m + 1)(m + 2)

)
.

P r o o f. Let us prove (a). Parts (b) and (c) will be a consequence of (a)
and an appropriate integration by parts.

If we bound |sin 2πnt| by 1 we get the first term in the minimum because∫ 1

0
tm−1 dt = 1/m. By making a change of variables we get

−I(m,n) =
1∫

0

(1− t)m−1 sin(2πnt) dt

and estimating |sin 2πnt| ≤ 2πnt gives

|I(m,n)| ≤ 2πn
1∫

0

t(1− t)m−1 dt =
2πn

m(m + 1)
,

which is the third term of the minimum. Finally,

−I(m,n) = −
1∫

0

tm−1 sin(2πnt) dt

= −
n−1∑
k=0

(k+1)/n∫
k/n

tm−1 sin(2πnt) dt

= −
n−1∑
k=0

1/n∫
0

(
t +

k

n

)m−1

sin(2πnt) dt

=
n−1∑
k=0

1/(2n)∫
0

((
1
n
− t +

k

n

)m−1

−
(

t +
k

n

)m−1)
sin(2πnt) dt.

Here we made use of the fact that sin 2πn
(

1
2n + t

)
= − sin 2πn

(
1
2n − t

)
.

Now observe that the integrand is positive so I(m,n) is negative, and
this implies that J(m,n) is positive.

If we make a couple of integrations by parts we obtain

I(m,n) =
−2πn

m(m + 1)
(1 + 2πnI(m + 2, n)).

This and the fact already proved that I(m,n)≤0 implies that 1+2πnI(m,n)
≥ 0, which gives the second term.
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3. Proof of the theorems

P r o o f o f T h e o r e m 1. If we use the Lemmas 1 and 2 together we
get in this case

Sχ(m)
qm

= −m
1∫

0

( [qt]∑
a=1

χ(a)
)
tm−1 dt

=
−m

√
q

πτ q(χ)

1∫
0

( ∞∑
n=1

χ(n)
sin 2πnt

n

)
tm−1 dt

=
m(m− 1)

√
q

2π2τ q(χ)

1∫
0

( ∞∑
n=1

χ(n)
1− cos 2πnt

n2

)
tm−2 dt.

After an integration by parts, observe that the last expression together with
the trivial estimate 2ζ(2) for the series already improves the theorem of
Toyoizumi reducing the dependence of the constant to the order m. Now
we will use Lemma 3 to get the theorem.

From the first expression we have∣∣∣∣Sχ(m)
qm

∣∣∣∣ ≤ √
q

π
m

∞∑
n=1

1
n
|I(m,n)|.

By Lemma 3, I(m,n) is negative so we have∣∣∣∣ Sχ(m)
qm+1/2

∣∣∣∣ ≤ 1
π

m

∞∑
n=1

1
n
|I(m,n)| = − 1

π
m

1∫
0

∞∑
n=1

sin 2πnt

n
tm−1 dt

and taking into account that

1
π

∞∑
n=1

sin 2πnt

n
=

1
2
− t

and that

m
1∫

0

(
t− 1

2

)
tm−1 dt =

m− 1
2(m + 1)

we get the theorem.

P r o o f o f T h e o r e m 2. If χ(−1) = −1, then Lemmas 1 and 2 give

Sχ(m)
qm

= −m
1∫

0

( [qt]∑
a=1

χ(a)
)
tm−1 dt

= −
√

q

πiτ q(χ)
L(χ, 1) +

m
√

q

πiτ q(χ)

1∫
0

( ∞∑
n=1

χ(n)
cos 2πnt

n

)
tm−1 dt
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= −
m
√

q

πiτ q(χ)

1∫
0

( ∞∑
n=1

χ(n)
1− cos 2πnt

n

)
tm−1 dt

= −
√

q

πiτ q(χ)
L(χ, 1)−

m(m− 1)
√

q

2π2iτ q(χ)

1∫
0

( ∞∑
n=1

χ(n)
sin 2πnt

n2

)
tm−2dt

after an integration by parts. Again taking the bound ζ(2) in the last series
we get an improvement over Toyoizumi’s result.

