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1. Introduction. Let A be a set of positive integers, and let k ≥ 2 be
a fixed integer. Let rA(n) denote the number of representations of n in the
form

(1) n = a1 + a2 + . . .+ ak,

where

(2) 0 < a1 ≤ a2 ≤ . . . ≤ ak
and ai ∈ A for i = 1, . . . , k. Let r′A(n) denote the number of “strict” repre-
sentations of n in the form

(3) n = a1 + a2 + . . .+ ak,

where

(4) 0 < a1 < a2 < . . . < ak

and ai ∈ A for i = 1, . . . , k. The set A is called an asymptotic basis of order
k if there exists a natural number n1 such that rA(n) > 0 for all n ≥ n1. The
set A is called a strict asymptotic basis of order k if there exists a natural
number n1 such that r′A(n) > 0 for all n ≥ n1. All bases considered in this
paper will be either asymptotic or strict asymptotic bases of order k. Erdős
and Tetali [7] gave a probabilistic construction of a strict asymptotic basis
S of order k whose representation function satisfies log n� r′S(n)� logn.

An asymptotic basis (resp. strict asymptotic basis) A is called minimal
if the removal of any element from the basis destroys all representations of
some infinite sequence of numbers, that is, A \ {a} is not an asymptotic
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basis (resp. strict asymptotic basis) for any a ∈ A. An asymptotic basis
(resp. strict asymptotic basis) A is defined to be ℵ0-minimal if A \ F is an
asymptotic basis (resp. strict asymptotic basis) for every finite subset F of
A, but A \ I fails to be a basis for every infinite subset I of A. Erdős and
Nathanson [3, 4] survey results concerning minimal asymptotic bases. In [2],
they derived conditions under which an asymptotic basis of order 2 contains
a minimal asymptotic basis, and they also constructed in [1] a family of
ℵ0-minimal asymptotic bases of order 2.

This paper has two aims. First, we give a simple set of criteria under
which an asymptotic basis (resp. strict asymptotic basis) contains a minimal
asymptotic basis (resp. strict asymptotic basis). These criteria also enable us
to construct ℵ0-minimal bases. Second, we show that the strict asymptotic
basis S constructed in [7] satisfies this set of criteria and so contains a
minimal as well as an ℵ0-minimal asymptotic basis. These results answer
two important questions posed in [4].

Notation. Let kA denote the set of all sums of k elements of A, and
let k∧A denote the set of all sums of k distinct elements of A. Let rA(n; a)
(resp. r′A(n; a)) denote the number of representations of n in the form (1)–(2)
(resp. (3)–(4)) such that ai = a for some i = 1, . . . , k. The solution set of n,
denoted by SA(n) (resp. S′A(n)), is the set of integers in A that appear in
some representation of n; that is,

SA(n) = {a ∈ A | rA(n; a) > 0}
and

S′A(n) = {a ∈ A | r′A(n; a) > 0}.
2. Minimal and ℵ0-minimal asymptotic bases. Erdős and Nathan-

son [2] discovered a set of simple criteria for an asymptotic basis of order 2
to contain a minimal asymptotic basis of order 2. We shall generalize this
result to asymptotic bases of order k ≥ 3. The following theorem is a natural
extension of Theorem 3 of [2]. Condition (ii) is trivially satisfied in the case
k = 2, but is a nontrivial restriction for asymptotic bases of orders k ≥ 3.

Theorem 1. Let A be a strictly increasing sequence of positive integers,
and let k ≥ 2. If

(i) limn→∞ rA(n) =∞,
(ii) rA(n; a) is bounded for all n ≥ 1, a ∈ A,

(iii) |SA(m) ∩ SA(n)| is bounded for all m 6= n,

then A contains

(a) a minimal asymptotic basis of order k, and
(b) an ℵ0-minimal asymptotic basis of order k.
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P r o o f. Let rA(n; a) ≤ c for all n ≥ 1 and a ∈ A. It follows that if F is
any finite subset of A and if |F ∩ SA(n)| ≤ w, then

rA\F (n) ≥ rA(n)− cw
for all n, since the removal of any one element of SA(n) destroys at most c
representations of n. Let |SA(m)∩SA(n)| ≤ d for all m 6= n. If F ⊆ SA(m),
then

|F ∩ SA(n)| ≤ |SA(m) ∩ SA(n)| ≤ d,
and so

rA\F (n) ≥ rA(n)− cd
for all n 6= m.

