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On Shioda’s problem about Jacobi sums
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HiroO MIKI (Bures-sur-Yvette and Kyoto)

In the present paper, we will give a positive result relating to the I-part
of Shioda’s problem [2] on Jacobi sums Jl(a) (p) under a certain condition
(see Corollary to Theorem 2 of the present paper), as an application of
our congruence for Jacobi sums [1, Theorem 2] (see also Theorem 1 of the
present paper).

Let | be any prime number such that I > 5, and let {; be a primitive
Ith root of unity in C (the field of complex numbers). Let Q be the field of
rational numbers and let Z be the ring of rational integers. Put k = Q({;).
For any integer » > 1 and any a = (aq,...,a,) € Z" and for any prime ideal
p of k£ which is prime to [, let

T =0 Y (@) () € ZIG),

be the Jacobi sum, where Fy = Z[(;]/p, ¢ = Np = #(F,), and x,(z) = (%)l
is the Ith power residue symbol in k, i.e., xp(2 modp) is a unique [th root
of unity in C such that

Xp(zmodp) = z™P~D/ (mod p)
for x € Z[(;], x & p, and x,(0) = 0.
If r > 3 is odd and if a; Z 0 (mod l) for all i (0 < i < r) (with
ap = — Y_._; a;), then by Shioda [2, Corollary 3.3] we can write
Nijo(1 = L (p)g~""0/%) = BI* /g,

where Ny /g is the norm mapping from £ to Q, B and w are non-negative
integers, and w is defined by (2.8) of [2].

SHIODA’S PROBLEM (see [2, Question 3.4]). Is B a square if B # 07

Zagier [4] (see [2, Example 3.5] and [3, Examples 5.15.1]) verified it by
computer in the case where [ < 20 and p < 500, p =1 (mod ), where p is
a prime number in p. Shioda [2, Theorem 7.1] proved that B is a square,
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possibly multiplied by a divisor of 2Ip when r = 3, and Suwa and Yui [3,
Corollary 5.14.1] proved that B is divisible by p exactly even times under a
certain condition when r = 3.

Let Q be the algebraic closure of Q in C and let Q; be a fixed algebraic
closure of the field of l-adic numbers @Q;. By means of a fixed imbedding
Q — Qy, we consider Q as a subfield of Q;. We also consider that all algebraic
extensions of Q; and all elements which are algebraic over (Q; are contained
in Q,. All congruences in the present paper are those in Q;.

For any odd m (3 <m <1 —2), put

-1

Em = H(l - Cld)mdv

d=1

where mg € Z is such that mg = d™ ! (mod ) and Zld_:ll mq = 0. Let

Bm(p) € Z be such that
(Em> _ (Bnlp)
p ), !

Then f,,(p) is uniquely determined mod! by [, m, and p.

THEOREM 1 ([1, Theorem 2]). If a = (a1,...,a,) # (0,...,0) (mod 1),
then

r m

Jl(a)(p) = Np! -Exp{ Z (Za}“)ﬁm@)%

3<m<i-2 j=0

m odd
Np—1/¢
_ pzl (Zaé‘_l)Fl_l} (mod 7%),
j=0
where ag = — Z;Zl a;, ™ is a prime element of Q;(¢;) such that

-1
7 =Log( (mod (G~ 1) = 3 (1) 2(G — /i (mod (¢ — 1))
i=1
and

I=1

Exp X = 27 e Zy[X].
i=0

Remark. The sign of the coefficient of 7/~! in the above formula is
different from that of [1, Theorem 2], which was incorrect.



Shioda’s problem 109

LEMMA 1. For any odd m (3 <m <1 —2),

B. J
E, =d, Exp<— = 7r'> (mod w!'~1)
J g

B. i .

= dm< -—L. 7:) (mod 77 t1),
J

where d,, = il_:ll(—d)md € Z, (the group of units in Z;), j =1 —m, and

B; is the j-th Bernoulli number.

Proof. By definition,

=dpn H <1 i ) and ( =Expn (mod 7).