Let us prove Corollary 1 first.
In this case, by breaking the sum from n = 1 to n = N in the third

expression, we have∣∣∣∣Sχ(m)
qm

∣∣∣∣ ≤ √
q

π
|LN (χ, 1)|+

√
q

π

N∑
n=1

m

n
|H(m,n)|+

√
q

π

∞∑
n=N+1

m

n
|J(m,n)|,

where LN means the sum from N + 1 to infinity, and where H(m,n) and
J(m,n) are the integrals defined in Lemma 3.

According to Lemma 3 we have

|H(m,n)| ≤ 4π2n2

m(m + 1)(m + 2)
and |J(m,n)| ≤ m− 1

4π2n2
;

so we get
N∑

n=1

m

n
|H(m,n)| ≤

N∑
n=1

m

n
· 4π2n2

m(m + 1)(m + 2)
≤ 2π2N(N + 1)

(m + 1)(m + 2)

and
∞∑

n=N+1

m

n
|J(m,n)| ≤

∞∑
n=N+1

m

n
· m− 1
4π2n2

≤ m(m− 1)
8π2(N + 1/2)2

and finally, taking N =
[

m+1
2π

]
and collecting all the terms, we have∣∣∣∣Sχ(m)

qm

∣∣∣∣ ≤ √
q

π
(|LN (χ, 1)|+ 1),

which proves the corollary.
Observe that |LN (χ, 1)| can be trivially bound by |L(χ, 1)|+ log m.

In order to prove Theorem 2 it is enough to make the same reasoning as
in the case of Theorem 1, taking into account that J(m,n) is positive, as
was proved in Lemma 3, and finally using the fact that

∞∑
n=1

cos 2πnt

n
= − ln(2 sinπt) for t ∈ (0, 1).

P r o o f o f C o r o l l a r y 2. We use an argument similar to the one used
by Montgomery [5]. We prove (a), the proof of (b) being identical.
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Set P = 4
∏

q≤N q, where q is prime. Using quadratic reciprocity, we can
find an a such that if p ≡ a (P ) then ( q

p ) = +1 for all primes q ≤ N . Now
for those p ≡ a (P ) we have

1
pm+1/2

p−1∑
a=1

(
a

p

)
am

=
m

π

1∫
0

∞∑
n=1

(
n

p

)
sin 2πnt

n
(1− t)m−1 dt

=
m

π

1∫
0

( ∞∑
n=1

sin 2πnt

n
−

∞∑
n=N+1

sin 2πnt

n
+

∞∑
n=N+1

(
n

p

)
sin 2πnt

n

)
× (1− t)m−1 dt

by the fact that for any n ≤ N ,
(

n
p

)
= +1.

Hence

1
pm+1/2

p−1∑
a=1

(
a

p

)
am

≥ m

π

1∫
0

π(1/2− t)(1− t)m−1 dt− 2m

π

∞∑
n=N+1

|I(m,n)|
n

=
m− 1

2(m + 1)
− 2m

π

∞∑
n=N+1

|I(m,n)|
n

≥ m− 1
2(m + 1)

− m

π2

∞∑
n=N+1

1
n2

≥ m− 1
2(m + 1)

− m

π2
· 1
N

by Lemma 3. So it is enough to take N such that N > [m/(επ2)].

R e m a r k s. 1. For a fixed m, the number of p’s for which we are near
to reaching the best constant has order of magnitude at least em, so even
though Theorems 1 and 2 cannot be improved in general, it seems possible to
get some improvement if we fix the relative sizes of m and p. This should be
achieved if we use, in the integral expression for Sχ(m), the results about the
behaviour of small segments of the incomplete sums for χ and the P/olya–
Vinogradov inequality. The results of Burgess already quoted and the work
of Montgomery and Vaughan [6] deal with this type of sums.

2. The estimate for the constant in the P/olya–Vinogradov inequality
given by Hildebrand [4] and the bounds for L(χ, 1) due to Stephens [9] and
Pintz [7] can be used in order to complete the theorems as far as the bound
for L(χ, 1) is concerned.
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