A χ-analogue of a formula of Ramanujan for $\zeta(1 / 2)$

by
Shigeki Egami (Toyama)

To the memory of Professor Norikata Nakagoshi

In his famous Notebooks ([4]) Ramanujan stated the following formula for $\zeta(1 / 2)$: For $\tau>0$,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{e^{\tau n^{2}}-1}= & \frac{1}{6 \tau}+\frac{1}{2} \sqrt{\frac{\pi}{\tau}} \zeta\left(\frac{1}{2}\right)+\frac{1}{4} \\
& +\frac{1}{2} \sqrt{\frac{\pi}{\tau}} \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}\left(\frac{\sinh (2 \pi \sqrt{\pi n / \tau})-\sin (2 \pi \sqrt{\pi n / \tau})}{\cosh (2 \pi \sqrt{\pi n / \tau})-\cos (2 \pi \sqrt{\pi n / \tau}}-1\right)
\end{aligned}
$$

Berndt and Evans ([2], see also [1]) gave a proof of this formula by using the Poisson summation formula. The purpose of this paper is to show a similar formula for the value $L(1 / 2, \chi)$ of Dirichlet L-functions. Our proof based on the Mellin transform is substantially different from [2].

The motivation for this work came from a discussion with Masanori Katsurada. The author would like to thank him.

Let q be a positive integer, χ a primitive Dirichlet character modulo q, and $L(s, \chi)$ the Dirichlet L-function for χ. Furthermore, we will use the following standard notation:

$$
\begin{gathered}
E(\chi)= \begin{cases}1 & \text { if } \chi \text { is principal, } \\
0 & \text { otherwise }\end{cases} \\
W(\chi)= \begin{cases}\sqrt{q} g(\chi)^{-1} & \text { for } \chi(-1)=1, \\
i \sqrt{q} g(\chi)^{-1} & \text { for } \chi(-1)=-1\end{cases}
\end{gathered}
$$

where

$$
g(\chi)=\sum_{a \bmod q} \chi(a) e^{2 \pi i a / q}
$$

Then our result can be stated as follows:

Theorem. For $\tau>0$,

$$
\begin{aligned}
\sum_{k \bmod q} \chi(k) & \sum_{n=1}^{\infty} \frac{e^{-k n^{2} \tau}}{1-e^{-q n^{2} \tau}} \\
= & \frac{E(\chi) \pi^{2}}{6 \tau}-\frac{1}{2} L(0, \chi)+\frac{1}{2} \sqrt{\frac{\pi}{\tau}} L\left(\frac{1}{2}, \chi\right)+\frac{1}{2} \sqrt{\frac{\pi}{\tau}} W(\bar{\chi}) \\
& \times \sum_{n=1}^{\infty} \frac{\bar{\chi}(n)}{\sqrt{n}}\left(\frac{\sinh (2 \pi \sqrt{\pi n /(q \tau})-\chi(-1) \sin (2 \pi \sqrt{\pi n /(q \tau)})}{\cosh (2 \pi \sqrt{\pi n /(q \tau)})-\cos (2 \pi \sqrt{\pi n /(q \tau)})}-1\right)
\end{aligned}
$$

Proof. First we express the left hand side of the above equation by the inverse Mellin integral:

$$
\begin{aligned}
I(\tau, \chi) & =\sum_{k \bmod q} \chi(k) \sum_{n=1}^{\infty} \frac{e^{-k n^{2} \tau}}{1-e^{-q n^{2} \tau}}=\sum_{k \bmod q} \chi(k) \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} e^{-\left(k n^{2} \tau+q m n^{2} \tau\right)} \\
& =\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \chi(m) e^{-\tau n^{2} m}=\frac{1}{2 \pi i} \int_{(c)} \Gamma(s) \zeta(2 s) L(s, \chi) \tau^{-s} d s,
\end{aligned}
$$

where $c>1$ and $\int_{(c)}$ denotes the integral along the line $\Re s=c$. Shifting the line of integration to $\Re s=1 / 2-c$ and changing the variable $s \leftrightarrow 1 / 2-s$ we have

$$
I(\tau, \chi)=\frac{1}{2 \pi i} \int_{(c)} \Gamma\left(\frac{1}{2}-s\right) \zeta(1-2 s) L\left(\frac{1}{2}-s, \chi\right) \tau^{-1 / 2+s} d s+R(\tau, \chi)
$$

where $R(\tau, \chi)$ denotes the sum of the residues at $s=1,1 / 2$, and 0 ,

$$
R(\tau, \chi)=\frac{E(\chi) \pi^{2}}{6 \tau}+\frac{1}{2} \sqrt{\frac{\pi}{\tau}} L\left(\frac{1}{2}, \chi\right)-L(0, \chi)
$$

