ACTA ARITHMETICA
LXIX.3 (1995)

Independence of solution sets and
minimal asymptotic bases

by

PauL ErRDOs (Budapest), MELVYN B. NATHANSON (Bronx, N.Y.)
and PRASAD TETALI (Murray Hill, N.J.)

1. Introduction. Let A be a set of positive integers, and let k > 2 be
a fixed integer. Let r4(n) denote the number of representations of n in the
form

(1) n=a +as+...+ag,

where

(2) 0<ar <as <...<ay

and a; € A for i =1,... k. Let r/;(n) denote the number of “strict” repre-
sentations of n in the form

(3) n=a +ax+...+ak,

where

(4) 0<ar <as <...<ay

and a; € Afori=1,...,k. The set A is called an asymptotic basis of order

k if there exists a natural number ny such that r4(n) > 0 for all n > n;. The
set A is called a strict asymptotic basis of order k if there exists a natural
number nq such that r/,(n) > 0 for all n > ny. All bases considered in this
paper will be either asymptotic or strict asymptotic bases of order k. Erdés
and Tetali [7] gave a probabilistic construction of a strict asymptotic basis
S of order k whose representation function satisfies logn < r%5(n) < logn.

An asymptotic basis (resp. strict asymptotic basis) A is called minimal
if the removal of any element from the basis destroys all representations of
some infinite sequence of numbers, that is, A \ {a} is not an asymptotic
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basis (resp. strict asymptotic basis) for any a € A. An asymptotic basis
(resp. strict asymptotic basis) A is defined to be Rg-minimal if A\ F is an
asymptotic basis (resp. strict asymptotic basis) for every finite subset F' of
A, but A\ I fails to be a basis for every infinite subset I of A. Erd6s and
Nathanson [3, 4] survey results concerning minimal asymptotic bases. In [2],
they derived conditions under which an asymptotic basis of order 2 contains
a minimal asymptotic basis, and they also constructed in [1] a family of
Nog-minimal asymptotic bases of order 2.

This paper has two aims. First, we give a simple set of criteria under
which an asymptotic basis (resp. strict asymptotic basis) contains a minimal
asymptotic basis (resp. strict asymptotic basis). These criteria also enable us
to construct Np-minimal bases. Second, we show that the strict asymptotic
basis S constructed in [7] satisfies this set of criteria and so contains a
minimal as well as an Ng-minimal asymptotic basis. These results answer
two important questions posed in [4].

Notation. Let kA denote the set of all sums of k£ elements of A, and
let k*A denote the set of all sums of k distinct elements of A. Let r4(n;a)
(resp. 1’4 (n; a)) denote the number of representations of n in the form (1)—(2)
(resp. (3)—(4)) such that a; = a for some i = 1,..., k. The solution set of n,
denoted by S4(n) (resp. S’4(n)), is the set of integers in A that appear in
some representation of n; that is,

Sa(n)={a€ A|ra(n;a) >0}
and
S(n)={ae Alr'y(n;a) > 0}.

2. Minimal and Ry-minimal asymptotic bases. Erdés and Nathan-
son [2] discovered a set of simple criteria for an asymptotic basis of order 2
to contain a minimal asymptotic basis of order 2. We shall generalize this
result to asymptotic bases of order £ > 3. The following theorem is a natural
extension of Theorem 3 of [2]. Condition (ii) is trivially satisfied in the case
k = 2, but is a nontrivial restriction for asymptotic bases of orders k£ > 3.