We shall use induction to construct a decreasing sequence of sets

A = A0 ⊇ A1 ⊇ A2 ⊇ . . .
such that

A∗ =
∞⋂

j=0

Aj

is a minimal asymptotic basis of order k. We shall also construct a second
decreasing sequence of subsets of A whose intersection is an ℵ0-minimal
asymptotic basis of order k.

Let A0 = A. Since limn→∞ rA(n) = ∞, we can choose an integer n1 so
that rA0(n) = rA(n) > c(1 + d) for all n ≥ n1.

Choose a1, b1 ∈ A0 such that a1 ≤ n1 and b1 > kn1. Let m1 = a1 +
(k − 1)b1. Then

kn1 < b1 ≤ (k − 1)b1 < m1 < kb1.

We shall construct a set A1 ⊆ A0 such that rA1(n) > 0 for all n ≥ n1, but
m1 6∈ k(A1 \ {a1}). Thus, every representation of m1 as a sum of k elements
of A1 must include the integer a1 as a summand.

We first determine a subset F1 of A0 that “destroys” every representation
of m1 that does not include a1 as a summand. Every such representation is
of the form

m1 = a′1 + a′2 + . . .+ a′t + (k − t)b1,
where a′i ∈ A0 and a′i 6= a1, b1 for i = 1, 2, . . . , t. Note that m1 < kb1 implies
that t 6= 0. If t = 1, then

a1 + (k − 1)b1 = m1 = a′1 + (k − 1)b1

implies that a′1 = a1, which is false. Therefore, 2 ≤ t ≤ k. Let a′1 ≤ a′2 ≤
. . . ≤ a′t. Then

(k − 1)b1 < m1 ≤ ta′t + (k − t)b1 ≤ ka′t + (k − 2)b1
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implies that
a′t > b1/k > n1.

Let F1 be the set of all such integers a′t, and let A1 = A0 \ F1. Then
F1 ⊆ [n1 + 1,m1]. Since a1, b1 6∈ F1, it follows that m1 = a1 + (k− 1)b1 is a
representation of m1 as a sum of k elements of A1, and so rA1(m1) > 0. On
the other hand, we have destroyed every representation of m1 as the sum of
k elements of A0 all different from a1, and so m1 6∈ k(A0 \ {a1}).

Let n ≥ n1, n 6= m1. Since F1 ⊆ SA(m1), it follows that

rA1(n) = rA\F1(n) ≥ rA(n)− cd > c(1 + d)− cd = c > 0.

This completes the first step of the induction.
Let j ≥ 2. Suppose we have constructed sets A = A0 ⊇ A1 ⊇ . . . ⊇ Aj−1

and integers ni, ai,mi for i = 1, . . . , j − 1 with the following properties:

(i) kn1 < m1 < n2 < kn2 < m2 < n3 < . . . < knj−1 < mj−1,
(ii) Fi = Ai−1 \Ai ⊆ [ni + 1,mi] for i = 1, . . . , j − 1,

(iii) a1, . . . , aj−1 ∈ Aj−1,
(iv) rAj−1(n) > 0 for n ≥ n1,
(v) mi 6∈ k(Ai \ {ai}) for i = 1, . . . , j − 1.

We now construct the set Aj and integers nj , aj , and mj .
Let Gj = A \ Aj−1 ⊆ [1,mj−1]. Choose nj > mj−1 such that rA(n) >

c(j + d + |Gj |) for all n ≥ nj . Choose aj , bj ∈ Aj−1 such that aj < nj and
bj > knj . Let mj = aj + (k − 1)bj . Then

knj < bj ≤ (k − 1)bj < mj < kbj .

Exactly as in the first step of the induction, we shall determine a subset Fj
of Aj−1 that “destroys” every representation of mj as a sum of k elements
of Aj−1 that does not include aj as a summand. Every such representation
is of the form

mj = a′1 + a′2 + . . .+ a′t + (k − t)bj ,
where 2 ≤ t ≤ k, and a′i ∈ Aj−1, a

′
i 6= aj , bj for i = 1, 2, . . . , t. Let

a′1 ≤ a′2 ≤ . . . ≤ a′t.
Then

(k − 1)bj < mj ≤ ta′t + (k − t)bj ≤ ka′t + (k − 2)bj
implies that

a′t > bj/k > nj .

Let Fj be the set of all such integers a′t, and let Aj = Aj−1 \ Fj . Then

Fj ⊆ [nj + 1,mj ] ∩ SAj−1(mj) ⊆ [nj + 1,mj ] ∩ SA(mj).

