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A χ-analogue of a formula of Ramanujan for ζ(1/2)

by

Shigeki Egami (Toyama)

To the memory of Professor Norikata Nakagoshi

In his famous Notebooks ([4]) Ramanujan stated the following formula
for ζ(1/2): For τ > 0,

∞∑
n=1

1
eτn2−1

=
1
6τ

+
1
2

√
π

τ
ζ

(
1
2

)
+

1
4

+
1
2

√
π

τ

∞∑
n=1

1√
n

(
sinh(2π

√
πn/τ)− sin(2π

√
πn/τ)

cosh(2π
√
πn/τ)− cos(2π

√
πn/τ)

− 1
)
.

Berndt and Evans ([2], see also [1]) gave a proof of this formula by using the
Poisson summation formula. The purpose of this paper is to show a similar
formula for the value L(1/2, χ) of Dirichlet L-functions. Our proof based on
the Mellin transform is substantially different from [2].

The motivation for this work came from a discussion with Masanori
Katsurada. The author would like to thank him.

Let q be a positive integer, χ a primitive Dirichlet character modu-
lo q, and L(s, χ) the Dirichlet L-function for χ. Furthermore, we will use
the following standard notation:

E(χ) =
{

1 if χ is principal,
0 otherwise,

W (χ) =
{√

qg(χ)−1 for χ(−1) = 1,
i
√
qg(χ)−1 for χ(−1) = −1,

where
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Then our result can be stated as follows:
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Theorem. For τ > 0,
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P r o o f. First we express the left hand side of the above equation by the
inverse Mellin integral:
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(c) denotes the integral along the line <s = c. Shifting the
line of integration to <s = 1/2 − c and changing the variable s ↔ 1/2 − s
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where R(τ, χ) denotes the sum of the residues at s = 1, 1/2, and 0,
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Using the functional equations for ζ(s) and L(s, χ) (see e.g. [3], p. 59 and
p. 71) we have
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In order to calculate each integral in the above double series we note that
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which can easily be obtained from the well known formula:
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which completes the proof of the Theorem.
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