THEOREM 1. Let A be a strictly increasing sequence of positive integers,
and let k > 2. If
(1) limy oo 7a(R) = 00,
(ii) ra(n;a) is bounded for all n > 1,a € A,
(iii) |Sa(m)NSa(n)| is bounded for all m # n,
then A contains

(a) a minimal asymptotic basis of order k, and
(b) an No-minimal asymptotic basis of order k.
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Proof. Let ra(n;a) < c for all n > 1 and a € A. It follows that if F is
any finite subset of A and if |[FFN Sa(n)| < w, then

ravr(n) = ra(n) — cw
for all n, since the removal of any one element of S4(n) destroys at most ¢
representations of n. Let |S4(m)NSa(n)| < dforallm #n. If F C Sa(m),
then

[F N Sa(n)] <[Sa(m) N Sa(n)| <d,

and so

ra\r(n) >ra(n) —cd
for all n # m.

We shall use induction to construct a decreasing sequence of sets

A=A D A1 DAy D ...
such that

A= ﬁ A
j=0

is a minimal asymptotic basis of order k. We shall also construct a second
decreasing sequence of subsets of A whose intersection is an Ng-minimal
asymptotic basis of order k.

Let Ag = A. Since lim,, . 74(n) = 0o, we can choose an integer ny so
that 74,(n) = ra(n) > c¢(1+d) for all n > ny.

Choose ai1,b; € Ap such that a; < ny and by > kny. Let mq1 = a1 +
(k—1)by. Then

kni <b < (k — 1)b1 <mq < kby.

We shall construct a set A; C Ap such that r4,(n) > 0 for all n > nq, but
my & k(A1 \ {a1}). Thus, every representation of m; as a sum of k elements
of A; must include the integer a; as a summand.

We first determine a subset F; of Ag that “destroys” every representation
of my that does not include a; as a summand. Every such representation is
of the form

my =a) +ay+...+a;+ (k—t)by,
where a; € Ag and a} # a1,by fori =1,2,...,t. Note that m; < kb; implies
that t # 0. If t = 1, then

a1+(k3—1)b1 :m1:a3+(k*1)b1

implies that a} = a;, which is false. Therefore, 2 <t < k. Let a} < a}, <
... < a}. Then

(k—1)by <my <ta), + (k—t)by < ka; + (k—2)by
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implies that
a; > by/k > ny.
Let Fy be the set of all such integers a}, and let Ay = Ay \ Fi. Then
Fy C[ny +1,m4]. Since aq, by € Fy, it follows that m; = ay + (k—1)b; is a
representation of m; as a sum of k elements of Ay, and so 74, (m1) > 0. On
the other hand, we have destroyed every representation of m, as the sum of
k elements of Ay all different from aq, and so my & k(Ap \ {a1}).
Let n > nq,n # my. Since Fy C S4(my), it follows that
ra,(n) =ram (n) >ra(n) —cd>c(l+d)—cd=c>0.
This completes the first step of the induction.

Let 7 > 2. Suppose we have constructed sets A = Ao 2 A; 2 ... D A,

and integers n;,a;, m; fort =1,...,7 — 1 with the following properties:
(1) knp <mq <ng <kng <mo<nsg<... <k‘n]’_1 <mj;-i,

(11) Fz:Az—l\Az Q [nz—l—l,ml] fOI"L:L,]—l,

(111) at,...,a;-1 € Ajfl,

(iv) ra,_,(n) > 0 for n > nq,

(V) m; ¢k‘(Al\{al}) forizl,...,j—l.

We now construct the set A; and integers n;,a;, and m;.

Let Gj = A\ Aj_1 C [1,m;_1]. Choose nj; > m;_; such that r4(n) >
c(j +d+1|G,|) for all n > n;. Choose aj,b; € Aj_; such that a; < n; and
bj > k:nj. Let m; = a; + (k‘ - 1)bj Then

k:nj < bj < (kj — 1)b] <m; < ]Cb]
Exactly as in the first step of the induction, we shall determine a subset Fj
of Aj_; that “destroys” every representation of m; as a sum of k elements
of A;j_; that does not include a; as a summand. Every such representation
is of the form

m; =a) +ay+...+a,+ (k—1t)b;
where 2 <t <k, and a, € Aj_1,a, # aj,b; for i =1,2,...,t. Let
ay <ah<...<a.
Then
(k—1)b; <mj <ta, + (k—t)b; < kay + (k — 2)b;
implies that
ay > bj/k > n;.