Since aj , bj 6∈ Fj , it follows that mj = aj + (k − 1)bj is a representation
of mj as a sum of k elements of Aj , and so rAj (mj) > 0. However, mj 6∈
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k(Aj \ {aj}), since the set Aj was constructed so that every representation
of mj as the sum of k elements of Aj has at least one summand equal to aj .

Let n1 ≤ n ≤ nj . Since Aj−1 \ Aj = Fj ⊆ [nj + 1,mj ], it follows that
rAj (n) = rAj−1(n) > 0. Let n > nj , n 6= mj . Since

A \Aj = Fj ∪Gj
and

(Fj ∪Gj) ∩ SA(n) ⊆ (Fj ∩ SA(n)) ∪Gj ⊆ (SA(mj) ∩ SA(n)) ∪Gj ,
it follows that

|(Fj ∪Gj) ∩ SA(n)| ≤ d+ |Gj |
and so

rAj (n) ≥ rA(n)− c(d+ |Gj |) > c(j + d+ |Gj |)− c(d+ |Gj |) = cj > 0.

This completes the induction.
Let A∗ =

⋂∞
j=1Aj . Let n ≥ n1. Choose j ≥ 1 so that nj ≤ n < nj+1.

Since Aj \A∗ ⊆ [nj+1 + 1,∞), it follows that

rA∗(n) = rAj (n) > cj > 0,

and so A∗ is an asymptotic basis of order k. Moreover, since

mj 6∈ k(Aj \ {aj})
for every j ≥ 1, it follows that

mj 6∈ k(A∗ \ {aj}).
Recall that at each step j of the induction, we chose an integer aj . We had
complete freedom to select this integer, subject only to the conditions that
aj ∈ Aj−1 and aj ≤ nj . Let us choose these integers in such a way that
every element a ∈ A∗ is chosen infinitely often, that is, if a ∈ A∗, then
a = aj for infinitely many j. Then the set A∗ will be a minimal asymptotic
basis of order k, since the deletion of any element a ∈ A∗ will destroy all
representations of infinitely many integers mj .

To construct an ℵ0-minimal asymptotic basis, we choose the numbers aj
such that, if a ∈ A∗, then a = aj for exactly one integer j. If an infinite
subset I is deleted from A∗, then there are infinitely many integers of the
form mj that cannot be written as the sum of k terms of A \ I, and so A \ I
is not an asymptotic basis of order k.

Let F be a finite subset of A∗, and let |F | = f . We shall show that A∗\F
is an asymptotic basis of order k.

Since aj ∈ F for exactly f indices j, and since bj ∈ F for at most f
indices j, it follows that mj ∈ k(A∗ \F ) for all but at most 2f numbers mj .
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Let n ≥ nf , n 6= mj for all j. Choose j such that nj ≤ n < nj+1. Then
j ≥ f . Since

rA∗(n) = rAj (n) > cj > 0,
and since each element of F destroys at most c representations of n, it follows
that

rA∗\F (n) > cj − cf ≥ 0.
Thus, A∗ \ F is an asymptotic basis of order k, and so A∗ is an ℵ0-minimal
asymptotic basis of order k.

Theorem 2. Let A be a strictly increasing sequence of positive integers,
and let k ≥ 2. If

(i) limn→∞ r′A(n) =∞,
(ii) r′A(n; a) is bounded for all n ≥ 1, a ∈ A,

(iii) |S′A(m) ∩ S′A(n)| is bounded for all m 6= n,

then A contains

(a) a minimal strict asymptotic basis of order k, and
(b) an ℵ0-minimal strict asymptotic basis of order k.

P r o o f. Let r′A(n; a) ≤ c for all n ≥ 1 and a ∈ A. It follows that if F is
any finite subset of A and if |F ∩ S′A(n)| ≤ w, then

r′A\F (n) ≥ r′A(n)− cw
for all n, since the removal of any one element of S′A(n) destroys at most c
representations of n. Let |S′A(m)∩S′A(n)| ≤ d for all m 6= n. If F ⊆ S′A(m),
then

|F ∩ S′A(n)| ≤ |S′A(m) ∩ S′A(n)| ≤ d,
and so

r′A\F (n) ≥ r′A(n)− cd
for all n 6= m.