Using the functional equations for $\zeta(s)$ and $L(s, \chi)$ (see e.g. [3], p. 59 and p. 71) we have

$$
\begin{aligned}
I(\tau, \chi)-R(\tau, \chi)= & \frac{W(\bar{\chi})}{\pi i} \int_{(c)} \Gamma(2 s) \zeta(2 s) L\left(\frac{1}{2}+s, \bar{\chi}\right) \\
& \times\left(\cos \left(\frac{\pi s}{2}\right)-\chi(-1) \sin \left(\frac{\pi s}{2}\right)\right)\left(\frac{q \tau}{(2 \pi)^{3}}\right)^{s} d s \\
= & \frac{W(\bar{\chi})}{2 \pi i} \sum_{m, n=1}^{\infty} \int_{(2 c)} \Gamma(s)\left(\sqrt{\frac{q \tau}{(2 \pi)^{3} m^{2} n}}\right)^{s} \\
& \times\left(\cos \left(\frac{\pi s}{4}\right)-\chi(-1) \sin \left(\frac{\pi s}{4}\right)\right) d s
\end{aligned}
$$

In order to calculate each integral in the above double series we note that

$$
\frac{1}{2 \pi i} \int_{(c)} \Gamma(s)\left\{\begin{array}{l}
\cos (\pi s / 4) \\
\sin (\pi s / 4)
\end{array}\right\} x^{-s} d s=e^{-x / \sqrt{2}}\left\{\begin{array}{c}
\cos (x / \sqrt{2}) \\
\sin (x / \sqrt{2})
\end{array}\right\}
$$

which can easily be obtained from the well known formula:

$$
e^{-(x+i y)}=\frac{1}{2 \pi i} \int_{(c)} \Gamma(s)(x+i y)^{-s} d s \quad(x, c>0)
$$

Then we observe

$$
\begin{aligned}
& I(\tau, \chi)-R(\tau, \chi) \\
& =W(\bar{\chi}) \sum_{n=1}^{\infty} \frac{\bar{\chi}(n)}{\sqrt{n}} \sum_{m=1}^{\infty} e^{-2 \pi \sqrt{\frac{\pi n}{q \tau}}} \\
& \quad \times\left(\cos \left(2 \pi m \sqrt{\frac{\pi n}{q \tau}}\right)-\chi(-1) \sin \left(2 \pi m \sqrt{\frac{\pi n}{q \tau}}\right)\right) \\
& \quad=W(\bar{\chi}) \sum_{n=1}^{\infty} \frac{\bar{\chi}(n)}{\sqrt{n}}\left(\frac{\sinh (2 \pi \sqrt{\pi n /(q \tau)})-\chi(-1) \sin (2 \pi \sqrt{\pi n /(q \tau)})}{\cosh (2 \pi \sqrt{\pi n /(q \tau)})-\cos (2 \pi \sqrt{\pi n /(q \tau)}}-1\right)
\end{aligned}
$$

which completes the proof of the Theorem.

References

[1] B. C. Berndt, Ramanujan's Notebooks, Part II, Springer, 1989.
[2] B. C. Berndt and R. J. Evans, Chapter 15 of the Ramanujan Second Notebook: Part II, Modular forms, Acta Arith. 47 (1986), 123-142.
[3] H. Davenport, Multiplicative Number Theory, 2nd ed., Graduate Texts in Math. 74, Springer, 1980.
[4] S. Ramanujan, Notebooks, 2 Vols., Tata Institute, Bombay, 1957.

FACULTY OF ENGINEERING

TOYAMA UNIVERSITY
3190 GOFUKU, TOYAMA CITY
930 JAPAN