Let F; be the set of all such integers a;, and let A; = A;_; \ F}. Then

Fy € lnj+ Lm0 Sa;, (my) € [nj +1,m;] 0 Sa(my).
Since aj,b; ¢ Fj, it follows that m; = a; + (k — 1)b; is a representation
of m; as a sum of k elements of A;, and so 74,(m;) > 0. However, m; ¢
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kE(A;\ {a;}), since the set A; was constructed so that every representation
of m; as the sum of k elements of A; has at least one summand equal to a;.

Let ny < n < nj. Since A;_1 \ A; = F; C [n; + 1,m;], it follows that
ra;(n) =ra,_,(n) > 0. Let n > nj,n # m;. Since

A\A; =F;UG;
and
(F;UG;)NSa(n) C(F;NSa(n))UG; C (Sa(mj)NSa(n)) UGy,
it follows that
[(F; UG;) N Sa(n)] < d+ |Gl

and so
ra;(n) >ra(n) —c(d+|Gj|) > c(j +d+|Gj]) — c(d +|Gj]) = ¢j > 0.

This completes the induction.
Let A* =2, A;. Let n > ny. Choose j > 1 so that n; < n < nji;.
Since A; \ A* C [n;41 + 1,00), it follows that

rax(n) =ra,;(n) >cj >0,
and so A* is an asymptotic basis of order k. Moreover, since

mj & k(A; \ {a;})

for every j > 1, it follows that

m; & k(A*\ {a;}).
Recall that at each step j of the induction, we chose an integer a;. We had
complete freedom to select this integer, subject only to the conditions that
aj € Aj_1 and a; < nj. Let us choose these integers in such a way that
every element a € A* is chosen infinitely often, that is, if a € A*, then
a = a; for infinitely many j. Then the set A* will be a minimal asymptotic
basis of order k, since the deletion of any element a € A* will destroy all
representations of infinitely many integers m;.

To construct an Np-minimal asymptotic basis, we choose the numbers a;
such that, if a € A*, then a = a; for exactly one integer j. If an infinite
subset [ is deleted from A*, then there are infinitely many integers of the
form m; that cannot be written as the sum of k terms of A\ I, and so A\ I
is not an asymptotic basis of order k.

Let F be a finite subset of A*, and let |F'| = f. We shall show that A*\ F
is an asymptotic basis of order k.

Since a; € F for exactly f indices j, and since b; € F' for at most f
indices j, it follows that m; € k(A*\ F') for all but at most 2f numbers m;.
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Let n > ng,n # m; for all j. Choose j such that n; < n < nj;q. Then

j > f. Since
ra+(n) =1r4,(n) >cj >0,
and since each element of F' destroys at most ¢ representations of n, it follows
that
ra-\r(n) >cj—cf >0.

Thus, A*\ F is an asymptotic basis of order k, and so A* is an Rp-minimal
asymptotic basis of order k. =

THEOREM 2. Let A be a strictly increasing sequence of positive integers,
and let k > 2. If

(1) limy,— 00 774 (n) = 00,
(ii) v’y (n;a) is bounded for all n > 1, a € A,
(iii) S (m) NSy (n)| is bounded for all m # n,
then A contains

(a) a minimal strict asymptotic basis of order k, and
(b) an Ng-minimal strict asymptotic basis of order k.

Proof. Let r/y(n;a) < c for all n > 1 and a € A. It follows that if F is
any finite subset of A and if |[F'N S’ (n)| < w, then

rave(n) = ry(n) —cw

for all n, since the removal of any one element of S’;(n) destroys at most ¢
representations of n. Let |S (m) NS (n)] < d for all m # n. If F C S/, (m),
then
[F'N Sa(n)] < [S(m) NSy (n)] < d,
and so
rae(n) 2 ria(n) —cd
for all n #£ m.