We shall use induction to construct a decreasing sequence of sets A =
A0 ⊇ A1 ⊇ A2 ⊇ . . . such that Â =

⋂∞
j=0Aj is a strict minimal asymptotic

basis of order k. We shall also construct a second decreasing sequence of
subsets of A whose intersection is an ℵ0-minimal strict asymptotic basis of
order k.

Let A0 = A. Since limn→∞ r′A(n) = ∞, we can choose an integer n1

so that r′A0
(n) = r′A(n) > c(1 + d) for all n ≥ n1. Choose k integers

a1, b1,1, b1,2, . . . , b1,k−1 ∈ A0 such that

a1 ≤ n1 < kn1 < b1,1 < b1,2 < . . . < b1,k−1.

Let
m1 = a1 + b1,1 + b1,2 + . . .+ b1,k−1.
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We shall construct a set A1 ⊆ A0 such that r′A1
(n) > 0 for all n ≥ n1, and

with the additional property that every representation of m1 as a sum of k
distinct elements of A1 must include the integer a1 as a summand.

We first determine a subset F1 of A0 that “destroys” every strict repre-
sentation of m1 that does not include a1 as a summand. Every such repre-
sentation is of the form

m1 = a′1 + a′2 + . . .+ a′t + b1,u1 + b1,u2 + . . .+ b1,uk−t ,

where 2 ≤ t ≤ k, and a′i ∈ A0, a
′
i 6= a1, b1,u for i = 1, 2, . . . , t and u =

1, . . . , k − 1. Let a′1 < a′2 < . . . < a′t. Since (k − 1) − (k − t) = t − 1 ≥ 1 it
follows that

(b1,1 + b1,2 + . . .+ b1,k−1)− (b1,u1 + b1,u2 + . . .+ b1,uk−t)

= b1,v1 + b1,v2 + . . .+ b1,vt−1 ≥ b1,1.
Then

m1 = a1 + b1,1 + b1,2 + . . .+ b1,k−1

= a′1 + a′2 + . . .+ a′t + b1,u1 + b1,u2 + . . .+ b1,uk−t
implies that

kn1 < b1,1 < a1 + b1,1 ≤ a1 + b1,v1 + b1,v2 + . . .+ b1,vt−1

= m1 − (b1,u1 + b1,u2 + . . .+ b1,uk−t) = a′1 + a′2 + . . .+ a′t < ta′t ≤ ka′t
and so

a′t > n1.

Let F1 be the set of all such integers a′t, and let A1 = A0\F1. Then F1 ⊆ [n1+
1,m1]. Since a1, b1,1, b1,2, . . . , b1,k−1 6∈ F1, it follows that m1 = a1 + b1,1 +
b1,2 + . . .+ b1,k−1 is a representation of m1 as a sum of k distinct elements
of A1, and so r′A1

(m1) > 0. On the other hand, we have destroyed every
representation of m1 as the sum of k distinct elements of A0 all different
from a1, and so m1 6∈ k(A0 \ {a1}).

Let n ≥ n1, n 6= m1. Since F1 ⊆ S′A(m1), it follows that

r′A1
(n) = r′A\F1

(n) ≥ r′A(n)− cd > c(1 + d)− cd = c > 0.

This completes the first step of the induction.
Let j ≥ 2. Suppose we have constructed sets A = A0 ⊇ A1 ⊇ . . . ⊇ Aj−1

and integers ni, ai,mi for i = 1, . . . , j − 1 with the following properties:

(i) kn1 < m1 < n2 < kn2 < m2 < n3 < . . . < knj−1 < mj−1,
(ii) Fi = Ai−1 \Ai ⊆ [ni + 1,mi] for i = 1, . . . , j − 1,

(iii) a1, . . . , aj−1 ∈ Aj−1,
(iv) r′Aj−1

(n) > 0 for n ≥ n1,
(v) mi 6∈ k(Ai \ {ai}) for i = 1, . . . , j − 1.

We now construct the set Aj and integers nj , aj , and mj .
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Let Gj = A \Aj−1 ⊆ [1,mj−1]. Choose nj > mj−1 such that

r′A(n) > c(j + d+ |Gj |)
for all n ≥ nj . Choose aj , bj,1, bj,2, . . . , bj,k−1 ∈ Aj−1 such that

aj ≤ nj < knj < bj,1 < bj,2 < . . . < bj,k−1.

Let
mj = aj + bj,1 + bj,2 + . . .+ bj,k−1.

Exactly as in the first step of the induction, we shall determine a subset
Fj of A0 that “destroys” every representation of mj as a sum of k distinct
elements of Aj−1 that does not include aj as a summand.