Easy computation shows that

1— 1 B; t
log € :*t+27*

Hence

SO

) J
n Log < Cl) =_1. ﬂ-— (mod =~ 1),
—T i 4!

where n = Zd 1mgoqg € Z[Gal(Q;(¢;)/Qq)] (the group ring of the Galois
group Gal(Qi(¢)/Q) over Z;) and o4 € Gal(Q(¢;)/Q;) is such that ¢/

= Cl , since
= 0 (mod n!) if i # 7,
M= =7 (mod «t) ifi=j,
for 1 <4<[—1. Hence

E,, = dm(l — Cl>n (mod w!~1)

-
B. J
=d,, Exp ( =1 7T> (mod 7'71).
j g
This completes the proof.
Put K = k(VE,, | m odd, 3 < m < [ —2). We have K # k, since

By = % € Z; implies Ey_o ¢ k' by Lemma 1. Since E,, is a unit of k, K/k
is a finite abelian extension which is unramified outside I.
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By Theorem 1 we have directly the following

THEOREM 2. Let 0 = (p, K/k) denote the Frobenius automorphism of p
with respect to K/k. Assume o # 1. Then

m

T =1+ (ia?)ﬂm(p)

T m+1)
m!
§j=0

(mod 7

and

Bm(p) # 0 (mod 1),
where m is the least odd m (3 < m <1 —2) such that (v/Ep,)? # v/ En,.
COROLLARY. Let the notation and assumptions be as in Theorem 2 and
let B be as in Shioda’s problem. Furthermore, assume that Z;:o al® #0

(mod ). Then ord;(B) = m — 3. In particular, ord;(B) is even, where ord,
is the normalized additive valuation of Q.

The above corollary gives an affirmative answer to the [-part of Shioda’s
problem when (p, K/k) # 1 and 3°%_;a* # 0 (mod I).

LEMMA 2. Let K be as just before Theorem 2. Then K and k(\/¢;) are
linearly disjoint over k.

Proof. By Lemma 1,
(1) B, =dy, (mod 72).

If the assertion is false, then k(v/(;) C K, so by Kummer theory we can
write

(2) G = H Eyr - Al
3<m<Ii—-2
m odd

with some A, € Z and some A € k*. Since (; and FE,, are units of k, A =u
(mod =) with some u € Z], so

(3) Al =4 (mod ).
By (1)-(3),
(4) 1+7=b (mod 7?),

where b = [[dym - u' € Z). Hence b = 1 (mod ), so b = 1 (mod w'~1),
since b € Z;. This contradicts (4) and completes the proof.

Put L = K(V/(;) = K((2), where ;2 is a primitive [?th root of unity.
Then L/k is a finite abelian extension of k which is unramified outside I.
The next theorem and its corollary give a partial result toward Shioda’s
problem when o|K = 1.



Shioda’s problem 111

THEOREM 3. Put 0 = (p,L/k). Assume that o|K = 1 and (3 # (.
Then

/

K =1- (1= )la =) (mod )

7.,/
=1- <1—2>)\l (mod =)
and N Z0 (mod [), where A\=(q— 1)/l €Z and ' =#{0<i<r|a; Z0
(mod 1)}.

Remark. By Lemma 2 and Chebotarev’s density theorem, there exist
infinitely many prime ideals p of k of degree 1 satisfying the condition in
Theorem 3.

Proof of Theorem 3. The condition (; # (;> is equivalent to A # 0
(mod 1), and the condition o|K =1 is equivalent to ,,(p) =0 (mod 1) for
all odd m (3 < m <[ —2). Hence by Theorem 1,

g—1 7

Jl(a) (p)=q ! <1 - 27rl1> (mod )

/

5(1—)\[)<1+>\-2~l) (mod 7)

7,,l
=1- (1 — 2))\l (mod 7t)

51_<1_g)m—1>mwdﬂx

since 7'~1 = —1 (mod 7'). This completes the proof.

COROLLARY. Assume that r > 3 is odd and that a; # 0 (mod ) for all
i (0 <i<r). Let p satisfy the condition in Theorem 3. Put

S=1— Jl(a)(p)qf(rfl)/Q.
Then S =0 (mod 7'). In particular, ord;(Nyq(S)) > L.
Proof. By Theorem 3,

J@ —(r—1)/2 — r r—1 .
L (pa = (1-(1=5 M) (1= (mod ')

1
=1- 5(7" — 7' +1)X (mod 7).

Hence S = (r — ' 4+ 1)Al (mod n'). Since 7/ = r + 1 by assumption, this
gives the assertion.

Remark. When (p, L/k) = 1, Shioda’s problem is still an open problem.
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