We shall use induction to construct a decreasing sequence of sets A =
Ap D A; D Ay D ... such that A = ﬂ;’io Aj; is a strict minimal asymptotic
basis of order k. We shall also construct a second decreasing sequence of
subsets of A whose intersection is an Ng-minimal strict asymptotic basis of
order k.

Let Ag = A. Since lim, .. 74 (n) = oo, we can choose an integer n;
so that 7 (n) = rly(n) > ¢(1 +d) for all n > n;. Choose k integers
ay, bl,l, b1’2, ceey bl,k—l € Ap such that

a1 <ng < km < b1,1 < 6172 < ... < bl,kfl'
Let
myp = ay + b1’1 + bl,z + ...+ b17k,1.
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We shall construct a set A; C Ag such that r/y (n) > 0 for all n > n;, and
with the additional property that every representation of m; as a sum of k
distinct elements of A; must include the integer a; as a summand.

We first determine a subset F; of Ag that “destroys” every strict repre-
sentation of m; that does not include a; as a summand. Every such repre-
sentation is of the form

mi=ay+ay+...+a +bru +b1ius o010,
where 2 < ¢t < k, and a € Ap,a, # a1,b1, for i = 1,2,...,t and u =
I,...,k—1.Letad} <ah <...<a,.Since (k—1)—(k—t)=t—1>11it
follows that
(b1g+bio+ ... +b1g-1) = (bruy +b1up + - Fb1u,,)
=biy, + b1, + .o+ b1y, > b1
Then
my=ar +bi1+bio+...+b 1
=aj+ab+...4+a,+b1yy b+,
implies that
kni <big<ar+bii<ar+biy, +b10, +.oo b1y,
=mi— (b1, + 010+ -+ b1u,,) =0a) +ab+...4+a} <ta; < ka;
and so
a; > ni.
Let Fy be the set of all such integers a}, and let A1 = Ao\ Fy. Then Fy C [nq1+
1,m1]. Since al,bLl,bLQ, .. ~7b1,k71 ¢ Fy, it follows that m; = a1 + b171 +
bi,2 + ...+ by p—1 is a representation of m; as a sum of k distinct elements
of Ay, and so 7’y (my) > 0. On the other hand, we have destroyed every
representation of mq as the sum of k£ distinct elements of Agy all different
from a1, and so my & k(4o \ {a1}).
Let n > ny,n # my. Since Fy C Sy (mq), it follows that
ra, (n) =1y (n) > 74 (n) —ed > c(1+d) —cd =c > 0.
This completes the first step of the induction.
Let j > 2. Suppose we have constructed sets A = Ay 2 A1 2 ... 2 A;_;
and integers n;,a;, m; for ¢ =1,...,7 — 1 with the following properties:
(1) kni <mq <ng < kng < mgy <ng<... <k:nj_1 <mj-_i,
(ll) Fz:Az—l\Az Q [nz—l—l,ml] forZ:l,,j—l,
(111) aty...,05-1 € Aj—la
(iv) rly,  (n) >0 for n > ny,
(v) mi € k(A; \{a;}) fori=1,...,5 — 1.