Every such representation is of the form

mj = a′1 + a′2 + . . .+ a′t + bj,u1 + bj,u2 + . . .+ bj,uk−t ,

where 2 ≤ t ≤ k, and a′i ∈ A0, a
′
i 6= aj , bj,u for i = 1, 2, . . . , t and u =

1, 2, . . . , k − 1. Let
a′1 < a′2 < . . . < a′t.

Since (k − 1)− (k − t) = t− 1 ≥ 1, it follows that

(bj,1 + bj,2 + . . .+ bj,k−1)− (bj,u1 + bj,u2 + . . .+ bj,uk−t)

= bj,v1 + bj,v2 + . . .+ bj,vt−1 ≥ bj,1.
Then

mj = aj + bj,1 + bj,2 + . . .+ bj,k−1

= a′1 + a′2 + . . .+ a′t + bj,u1 + bj,u2 + . . .+ bj,uk−t
implies that

knj < bj,1 < aj + bj,1 ≤ aj + bj,v1 + bj,v2 + . . .+ bj,vt−1

= mj − (bj,u1 + bj,u2 + . . .+ bj,uk−t) = a′1 + a′2 + . . .+ a′t < ta′t ≤ ka′t
and so

a′t > nj .

Let Fj be the set of all such integers a′t, and let Aj = Aj−1 \ Fj . Then
Fj ⊆ [nj + 1,mj ]. Since aj , bj,1, bj,2, . . . , bj,k−1 6∈ Fj , it follows that mj =
aj + bj,1 + bj,2 + . . .+ bj,k−1 is a representation of mj as a sum of k elements
of Aj , and so r′Aj (mj) > 0. On the other hand, we have destroyed every
representation of mj as the sum of k distinct elements of Aj−1 all different
from aj , and so mj 6∈ k(Aj−1 \ {aj}). Let n1 ≤ n ≤ nj . Since Aj−1 \ Aj =
Fj ⊆ [nj + 1,mj ] ∩ S′A(mj), it follows that r′Aj (n) = r′Aj−1

(n) > 0. Let
n > nj , n 6= mj . Since

A \Aj = Fj ∪Gj
and

(Fj ∪Gj) ∩ S′A(n) ⊆ (Fj ∩ S′A(n)) ∪Gj ⊆ (S′A(mj) ∩ S′A(n)) ∪Gj ,
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it follows that

|(Fj ∪Gj) ∩ S′A(n)| ≤ d+ |Gj |
and so

r′Aj (n) ≥ r′A(n)− c(d+ |Gj |) > c(j + d+ |Gj |)− c(d+ |Gj |) = cj > 0.

This completes the induction.
Let Â =

⋂∞
j=1Aj . Let n ≥ n1. Choose j ≥ 1 so that nj ≤ n < nj+1.

Since Aj \ Â ⊆ [nj+1 + 1,∞), it follows that

r′
Â

(n) = r′Aj (n) > cj > 0,

and so Â is a strict asymptotic basis of order k. Moreover, for every j ≥ 1,
since mj 6∈ k(Aj \ {aj}), it follows that

mj 6∈ k(Â \ {aj}).
Recall that at each step j of the induction, we chose an integer aj . We had
complete freedom to select this integer, subject only to the conditions that
aj ∈ Aj−1 and aj ≤ nj . Let us choose these integers in such a way that
every element a ∈ Â is chosen infinitely often, that is, if a ∈ Â, then a = aj
for infinitely many j. Then the set Â will be a minimal asymptotic basis of
order k, since the deletion of any element a will destroy all representations
of infinitely many integers mj .

To construct an ℵ0-minimal strict asymptotic basis, we choose the num-
bers aj such that, if a ∈ Â, then a = aj for exactly one integer j. If an
infinite subset I is deleted from Â, then there is an infinite increasing se-
quence of integers of the form mj that cannot be written as the sum of k
terms of Â \ I, and so Â \ I is not a strict asymptotic basis of order k.

Let F be a finite subset of Â, and let |F | = f . We shall show that Â \F
is a strict asymptotic basis of order k.

Since aj ∈ F for exactly f indices j, and since bj,u ∈ F for at most f
double indices (j, u), it follows that mj ∈ k(Â \ F ) for all but at most 2f
numbers mj .