We now construct the set A; and integers n;,a;, and m;.
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Let G; = A\ A;j_1 C [1,m;_1]. Choose n; > m;_; such that
ra(n) > c(j +d+|Gjl)
for all n > n;. Choose a;,b;1,b;2,...,b; -1 € Aj_1 such that
a; < n; < k‘nj < b]’71 < bj,2 <. o< bj,k—l-
Let
m; = aj + bj,l + bj72 + ...+ bj’kfl.
Exactly as in the first step of the induction, we shall determine a subset
F; of Aj that “destroys” every representation of m; as a sum of k distinct
elements of A;_; that does not include a; as a summand.
Every such representation is of the form
m;=ay+as+...+a;+bju +bjuy+ o+ bjup s
where 2 < ¢t < k, and a] € Ap,a; # aj,b;, for i = 1,2,...,t and v =
1,2,...,k—1. Let
a) <ahy <...<aj.
Since (k—1) — (k—t) =t —1 > 1, it follows that
(bj1 +bj2+ ..+ bjk—1) = (bjuy +bjug + -+ bju_,)
= bjﬂ/l + bj71,2 + ...+ bj,vt,l > bj71.
Then
mj = CLj + bj71 + b]'72 + ...+ bj,k:—l
=aptag o A+ b+ b+ b,
implies that
kng <bji <aj+bj1 < aj+bje + 0w, + + i,
=mj — (bjuy +0jus+ o +bju, ) =a] +as+...+a; < ta, <ka
and so
ay > n;.
Let F; be the set of all such integers ay, and let A; = A;_; \ Fj. Then
Fj - [n]' + l,mj]. Since aj,bj’l,bjg, cee 7bj,k—1 g F]’, it follows that m; =
a;+bj1+bj2+...4+bjr_1is arepresentation of m; as a sum of k elements
of Aj, and so 7y (m;) > 0. On the other hand, we have destroyed every
representation of m; as the sum of k distinct elements of A;_; all different
from a;, and so m; & k(Aj—1 \ {a;}). Let ny <n <n,. Since A;_1 \ 4; =
Fy C [nj +1,my] N S (my), it follows that 'y (n) = 1y, (n) > 0. Let
n > nj,n # m;. Since
A\A; =F;UG;
and
(F; UG;) N S4(n) C (1S4 (n) UG, € (Sh(my) N Sh(n) UG,
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it follows that
[(F; UGy) N Sy(n)] < d+ |Gyl
and so
s, (n) > 1l (n) — e(d +|Gjl) > c(j +d +|Gj]) — e(d + |Gy]) = ¢j > 0.

This completes the induction.
Let A = ﬂj’;l Aj. Let n > ny. Choose j > 1 so that n; < n < njtq.

Since A; \AC [nj41 + 1,00), it follows that
r'i(n) = 1), (n) > ¢j >0,

and so A is a strict asymptotic basis of order k. Moreover, for every j > 1,
since m; & k(A; \ {a;}), it follows that

m; & k(A\{a;}).

Recall that at each step j of the induction, we chose an integer a;. We had
complete freedom to select this integer, subject only to the conditions that
aj € Aj_1 and a; < nj. Let us choose these integers in such a way that
every element a € A is chosen infinitely often, that is, if a € A\, then a = a;
for infinitely many j. Then the set A will be a minimal asymptotic basis of
order k, since the deletion of any element a will destroy all representations
of infinitely many integers m;.

To construct an Nyg-minimal strict asymptotic basis, we choose the num-
bers a; such that, if a € ﬁ, then a = a; for exactly one integer j. If an
infinite subset I is deleted from ﬁ, then there is an infinite increasing se-
quence of integers of the form m; that cannot be written as the sum of k
terms of A \ I, and so A \ I is not a strict asymptotic basis of order k.

Let F be a finite subset of A, and let |[F| = f. We shall show that A\ F
is a strict asymptotic basis of order k.

Since a; € F for exactly f indices j, and since b;,, € F for at most f
double indices (j,u), it follows that m; € k(A \ F) for all but at most 2f
numbers m;.

Let n > nyg,n # m; for all j. Choose j such that n; < n < njy;. Then
j > f. Since

r'i(n) =1l (n) > ¢j >0,
and since each element of F’ destroys at most ¢ representations of n, it follows
that

Pop(n) > ¢ —ef =i~ ) 2 0.

Thus, A \ F'is a strict asymptotic basis of order k, and so Ais an Ng-minimal
strict asymptotic basis of order k. m
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3. Independence of solution sets. Let S be the asymptotic basis
constructed in [7]. In this section we want to prove that S satisfies the
conditions of Theorems 1 and 2. That is, we prove the following theorem.

THEOREM 3. The asymptotic basis S contains the following:

(a) a minimal asymptotic basis of order k,

(b) a minimal strict asymptotic basis of order k,
(¢) an Wo-minimal asymptotic basis of order k, and
d)

(

Proof. In view of the previous section, it suffices to verify that S sat-
isfies the hypotheses of Theorems 1 and 2. We first prove, in Lemma 1
below, that it suffices to verify that S satisfies the hypothesis of Theorem 2.
The first criterion of the hypothesis of Theorem 2 is satisfied by S, since
r's(n) = ©(logn), which is the main result of [7]. Lemmas 2 and 3 in the
following show that the asymptotic basis S does in fact satisfy the rest of
the hypothesis of Theorem 2. (In short, Lemmas 1-3 below constitute the
proof of this theorem.) m

an No-minimal strict asymptotic basis of order k.

Suppose that S satisfies the hypothesis of Theorem 2. The following
argument shows that S satisfies the hypothesis of Theorem 1 as well.

LEMMA 1. rg(n) —rs(n) < oo for all n.

Proof. Consider the representations that contribute to rs(n) but not
to 7%5(n). The number of distinct elements in each such representation of
n is at least one and at most k — 1. Consider a representation of n with [
distinct elements, where 1 <[ <k —1, i.e.

n=a+...+a;+ a1+ ...+ ag, a; €8, a1 <...<aq.

We will be done by showing that there are only finitely many representations
of this form for each n.

Consider m = n— (aj41+...+ax) = a1 +...+a;. Equivalently, we want
to show for each m, the number of representations (denoted by r;(m)) as a
sum of [ distinct elements from S is bounded.

By Lemma 10 of [7], we know that the number of representations of n
as a sum of [ distinct elements is bounded for [ < k. Hence the lemma. =

With this lemma, for the rest of this section it suffices to consider only
the distinct representations, and verify that S satisfies the hypothesis of
Theorem 2. The second criterion in Theorem 2 asserts that the number of
representations of n that use a be bounded, for every n € N, and a € S.

LEMMA 2. r%5(n;a) is bounded for all a € S.
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Proof. Note that r5(n;a) = the number of representations (in S) of
n—a as a sum of k—1 terms. Once again this follows from Lemma 10 of [7].

Finally, the following lemma proves that S meets the third criterion in
Theorem 2.

LEMMA 3. |S5(m) N Ss(n)| is bounded for all m < n.

Before we prove Lemma 3, we need a couple of technical lemmas. The
idea is going to be similar to that of the proof of Lemma 10 of [7]; we first es-
timate the expected such number, and then bound the disjoint occurrences.

Let R;(n,m) represent the number of representations of n and m that
overlap in [ numbers. (Note that [ € [1,k — 1].) Further, let R} (n,m) rep-
resent a maximal collection of “disjoint overlaps” — each overlapping pair
of representations for n and m is disjoint from the other overlapping pairs.
Also, let R(n,m) and R*(n,m) denote the corresponding terms when no
restriction is made on the size (1) of the overlap.

LEMMA 4. E[R(n,m)] < n~/@k)+e(1),

Proof. Without loss of generality, let m < n. Then, for fixed n and m,
a typical overlapping pair of representations is of the following form:

24ttt F T =0, zi+...+tzt+tyi+ ..o Y— = m,
where

21+ ...+ 2z =1, 1 <t<m.
Thus the expected value of R;(n, m) equals

Z Z Pr(z1]...Pr[z]

1<t<m z1+...+z=t
x1+...4+x_1=n—t
Y1+...+yg_1=m—t

X (Pr[xzq1] ... Prlzi—i])(Prly1] ... Prlyk—i])