Let n ≥ nf , n 6= mj for all j. Choose j such that nj ≤ n < nj+1. Then
j ≥ f . Since

r′
Â

(n) = r′Aj (n) > cj > 0,

and since each element of F destroys at most c representations of n, it follows
that

r′
Â\F (n) > cj − cf = c(j − f) ≥ 0.

Thus, Â\F is a strict asymptotic basis of order k, and so Â is an ℵ0-minimal
strict asymptotic basis of order k.
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3. Independence of solution sets. Let S be the asymptotic basis
constructed in [7]. In this section we want to prove that S satisfies the
conditions of Theorems 1 and 2. That is, we prove the following theorem.

Theorem 3. The asymptotic basis S contains the following :

(a) a minimal asymptotic basis of order k,
(b) a minimal strict asymptotic basis of order k,
(c) an ℵ0-minimal asymptotic basis of order k, and
(d) an ℵ0-minimal strict asymptotic basis of order k.

P r o o f. In view of the previous section, it suffices to verify that S sat-
isfies the hypotheses of Theorems 1 and 2. We first prove, in Lemma 1
below, that it suffices to verify that S satisfies the hypothesis of Theorem 2.
The first criterion of the hypothesis of Theorem 2 is satisfied by S, since
r′S(n) = Θ(log n), which is the main result of [7]. Lemmas 2 and 3 in the
following show that the asymptotic basis S does in fact satisfy the rest of
the hypothesis of Theorem 2. (In short, Lemmas 1–3 below constitute the
proof of this theorem.)

Suppose that S satisfies the hypothesis of Theorem 2. The following
argument shows that S satisfies the hypothesis of Theorem 1 as well.

Lemma 1. rS(n)− r′S(n) <∞ for all n.

P r o o f. Consider the representations that contribute to rS(n) but not
to r′S(n). The number of distinct elements in each such representation of
n is at least one and at most k − 1. Consider a representation of n with l
distinct elements, where 1 ≤ l ≤ k − 1, i.e.

n = a1 + . . .+ al + al+1 + . . .+ ak, ai ∈ S, a1 < . . . < al.

We will be done by showing that there are only finitely many representations
of this form for each n.

Consider m = n− (al+1 + . . .+ak) = a1 + . . .+al. Equivalently, we want
to show for each m, the number of representations (denoted by r′l(m)) as a
sum of l distinct elements from S is bounded.

By Lemma 10 of [7], we know that the number of representations of n
as a sum of l distinct elements is bounded for l < k. Hence the lemma.

With this lemma, for the rest of this section it suffices to consider only
the distinct representations, and verify that S satisfies the hypothesis of
Theorem 2. The second criterion in Theorem 2 asserts that the number of
representations of n that use a be bounded, for every n ∈ N, and a ∈ S.

Lemma 2. r′S(n; a) is bounded for all a ∈ S.
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P r o o f. Note that r′S(n; a) = the number of representations (in S) of
n−a as a sum of k−1 terms. Once again this follows from Lemma 10 of [7].

Finally, the following lemma proves that S meets the third criterion in
Theorem 2.

Lemma 3. |S′S(m) ∩ S′S(n)| is bounded for all m < n.

Before we prove Lemma 3, we need a couple of technical lemmas. The
idea is going to be similar to that of the proof of Lemma 10 of [7]; we first es-
timate the expected such number, and then bound the disjoint occurrences.

Let Rl(n,m) represent the number of representations of n and m that
overlap in l numbers. (Note that l ∈ [1, k − 1].) Further, let R∗l (n,m) rep-
resent a maximal collection of “disjoint overlaps” — each overlapping pair
of representations for n and m is disjoint from the other overlapping pairs.
Also, let R(n,m) and R∗(n,m) denote the corresponding terms when no
restriction is made on the size (l) of the overlap.

Lemma 4. E[R(n,m)] ≤ n−l/(2k)+o(1).

P r o o f. Without loss of generality, let m < n. Then, for fixed n and m,
a typical overlapping pair of representations is of the following form:

z1 + . . .+ zl + x1 + . . .+ xk−l = n, z1 + . . .+ zl + y1 + . . .+ yk−l = m,

where

z1 + . . .+ zl = t, 1 ≤ t < m.