:Z( 3 Pr[zl]...Pr[le

z1+...+z=t

Z Przq]... Pr[a:k,lD

“
:1:1+...+a:k_l:n—t
“

Z Prly].. .Pr[yk_l]>

y1+...Fyr—1=m—t

= Z () pe—i(n — ) (m —t) = A (say).
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We are going to show that A < n~/@k+e(l) by making use of the
following estimates for p;(n) from [7] (Lemma 8, p. 252):

pi(n) < p ko) o< <k —1.
For technical reasons, fix ¢ = [/(4k). Now pick to such that
() < tTIHURRE for ¢ > ¢,

The proof that A < n~t/(k)+0(1) gets quite technical, and can be omit-
ted on the first reading without loss of understanding of the rest of the
paper.

Case 1. Let us assume that m = O(n?) for § < 1.
Case 1(a). t < to:
A = Z (&) pre—1(n — ) pr—i(m — t))
t<to
< 10— [hto(1) ) —1+(k=1) /k+o(1) Z H
t<to
< n— (k=) /k+o(1) _ ,—1/k+o(1)

Case 1(b). m —ty <t <m:

Ay = Z () pr—1(n — ) pr—i(m — t))
m—to<t<m
< (m—1+l/k+o(1)n—1+(k—l)/k+o(1)) Z
m—tog<t<m
< (n—1+(k—l)/k+o(1)) Z H

m—to<t<m
nfl/k+o(1).

p—1(m — 1)

< (n71+(kfl)/k+o(1)>

Case 1(c). to <t <m — to:
Az = Z () pr—i(n — t)pr—i(m — 1))
to<t<m-—tg
< (=D /kro(D) 14 (k=) /k+o(1) Z 41+ te
to<t<m—to

We can now estimate the sum by an integral over the full range 0 <t < m:

m

As < (n—1+(k—l)/k+o(1)m—l—i—(k—l)/k—i—o(l))( ft—1+l/k+s+0(1))

— (n71+(kfl)/k+o(1)m71+(kfl)/k+o(1))(ml/kJra + O(l))

< n—l—i—(k—l)/k—i—o(l) — n—l/k-i—o(l)‘
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Case 2. In this case, we let m = O(n).
Case 2(a). t < to:

A= (O pr—i(n — t)ps—1(m — 1))

t<to
<y (=0 /kto(1) p, —14(k—1) /kt-o(1) Z H
t<to
< T E=D/kto(1) = 1+(k=1) /k+o(1)
< p 22D /kto(1)
— - U/k+o(1)

since m = O(n)

Case2(b). m—to <t <m:

Ay= Y (u(®pr—i(n — Opr—i(m — 1))

m—to<t<m
< (m~LFU/kto(1)y Z (n — )~ 1+ =D/kto(D) g
m—to<t<m
— (m~ ko)) Z (n — £)~1+k=0/kto(1)
m—to<t<m

< (m—l—l—l/k—l—o(l))(to % (n o m)—1+(k—l)/k+o(1))
— (m—1+l/k+o(1))(n—l—i-(k—l)/k—i-o(l))

_ n71+l/k+o(1))(nfl/k+o(1))

Case 2(c). to <t <m/2:

Ay= > () pr—i(n —t)ps_i(m —t))

toStSm/Q
< (n—l—i-(k—l)/k—l-o(l)m—1+(k—l)/k+o(1)) Z t—l—l—l/k—l—a.

toétSm/Q

We can now estimate the sum by an integral over the full range 0 <t < m:

AL < (nflJr(kfl)/kJro(l))(m71+(kfl)/k+o(1))( ft71+l/k+a+0(1)>
0

_ (nf].‘l’(kfl)/k‘i’o(l))(m*1+(kfl)/k+0(1))(ml/k+6 + 0(1))
— (nU/k+e() petoll))
< pW/kteto(1) _ ) —(31)/(4k)+o(1)
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Case 2(d). m/2 <t <m —ty:
Ap= Y (m®)pk-a(n = i (m — 1))
m/2<t<m—tg
< (m—l—f—l/k—i-o(l)) Z (n _ t)—l—f—(k:—l)/k:—i—s(m _ t)—l—l—(k—l)/k—l—e
m/2<t<m—tg
< (m—l-f—l/k:—l-o(l)) Z (m - t)_2l/k+26.
m/2<t<m—tg

Once again, we estimate the sum by an integral over the full range 0 < ¢t < m:

Ay <m R ([ (g — ) =225 1 0(1))
0

< m71+l/k+o(1)(_(m _ t)lfQZ/k+25|6n + 0(1))
— mfl/k+2a+o(1)

_ - U/kH2et0(1) _ —1/(2k)+o(1).

From Cases 1 and 2, we can conclude that
E[Rl(m,n)] < nfl/(Qk)+o(1)'

This implies
k—1
E[R(m,n)] =Y _ E[Ry(m,n)] < n~!/@)+et),
=1
LEMMA 5. (i) Pr[R*(m,n) > 8k| < n—4+o(1)
(i) @.a. 3¢* such that R*(m,n) < c* for all m < n.
Proof. (i) We use the disjointness lemma from [7] to prove the first
part; thus
(E[R(m, n)))*
(3k)!
1 —1/(2k)+o(1)\8k
< @ )
— n_4l+0(1) < n—4+0(1)

Pr[R*(m,n) > 8k] <

since [ > 1.

(ii) Let A, denote the event that R*(m,n) > 8k. Then the first part
of this lemma implies that Pr[A,,,] < n~*t°(1) There are at most n? pairs
(m, n) such that m < n, and since n?Pr[A(m, n)] < oo, by the Borel-Cantelli
lemma (see e.g. [7]), this implies that

a.a. dn” such that R*(m,n) < 8k for all m < n, whenever n > n*.
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But for any finite n*, R*(m,n*) is certainly bounded for all m < n*. Thus
we conclude that

a.a. dc* such that R*(m,n) < c* forallm <n. m

Proof of Lemma 3. Let us define the following equivalence relation

(1PN}

o” on the numbers in [Ss(m) N Ss(n)|: x oy iff
z+ar+...4+ag_1=m and y+ai+...4a,_,=n

and moreover,

{ai,...,ap_1}yN{ay,...,a5_1} # 0.
(Thus = and y are related iff x and y belong to some overlapping pair of
representations for m and n.) The number of equivalence classes defined by
o is bounded since R*(m,n) is bounded. Moreover, for each x € class Cy,
there are at most a bounded number of y € Cy, since both rg(m;a) and
s (n; a) are bounded. Thus each equivalence class is also bounded, and hence
|S5(m) N S5(n)| is bounded. m

4. Conclusions. Theorems 1 and 2 along with Lemmas 1-3 imply that
the asymptotic basis constructed in [7] contains a minimal (strict) and an
No-minimal (strict) asymptotic basis.

Erdés and Nathanson [3] obtained the following very simple criterion for
an asymptotic basis A of order 2 to contain a minimal asymptotic basis.

THEOREM 4 (EN). If there exists a constant ¢ > 1/log(3), such that
r’y(n) > clogn for all sufficiently large n, then A contains a minimal asymp-
totic basis of order 2.

The combinatorial lemma at the heart of this theorem has since been
generalized by Jia [9] and Nathanson [10]. However, the search for an ana-
logue of Theorem [EN] remains open for bases of order k > 2. Clearly, this
question requires some new ideas.

Another very interesting problem, which is open even for bases of order
2, is if the weaker condition that 7/y(n) — oo is sufficient to imply that
A must contain a minimal asymptotic basis. Perhaps this conjecture is too
optimistic, but it is possible that r’,(n) > clogn, for every ¢ > 0, is sufficient
to imply that A must contain a minimal asymptotic basis.
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