Thus the expected value of Rl(n,m) equals
∑

1≤t<m

∑
z1+...+zl=t

x1+...+xk−l=n−t
y1+...+yk−l=m−t

Pr[z1] . . .Pr[zl]

× (Pr[x1] . . .Pr[xk−l])(Pr[y1] . . .Pr[yk−l])

=
∑
t

( ∑
z1+...+zl=t

Pr[z1] . . .Pr[zl]
)

×
( ∑
x1+...+xk−l=n−t

Pr[x1] . . .Pr[xk−l]
)

×
( ∑
y1+...+yk−l=m−t

Pr[y1] . . .Pr[yk−l]
)

=
∑
t

µl(t)µk−l(n− t)µk−l(m− t) = ∆ (say).
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We are going to show that ∆ ≤ n−l/(2k)+o(1) by making use of the
following estimates for µl(n) from [7] (Lemma 8, p. 252):

µl(n) ≤ n−1+l/k+o(1) for 2 ≤ l ≤ k − 1.

For technical reasons, fix ε = l/(4k). Now pick t0 such that

µl(t) ≤ t−1+l/k+ε for t > t0.

The proof that ∆ ≤ n−l/(2k)+o(1) gets quite technical, and can be omit-
ted on the first reading without loss of understanding of the rest of the
paper.

C a s e 1. Let us assume that m = O(nδ) for δ < 1.
C a s e 1(a). t ≤ t0:

∆1 =
∑

t≤t0
(µl(t)µk−l(n− t)µk−l(m− t))

< n−1+(k−l)/k+o(1)m−1+(k−l)/k+o(1)
∑

t≤t0
H

< n−1+(k−l)/k+o(1) = n−l/k+o(1).

C a s e 1(b). m− t0 < t ≤ m:

∆2 =
∑

m−t0<t≤m
(µl(t)µk−l(n− t)µk−l(m− t))

< (m−1+l/k+o(1)n−1+(k−l)/k+o(1))
∑

m−t0<t≤m
µk−l(m− t)

< (n−1+(k−l)/k+o(1))
∑

m−t0<t≤m
H

< (n−1+(k−l)/k+o(1)) = n−l/k+o(1).

C a s e 1(c). t0 < t ≤ m− t0:

∆3 =
∑

t0<t≤m−t0
(µl(t)µk−l(n− t)µk−l(m− t))

< (n−1+(k−l)/k+o(1)m−1+(k−l)/k+o(1))
∑

t0<t≤m−t0
t−1+l/k+ε.

We can now estimate the sum by an integral over the full range 0 ≤ t ≤ m:

∆3 < (n−1+(k−l)/k+o(1)m−1+(k−l)/k+o(1))
( m∫

0

t−1+l/k+ε +O(1)
)

= (n−1+(k−l)/k+o(1)m−1+(k−l)/k+o(1))(ml/k+ε +O(1))

< n−1+(k−l)/k+o(1) = n−l/k+o(1).
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C a s e 2. In this case, we let m = Θ(n).
C a s e 2(a). t ≤ t0:

∆′1 =
∑

t≤t0
(µl(t)µk−l(n− t)µk−l(m− t))

< n−1+(k−l)/k+o(1)m−1+(k−l)/k+o(1)
∑

t≤t0
H

< n−1+(k−l)/k+o(1)m−1+(k−l)/k+o(1)

< n−2+2(k−l)/k+o(1), since m = Θ(n)

= n−l/k+o(1).

C a s e 2(b). m− t0 < t ≤ m:

∆′2 =
∑

m−t0<t≤m
(µl(t)µk−l(n− t)µk−l(m− t))

< (m−1+l/k+o(1))
∑

m−t0<t≤m
(n− t)−1+(k−l)/k+o(1)H

= (m−1+l/k+o(1))
∑

m−t0<t≤m
(n− t)−1+(k−l)/k+o(1)

< (m−1+l/k+o(1))(t0 × (n−m)−1+(k−l)/k+o(1))

= (m−1+l/k+o(1))(n−1+(k−l)/k+o(1))

= (n−1+l/k+o(1))(n−l/k+o(1))

< n−1+o(1).

C a s e 2(c). t0 < t ≤ m/2:

∆′3 =
∑

t0≤t≤m/2
(µl(t)µk−l(n− t)µk−l(m− t))

< (n−1+(k−l)/k+o(1)m−1+(k−l)/k+o(1))
∑

t0≤t≤m/2
t−1+l/k+ε.

We can now estimate the sum by an integral over the full range 0 ≤ t ≤ m:

∆′3 < (n−1+(k−l)/k+o(1))(m−1+(k−l)/k+o(1))
( m∫

0

t−1+l/k+ε +O(1)
)

= (n−1+(k−l)/k+o(1))(m−1+(k−l)/k+o(1))(ml/k+ε +O(1))

= (n−l/k+o(1)mε+o(1))

< n−l/k+ε+o(1) = n−(3l)/(4k)+o(1).
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C a s e 2(d). m/2 < t ≤ m− t0:

∆′4 =
∑

m/2<t≤m−t0
(µl(t)µk−l(n− t)µk−l(m− t))

< (m−1+l/k+o(1))
∑

m/2<t≤m−t0
(n− t)−1+(k−l)/k+ε(m− t)−1+(k−l)/k+ε

< (m−1+l/k+o(1))
∑

m/2<t≤m−t0
(m− t)−2l/k+2ε.

Once again, we estimate the sum by an integral over the full range 0 ≤ t ≤ m:

∆′4 < m−1+l/k+o(1)
( m∫

0

(m− t)−2l/k+2ε +O(1)
)

< m−1+l/k+o(1)(−(m− t)1−2l/k+2ε|m0 +O(1))

= m−l/k+2ε+o(1)

= n−l/k+2ε+o(1) = n−l/(2k)+o(1).

From Cases 1 and 2, we can conclude that

E[Rl(m,n)] ≤ n−l/(2k)+o(1).

This implies

E[R(m,n)] =
k−1∑

l=1

E[Rl(m,n)] ≤ n−l/(2k)+o(1).

Lemma 5. (i) Pr[R∗(m,n) > 8k] < n−4+o(1).
(ii) a.a. ∃c∗ such that R∗(m,n) < c∗ for all m < n.

P r o o f. (i) We use the disjointness lemma from [7] to prove the first
part; thus

Pr[R∗(m,n) > 8k] <
(E[R(m,n)])8k

(8k)!

<
1

(8k)!
(n−l/(2k)+o(1))8k

= n−4l+o(1) < n−4+o(1), since l ≥ 1.

(ii) Let Amn denote the event that R∗(m,n) > 8k. Then the first part
of this lemma implies that Pr[Amn] < n−4+o(1). There are at most n2 pairs
(m,n) such that m < n, and since n2Pr[A(m,n)] <∞, by the Borel–Cantelli
lemma (see e.g. [7]), this implies that

a.a. ∃n∗ such that R∗(m,n) < 8k for all m < n, whenever n > n∗.
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But for any finite n∗, R∗(m,n∗) is certainly bounded for all m < n∗. Thus
we conclude that

a.a. ∃c∗ such that R∗(m,n) < c∗ for all m < n.

P r o o f o f L e m m a 3. Let us define the following equivalence relation
“◦” on the numbers in |SS(m) ∩ SS(n)|: x ◦ y iff

x+ a1 + . . .+ ak−1 = m and y + a′1 + . . .+ a′k−1 = n

and moreover,
{a1, . . . , ak−1} ∩ {a′1, . . . , a′k−1} 6= ∅.

(Thus x and y are related iff x and y belong to some overlapping pair of
representations for m and n.) The number of equivalence classes defined by
◦ is bounded since R∗(m,n) is bounded. Moreover, for each x ∈ classCx,
there are at most a bounded number of y ∈ Cx, since both r′S(m; a) and
r′S(n; a) are bounded. Thus each equivalence class is also bounded, and hence
|S′S(m) ∩ S′S(n)| is bounded.

4. Conclusions. Theorems 1 and 2 along with Lemmas 1–3 imply that
the asymptotic basis constructed in [7] contains a minimal (strict) and an
ℵ0-minimal (strict) asymptotic basis.

Erdős and Nathanson [3] obtained the following very simple criterion for
an asymptotic basis A of order 2 to contain a minimal asymptotic basis.

Theorem 4 (EN). If there exists a constant c > 1/ log( 4
3 ), such that

r′A(n) > c logn for all sufficiently large n, then A contains a minimal asymp-
totic basis of order 2.

The combinatorial lemma at the heart of this theorem has since been
generalized by Jia [9] and Nathanson [10]. However, the search for an ana-
logue of Theorem [EN] remains open for bases of order k > 2. Clearly, this
question requires some new ideas.

Another very interesting problem, which is open even for bases of order
2, is if the weaker condition that r′A(n) → ∞ is sufficient to imply that
A must contain a minimal asymptotic basis. Perhaps this conjecture is too
optimistic, but it is possible that r′A(n) > c logn, for every c > 0, is sufficient
to imply that A must contain a minimal asymptotic basis.
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